
Acta Univ. Sapientiae, Informatica, 6, 1 (2014) 5–20

Some more algorithms

for Conway’s universal automaton

Boris MELNIKOV
Russia, Togliatti State University
email: B.Melnikov@tltsu.ru

Vasily DOLGOV
Russia, Togliatti State University

email: terenga74@mail.ru

Abstract. In this paper authors propose algorithms for constructing so-
called automaton COM(L) and prove that this automaton coincides, up
to re-denoting states, with Conway’s universal automaton. We give some
algorithms of constructing this automaton and consider some examples.

1 Introduction

In this paper authors propose algorithms for constructing so-called automaton
COM(L). The definition of this automaton could be constructed by [8]. Below,
we shall consider this definition.We also prove that this automaton coincides,
up to re-denoting states, with Conway’s universal automaton U L ([4] etc.). We
hope that in future it will be possible to show that “in average” (for specially
defined “average” notion) this algorithms are more effective than algorithms
which construct U L by definition, i.e., using (sub)factorisations etc.
Although we do not consider classic complexity problems here, it is obvious

that for constructing U L (Section 5) complexity is proportional to the number
of grids, which is considered in Section 7.
The contents of this article is as follows.
In Section 2 we introduce some notions: binary relation #, pseudo-grid, grid,

covering subset of the grids. This notions appeared in [5, 6].

Computing Classification System 1998: F.4.3
Mathematics Subject Classification 2010: 68Q45
Key words and phrases: nondeterministic finite automata, Conway’s universal automaton,
constructing algorithms
DOI:10.2478/ausi-2014-0015

5

DOI: 10.2478/ausi-2014-0015

6 B. Melnikov, V. Dolgov

In Section 3 we give definition of automaton COM(L) and prove that this
automaton coincides with U L.
In Section 4 we define “covering automata” by automaton COM(L).
In Section 5 we give two algorithms of constructing automaton U L, the

second of them being “the mirror image” of the first. This algorithms rely on
the algorithm, described in [6]. Also we give a simplified version of the first
algorithm.
In Section 6 we give a detailed example of the work of algorithms, described

in the previous section. An example of equivalent covering automaton is also
given.
In Section 7 we consider examples which shows how fast a number of grids

(i.e., the size of the universal automaton) can grow if we are given the sizes of

two canonical automata (i.e., L̃ and L̃R).
In Section 8 we give some ideas for further research.

2 Preliminaries

We shall use designations of [5, 6]. Let us repeat the main of them.
The language of nondeterministic finite automaton

K = (Q,Σ, δ, S, F)

will be defined by L(K). For a state q of this automaton, we shall denote the
language of automaton (Q,Σ, δ, S, {q}) by LinK (q). L̃ is the canonical automaton
defining regular language L, we shall consider canonical automata without the

useless (“dead”) state. Let automata L̃ and L̃R for the given language L be as
follows:

L̃ = (Qπ, Σ, δπ, {sπ}, Fπ) and L̃R = (Qρ, Σ, δρ, {sρ}, Fρ).

Binary relation # ⊆ Qπ × Qρ is defined in the following way. For some
states A ∈ Qπ and X ∈ Qρ, condition A#X holds if and only if there exist

some words u ∈ Lin
˜L
(A) and v ∈ Lout

˜LR
(X), such that uvR ∈ L(K). In [6], we

considered a simple algorithm for constructing this relation.
If for some pair P ⊆ Qπ and R ⊆ Qρ we have

(∀A ∈ P) (∀X ∈ R) (A#X),

then B = (P, R) is a pseudo-grid. For it, we shall write α(B) = P and β(B) = R.
If for some pseudo-grid B = (P, R), there exists

Some algorithms for Conway’s universal automaton 7

• neither A ∈ Qπ \P such that
(
(P ∪ {A}), R

)
is also a pseudo-grid,

• nor X ∈ Qρ \R such that
(
P, (R ∪ {X})

)
is also a pseudo-grid,

then B is a grid.
For the given regular language L, we shall consider its set of grids; in the

next sections we shall denote it by QCOM . Some its subset Q ⊆ QCOM will be
called by covering subset of the grids, if for any A ∈ Qπ and X ∈ Qρ such that
A#X, there exists a grid B ∈ Q, such that A ∈ α(B) and X ∈ β(B).1
As we said before, we shall also use the universal automaton for the given

regular language L; by [4, Def. 2.4], we shall denote it by UL. However, its
elements we shall mark by subscripts U L

; e.g., its transition function will be
denoted by δU L

.

3 Definition of automaton COM(L)

(an alternative definition of automaton U L)

Automaton COM(L) for the given regular language L has to be defined in the
usual way, i.e., by a quintet. For now, we only have the set of states QCOM (as
we said before, it is the set of grids for the given language) and alphabet Σ;
let us define sets of initial and final states and the transition function.
Thus, considering automata L̃ and L̃R, we define automaton

COM(L) = (QCOM , Σ, δCOM , SCOM , FCOM) ,

where:

• SCOM =
{
B ∈ QCOM

∣∣∣α(B) � sπ

}
;

• FCOM =
{
B ∈ QCOM

∣∣∣β(B) � sρ

}
;

• for some pair B1,B2 ∈ QCOM (condition B1 = B2 is possible) and some
a ∈ Σ, we set

δCOM(B1, a) � B2 (i.e., B1
a−→

δCOM
B2)

if and only if both the following conditions hold:(
∀A ∈ α(B1)

) (
(δπ(A,a) �= �o) & (δπ(A,a) ⊆ α(B2))

)
; (1)(

∀Y ∈ β(B2)
) (

(δρ(Y, a) �= �o) & (δρ(Y, a) ⊆ β(B1))
)
. (2)

1 We shall not consider algorithms for constructing such subsets.

8 B. Melnikov, V. Dolgov

Let us remark, that considering canonical automaton having possible “dead”
state, we obtain the same values of ϕin and ϕout (because these values cannot
contain these “dead” states). Then the definition of COM(L) for the given
language L is independent of considering “dead” state.
Also let us remark, that we can write (1) in the following way:

(
∀A ∈ α(B1)

) (
(δπ(A,a) = {B})& (B ∈ α(B2))

)

(similarly for (2)). But we cannot write it in the following way:

(
∀A ∈ α(B1)

) (
δπ(A,a) ⊆ α(B2)

)
(3)

(because the value of δπ(A,a) can be �o). But considering canonical automaton
having possible “dead” state (such an automaton is total) we can write it by
(3). And considering canonical automaton having transition function of the
type

δ : Q× Σ → Q

(like, for example, [1]), we can write (3) in the following simple way:

(
∀A ∈ α(B1)

) (
δπ(A,a) ∈ α(B2)

)
.

The following theorem formulates the correctness of both the definitions
given before.

Theorem 1 COM(L) = U L.
2

Proof. Firstly, let us prove for each state B ∈ QCOM , that the pair

(
LinCOM(B) , LoutCOM(B)

)
(4)

is a factorization of L. For it let us suppose, that (4) is only a subfactorization
of L (not a factorization). Then we would have:

• either some word u ∈ Σ∗ (where u /∈ LinCOM(B)), such that

(
LinCOM(B) ∪ {u} , LoutCOM(B)

)

is also a subfactorization (or a factorization) of L;

2 Up to re-denoting states.

Some algorithms for Conway’s universal automaton 9

• or some word v ∈ Σ∗ (where v /∈ LoutCOM(B)), such that

(
LinCOM(B) , LoutCOM(B) ∪ {v}

)

is also a subfactorization (or a factorization) of L.

Without loss of generality, we shall consider the first case. 3

Besides, we would have a grid B ′ ∈ QCOM , for which

LinCOM(B ′) � LinCOM(B) ∪ {u} .

I.e., for the state A of automaton L̃, such that Lin
˜L
(A) � u, we would have

that

A#X for each X ∈ β(B) .
Then (α(B) ∪ {A}) × β(B) is a pseudo-grid (or a grid, see [6]), and for B, we
obtain a contradiction with the definition of the grid.
Vice versa, let (X ,Y) be a state of automaton U L. Consider the sets P ⊆ Qπ

and R ⊆ Qρ defined in the following way:

P =
{
A ∈ Qπ

∣∣∣ (∃u ∈ X) (Lin
˜L
(A) � u)

}
,

and R =
{
X ∈ Qρ

∣∣∣ (∃v ∈ YR) (Lin
˜LR
(X) � v)

}
.

Since (X ,Y) is a factorization of L, then for each pair of states A ∈ P and
X ∈ Q, we have A#X. Therefore P ×Q is a pseudo-grid.
And if P×Q is not a grid, then we would add some words to X or Y satisfying

the definition of (sub) factorization; then (X ,Y) would be not a factorization.
Let us prove the coincidence of the sets of edges. By the definition of U L,

(X ′,Y ′) ∈ δU L
((X ,Y), a) holds if X aY ′ ⊆ L .

The same condition holds also for δCOM , i.e.,

B ′ ∈ δCOM(B, a) holds if LinCOM(B)aLoutCOM(B ′) ⊆ L ,

where B ′ corresponds to (X ′,Y ′) and B corresponds to (X ,Y). �

3 (Sub) factorization
(
Lin

COM(B) ∪ {u} , Lout
COM(B) ∪ {v}

)
is also possible.

10 B. Melnikov, V. Dolgov

4 Covering automata

Using automaton COM(L) and the given covering subset of the grids Q ⊆
QCOM , let us also define corresponding covering automaton. We define it in
the following way:

COMQ(L) = (Q, Σ, δQ, SQ, FQ) ,

where:

• SQ = Q ∩ SCOM ;

• FQ = Q ∩ FCOM ;

• δQ =
{
B1

a−→B2

∣∣∣a ∈ Σ, B1,B2 ∈ Q, B1
a−→

δCOM
B2

}
.

For now, we do not consider the equivalence of automata COM(L) and
COMQ(L) (i.e., whether automaton COMQ(L) defines the given language L);
some examples will be considered in the next sections.

5 Algorithms for constructing automaton U L

In [6], we considered a possible algorithm of constructing automaton L̃R; using
this algorithm, we obtained at the same time values of functions ϕin and ϕout

and binary relation #. In this section, we shall obtain automaton U L using the
same algorithm.
Thus, let us suppose that we already have all these objects. Simply by

definitions of grids and automaton COM(L), and also by Theorem 1, we obtain
considering all the subsets of the set Qπ the following

Algorithm 1 (Constructing automaton U L)

Input: automata L̃, L̃R, binary relation #.
Output: automaton U L.
Step 1. Consider array U[index], where index can be each element of P(Qπ)
(except ∅), and its values can be elements of P(Qρ). For each possible index,
we set

U[index] :=
⋂

A∈index

{
X ∈ Qρ

∣∣∣A#X
}
.

Step 2. Consider Boolean array B[index], where index can be each element
of P(Qπ) (except ∅). For each possible index, we set

B[index] := (U[index] �= ∅).

Some algorithms for Conway’s universal automaton 11

Step 3. For each possible index, such that condition B[index] holds, if

(∃ ind ∈ P(Qπ)) ((index ⊂ ind)& (U[ind] = U[index])),

then we set B[index]:=false.
Step 4. We select the following set of grids:

QCOM =
{
index× U[index]

∣∣∣ index ∈ P(Qπ))& B[index]
}
.

Step 5. δCOM, SCOM and FCOM are defined by definition of automaton COM(L)
given before.

Let us formulate the “mirror image” of this algorithm, where we at first
consider subsets of Qρ.

Algorithm 2 (Constructing automaton U L)

Input: automata L̃, L̃R, binary relation #.
Output: automaton U L.
Step 1. Consider array U[index], where index can be each element of P(Qρ)
(except ∅), and its values can be elements of P(Qπ). For each possible index,
we set

U[index] :=
⋂

X∈index

{
A ∈ Qπ

∣∣∣A#X
}
.

Step 2. Consider Boolean array B[index], where index can be each element
of P(Qρ) (except ∅). For each possible index, we set

B[index] := (U[index] �= ∅).

Step 3. For each possible index, such that condition B[index] holds, if

(∃ ind ∈ P(Qρ)) ((index ⊂ ind)& (U[ind] = U[index])),

then we set B[index]:=false.
Step 4. We select the following set of grids:

QCOM =
{
U[index]× index

∣∣∣ index ∈ P(Qρ))& B[index]
}
.

12 B. Melnikov, V. Dolgov

Step 5. δCOM, SCOM and FCOM are defined by definition of automaton COM(L)
given before.

Both these algorithms have evident simplified modifications. For obtaining
them, let us consider the following directed graph of subsets of the set Qπ:

• for each element Q̃ ⊆ Qπ except �o, we have a vertex labeled by Q̃; this
label symbolizes the union of corresponding elements of Qπ;

• we have the edge from Q̃ ′ to Q̃ ′′ (we shall write Q̃ ′ −→
DG

Q̃ ′′) if and only

if for some A ∈ Qπ, we have Q̃ ′ = Q̃ ′′ ∪ {A}.

Let us denote this directed graph by DG(Qπ). For each its vertex Q̃ ∈ P(Qπ),
let us define its level by

|Qπ|− |Q̃|;

for example, vertex Qπ has level 0, and for each vertex A ∈ Qπ, vertex {A} has
level |Qπ|−1. Thus, by definitions of grids we obtain the following simplification
of Algorithm 2.

Algorithm 3 (Constructing automaton U L)
Step 1. Consider Boolean array B[index], where index can be each element
of P(Qπ) (except ∅). For each possible index, we set

B[index] :=(∃X ∈ Qρ)
(
index =

{
A ∈ Qπ

∣∣∣A#X
})

.

Step 2.
for i:=1 to |Qπ|− 1 do

for each vertex of level i (let this vertex be index)
execute following Step 3

Step 3.
if for there exist 2 (or more) vertices ind of level i-1,
such that condition B[ind] holds and ind−→

DG
index

then B[index]:=true

Step 4. We select the following set of grids:

QCOM =
{
index×

⋂
A∈index

{
X ∈ Qρ

∣∣∣A#X
} ∣∣∣ index ∈ P(Qπ)& B[index]

}
.

Some algorithms for Conway’s universal automaton 13

Step 5. δCOM, SCOM and FCOM are defined by definition of automaton COM(L)
given before.

Let us remark, that considering subsets of Qπ and Qρ (as indexes of arrays),
we could consider also element �o; in this case, �o would correspond to the
possible “dead” state of the equivalent canonical automaton.
For Algorithm 3, we shall not formulate its “mirror image”.

6 The detailed example

Let us continue to consider the example of language of [6, Section 3]. For it,

let us depict once again automata L̃ and L̃R for that language (Figure 1 and 2):

��

��

��

�	
A�

��

��

��

�	
B �

��

��

��

�	
C

�

��
��
�a, b ��

��

��

�	
D

�

�a

�
b

� b
�
b

�
a

Figure 1

��

��

��

�	
X�

��

��

��

�	
Y �

��

��

��

�	
Z

�

��
��
�b ��

��

��

�	
U ��

��
�a

�a

�
b

�
a

�
b

�
�
�
�
�	

b

�
�
�
�
�

a

Figure 2

and also its binary relation (Table 1):

X Y Z U

A – # # –

B # – # –

C # # # #

D # # # –

Table 1

Let us remark, that in [6, Section 3] we simply indicate the set of grids; and
in this paper, we use the algorithm of their constructing. Thus, consider using
Algorithm 3.
The directed graph DG for all nonempty subsets of Qπ is given in Figure 3

(the subsets are marked here simply by the strings consisting of their elements).
For this figure, we have the following comments. Sets marked by 3 ovals (i.e.,

14 B. Melnikov, V. Dolgov

{A,B,C,D}, {A,C,D}, {B,C,D} and {D}) were selected by Step 1 of Algorithm
3.
Using Steps 2 and 3, we consider other subsets (i.e., vertices of graph DG).

Considering them, we have the only vertex (i.e., {C,D}), for which there exist
at least 2 vertices, such that we have edges from them in {C,D}; we marked
this “new suitable” vertex by many ovals. Thus, all the 5 mentioned vertices
(and only they) are elements α(B) for some grid B.

�
�

�
	

�
�

�
�

�

�

ABCD

�
�
�

�
�
�

�
���

�

�
�
�
�
���

�
�
�
�
����

�
�
	ABC

�

�
�
�
�
���

����������������������

�
�

�
	ABD

�
�

�
�

�
�

��� �

������������������

�
�

�
	

�
�

�
�

�

�

ACD

�

�
�

�
�

�
�
�	

������������

�
�

�
	

�
�

�
�

�

�

BCD

�

�
�
�
�
���

�
�
�
�
�
�
�
����

�
�
	AB

�
�
�
�
���

�

�
�

�
	AC

�
�
�
�
���

�

�
�

�
	AD

�
�

�
�

�
�

�
�	

�����������������

�
�

�
	

�
�

�
�

�

�

�
�

�
�

�� ��CD

�
�
�
�
���

�

�
�

�
	BC

�������������

�
�
�
�
��

�
�

�
	BD

!!!!!!!!!!!!!!!!!!"

�
�
�
�
����

�
�
	A

�
�

�
	B

�
�

�
	

�
�

�
�

�

�

C

�
�

�
	D

Figure 3

By Step 4 of Algorithm 3, we select for them the following set of grids: 4

ζ = {A,C,D}× {Y, Z}, η = {A,B,C,D}× {Z}, ϑ = {B,C,D}× {X,Z},

ν = {C}× {X, Y, Z,U}, ξ = {C,D}× {X, Y, Z}.

These letters (i.e., ζ, η, ϑ, ν and ξ) will symbolize states of automaton U L.

4 Remark once again, that in [6] we simply indicate the set of grids. And in this section,
we used Algorithm 3 for their construction.

Some algorithms for Conway’s universal automaton 15

By Step 5 of Algorithm 3, we simply obtain the following sets of inputs and
outputs of U L:

SCOM = {ζ, η} , FCOM = {ϑ, ν, ξ} .

And also by Step 5 of Algorithm 3 (i.e., by definition of automaton COM(L)
of Section 3), we obtain transition function δCOM in the following way.
First at all, consider the following Table 2:

grids (B) α(B) a−→
δπ

ζ η ϑ ν ξ

ζ ACD BC – + + – –

η ABCD – – – – – –

ϑ BCD – – – – – –

ν C C + + + + +

ξ CD BC – + + – –

Table 2

We use here simplified notation as we did before. I.e., elements of the 2nd and
the 3rd columns of this table are the sets of elements of Qπ. However, we have
to explain this notation detailed, because the symbol “–” in the 3rd column
does not symbolize the empty set.
Elements of the 2nd column are elements α(B) for the considered grid B

(which is in the 1-st column). If for each element of this subset (let this state

be A) there exists the transition A
a−→
δπ

B for some B ∈ Qπ, then in this line, the

corresponding set of the 3rd column is the union of all such B. 5 Otherwise, i.e.,
if for some element A (of the 2nd column) there exists no transition A

a−→
δπ

B

for some B ∈ Qπ, then in the 3rd column, we set the symbol “–”.
The right part of this table (i.e., since the 4th column) is a square matrix.

For each its element in the line marked ζ and in the column marked η, we set
+ if and only if:

• the set of 3rd column of the line ζ is not “–”;

• and, besides, is a subset of the set of the 3rd column of the line η;

otherwise we set “–”. 6 Thus, the right part of the table forms the square

5 Let us remind, that we consider the letter a. Remind also, that we consider canonical
automata without “dead” states.

6 Let us especially remark, that the symbol “–” in the 3rd column implies “–” in each cell
of this line in the right part of the table.

16 B. Melnikov, V. Dolgov

matrix (i.e., matrix ⎛
⎜⎜⎜⎜⎝

0 1 1 0 0

0 0 0 0 0

0 0 0 0 0

1 1 1 1 1

0 1 1 0 0

⎞
⎟⎟⎟⎟⎠ (5)

in the considered example), which formulates, in fact, the condition (1) for the
letter a.
And for this letter a and automaton L̃R, we obtain the following Table 3:

grids (B) β(B) a−→
δρ

ζ η ϑ ν ξ

ζ YZ YU – – – + –

η Z Y + – – + +

ϑ XZ Y + – – + +

ν XYZU YU – – – + –

ξ XYZ YU – – – + –

Table 3

Similarly, the right part of this table formulates, in fact, the condition (2) for
the same letter a.
Then the elementwise conjunction of the first matrix (in the considered

example, that is matrix (5)) and the transposed matrix of Table 3 gives the
matrix for the existence of a-transitions. Let us remark, that in the considered
examples two matrices for elementwise conjunction are the same; 7 however,
there exist examples where these matrices are different.
Let us consider such tables for letter b. For automaton L̃, we obtain the

following Table 4:

grids (B) α(B) b−→
δπ

ζ η ϑ ν ξ

ζ ACD C + + + + +

η ABCD CD + + + – +

ϑ BCD CD + + + – +

ν C C + + + + +

ξ CD C + + + + +

Table 4

And for automaton L̃R, we obtain the following Table 5:

7 For the letter b, two corresponding matrices also are the same. See below.

Some algorithms for Conway’s universal automaton 17

grids (B) β(B) a−→
δρ

ζ η ϑ ν ξ

ζ YZ Z + + + + +

η Z Z + + + + +

ϑ XZ Z + + + + +

ν XYZU YZ + – – + +

ξ XYZ Z + + + + +

Table 5

Therefore, we obtain the following matrix of b-transitions for automaton
COM(L): ⎛

⎜⎜⎜⎜⎝

1 1 1 1 1

1 1 1 0 1

1 1 1 0 1

1 1 1 1 1

1 1 1 1 1

⎞
⎟⎟⎟⎟⎠ (6)

(the order of the grids is previous, i.e., ζ, η, ϑ, ν, ξ).
Using matrices (5) and (6), we simply obtain the following automaton

COM(L) for the considered language:

COM(L) a b

→ ζ η, ϑ ζ, η, ϑ, ν, ξ

→ η – ζ, η, ϑ, ξ

← ϑ – ζ, η, ϑ, ξ

← ν ζ, η, ϑ, ν, ξ ζ, η, ϑ, ν, ξ

← ξ η, ϑ ζ, η, ϑ, ν, ξ

Table 6

For this automaton, let us also consider its covering subset of grids. One
of them 8 is the following one: {ζ, ϑ, ν}. And using definition of the covering
automaton (Section 3), we obtain the following corresponding covering au-
tomaton COM{ζ,ϑ,ν}(L) (i.e., the covering automaton for the set {ζ, ϑ, ν}, see
Table 7 and Figure 4). It is easy to prove, that the last automaton does define
the given language.
Thus, the considered example gives the equivalent covering automaton. How-

ever, there are examples of languages, where there exist covering automata
which does not define the given languages. We shall continue to consider such
examples in our following papers.

8 As we said before, we shall not consider algorithms of constructing such subsets for
arbitrary automaton. For our example there is evidently, that there exist the only covering
subset containing no more than 3 grids.

18 B. Melnikov, V. Dolgov

COM{ζ,ϑ,ν}(L) a b

→ ζ ϑ ζ, ϑ, ν

← ϑ – ζ, ϑ

← ν ζ, ϑ, ν ζ, ϑ, ν

Table 7 ��

��

��

�	
ϑ��

��
�b

�
��

��

��

�	
ν ��

��
�a, b

�

��

��

��

�	
ζ ��

��
�

b

�

�
�
�
��

a, b

�
�
�
�#

b

�
�
�
��

b

�
a, b

�
�
�
�$

a, b

Figure 4

7 A series of examples

In [4, Th. 5.1], tight upper bound D(k) on the size of the universal automaton
was obtained. D(k) happens to be the kth Dedekind number ([2] etc.), where
k is the number of states of automaton accepting given language L.
In this section we consider examples which shows how fast a number of grids

(i.e. the size of the universal automaton) can grow if we are given the sizes of

two canonical automata (i.e., L̃ and L̃R). Authors think that these examples
supplement the examples considered in [4].
First of all, let us consider the following matrix of dimension 12× 12:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 1 1 1 1 1 1 1 1

0 0 1 0 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 1 1 1 1

1 1 1 1 0 1 0 0 1 1 1 1

1 1 1 1 0 0 1 0 1 1 1 1

1 1 1 1 0 0 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 1 0 0
1 1 1 1 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

Evidently, we can consider such matrices for each x ≥ 2 (x×x is the dimensions
of the “block of zeros”) and each n ≥ 2, such that n mod x = 0 (n × n is
the dimensions of the matrix). In the above example (7) we have x = 4 and
n = 12. (Moreover, we can take blocks of zeros of different sizes, see below).
We shall not write the strict formulas for the elements of such matrices.

Some algorithms for Conway’s universal automaton 19

For each matrix of this type we can consider corresponding automaton hav-
ing the same table of #-relation. And by [7], such an automaton always exists.
Constructing some grids for the example (7), we can select exactly one line

of {1, 2, 3, 4}, then exactly one line of {5, 6, 7, 8}, and also exactly one line of
{9, 10, 11, 12}; obviously, the numbers of columns must be the same as the
numbers of lines. Thus, in the example (7) we have at least 43 = 64 grids.
Next, let

n = a1 + a2 + . . .+ ak,

and we have blocks of zeros of the sizes a1, a2, . . ., ak; then corresponding
number of blocks (states of canonical automaton) will be no less than

a1 · a2 · . . . · ak

. Our task is to find the maximum value of this expression with fixed n. To
do so, we should take into account that

4 = 2+ 2, 2 · 2 = 4 ≥ 4;

5 = 2+ 3, 2 · 3 = 6 > 5;

6 = 2+ 2+ 2 = 3+ 3, 3 · 3 > 2 · 2 · 2 = 6 etc.

i.e. each summand, greater or equal 4, can be split into 2’s and 3’s, while
keeping the value of product at least as big. It is also obvious, that splitting
the summands we should prefer 3’s (see the last inequality).
So, the sought-for maximum has one of the following types:

3 · 3 · . . . · 3
3 · 3 · . . . · 3 · 2 · 2
3 · 3 · . . . · 3 · 2,

depending on the n modulo 3. For simplicity’s sake we shall limit ourselves
with the case n mod 3 = 0.
To sum up, our examples shows that the size of the universal automaton

can grow exponentially (with base 31/3) with regard to the size of canonical
automata, i.e. with regard to n = min(|Qπ|, |Qρ|). Let us repeat that our
examples do not give the exact number of blocks which may form if we are

given only the value of n = min(|Qπ|, |Qρ|) for automata L̃ and L̃R.
Note that we must not combine this examples with an obvious bound n = 2k

for the number of states of canonical automata, since the resulting function
3n/3 = 32

k/3 grows much faster than D(k). This only means that automata
with #-relation similar to (7) cannot have equivalent automata with number
of states much less then n.

20 B. Melnikov, V. Dolgov

8 Conclusion

In the next paper we are going to consider:

• the loops of the basis automaton BA(L) and of automaton COM(L);

• the consideration of the covering automaton, does not define the given
language (unlike Section 6); i.e., in fact, the consideration of automaton
Waterloo ([3]) from the point of view of the basis automaton;

• the constructive proof of the following fact: examples like Waterloo can
be constructed for each table of relation # having the following addi-
tional property: there exists the proper covering subset.

9 Acknowledgement

Authors would like to express the gratitude to Professor Anton Klyachko (Mos-
cow State University) for making valuable comments.

References

[1] A.Aho, J. Ullman, The Theory of Parsing, Translation, and Compiling, Vol. 1,
Parsing. Prentice Hall, 1972. ⇒8

[2] R.Dedekind, Über Zerlegungen von Zahlen durch ihre größten gemeinsamen
Teiler. Gesammelte Werke, Vol. 2, 103–148. ⇒18

[3] T.Kameda, P.Weiner, On the state minimization of nondeterministic finite
automata, IEEE Trans. on Comp. C-19, 7 (1970) 617–627. ⇒20

[4] S. Lombardy, J. Sakarovitch, The Universal Automaton, in: Logic and Automata,
Texts in Logic and Games Amsterdam Univ. Press. Vol. 2 (2008) 457–504. ⇒
5, 7, 18

[5] B.Melnikov, Extended nondeterministic finite automata, Fundamenta Infor-
maticae 104, 3 (2010) 255–265. ⇒5, 6

[6] B.Melnikov, Once more on the edge-minimization of nondeterministic finite
automata and the connected problems, Fundamenta Informaticae 104, 3 (2010)
267–283. ⇒5, 6, 9, 10, 13, 14

[7] B.Melnikov, A.Melnikova, Some more on the basis finite automaton, Acta Univ.
Sapientiae, Inform. 5, 2 (2013) 227–244 ⇒19

[8] B.Melnikov, N. Sciarini-Guryanova, Possible edges of a finite automaton defin-
ing a given regular language, The Korean Journal of Computational and Applied
Mathematics 9, 2 (2002) 475–485. ⇒5

Received: June 9, 2013 • Revised: August 2, 2013

