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Abstract. Let H be an r-uniform hypergraph with r ≥ 2 and let α(H) be
its vertex independence number. In the paper bounds of α(H) are given
for different uniform hypergraphs: if H has no isolated vertex, then in
terms of the degrees, and for triangle-free linear H in terms of the order
and average degree.

1 Introduction to independence in graphs

Let n be a positive integer. A graph G on vertex set V = {v1, v2, . . . , vn} is a
pair (V, E), where the edge set E is a subset of V × V . n is the order of G and
|E| is the size of G.

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 05C30, 05C50
Key words and phrases: uniform hypergraph, independence number, lower bound
DOI:10.2478/ausi-2014-0022

132

DOI: 10.2478/ausi-2014-0022



On vertex independence number of uniform hypergraphs 133

Let v ∈ V and N(v) be the neighborhood of v, namely, the set of vertices x
so that there is an edge which contains both v and x. Let U be a subset of
V , then the subgraph of G induced by U is defined as a graph on vertex set U
and edge set EU = {(u, v)|u ∈ u and v ∈ U}.
The degree d(v) of a vertex v ∈ V is the number of edges that contains v.

Let d(G) be the average degree of G, then nd(G) =
∑

v∈V d(v) = 2|E| for any
graph G. Let δ(G) be the minimal degree, Δ(G) the maximal degree of G A
graph G is regular, if Δ(G) = δ(G), and it is semi-regular, if Δ(G) − δ(G) = 1.
Three vertices v1, v2, v3 form a triangle in G if there are distinct verticess

e1, v2, v3 ∈ F such that {vi, vi+1} ⊆ E, where the indices are taken mod 3. If G
does not contain a triangle, then it is trianglefree.
A subset U ⊆ V of vertices in a graph G is called a vertex independent set

if no two vertices in U are adjacent. The maximum-size vertex independent
set is called maximum vertex independent set. The size of the maximum ver-
tex independent set is called vertex independence number and is denoted by
α(G). The problem of finding a vertex maximum independent set and vertex
independence number are NP-hard optimization problems [73, 167].
A maximal vertex independent set is a vertex independent set such that

adding any other vertex to the set forces the set to contain an edge. The prob-
lem of finding a maximal vertex independent set can be solved in polynomial
time (see e.g. the algorithms due to Tarjan and Trojanowski [155], Karp and
Widgerson [101], further the improved algorithms due to Luby [128] and Alon
[9].
There are exponential time exact (as Alon [9]) and polynomial time approxi-

mate algorithms (as Boppana and Haldórsson [30], Agnarsson, Haldórsson, and
Losievskaja [4, 5], Losievskaja [126]) determining α(G). Also there are known
algorithms producing the list of all maximum independent sets of graphs (see
e.g. Johnson and Yannakakis [93], Lawler, Lenstra, Rinnooy Kan [121]).
An independent edge set of a graph G is a subset of the edges such that no

two edges in the subset share a vertex of G [166]. An independent edge set of
maximum size is called a maximum independent edge set, and an independent
edge set that cannot be expanded to another independent edge set by addition
of any other edge in the graph is called a maximal independent edge set. The
size of the largest independent edge set (i.e., of any maximum independent
edge set) in a graph is known as its edge independence number (or matching
number), and is denoted by ν(G). The determination of ν(G) is an easy task
for bipartite graphs [49, 50], but it is a polynomially solvable problem for
general graphs too [10, 101, 161, 162].
Let G = (V, E) be an n-order graph. The classical Turán theorem [159] gives
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a simple lower bound for α(G).

Theorem 1 (Turán [159]) If n ≥ 1 and G is an n-order graph, then

α(G) ≥ n

d(G) + 1
. (1)

This result was strengthened independently in 1979 by Caro and in 1981 by
Wei.

Theorem 2 (Caro [36], Wei, [165]) If G(V, E) is a graph, then

α(G) ≥
∑
v∈V

1

d(v) + 1
. (2)

Proof. See [36, 165]. �
A nice probabilistic proof of the result can be found in the paper of Alon

and Spencer [11]. Since the function 1
x+1

is convex,
∑

v∈V
1

d(v)+1
≥ n

d+1
[170].

Since this bound is the best-possible only for graphs which are unions of
cliques, additional structural assumptions excluding these graphs allow im-
provement of 2 [80, 81]. A natural candidate for such assumptions is connec-
tivity. In 2013 Angel, Campigotto, and Laforest [14] improved (2) for some
connected graphs. For locally sparse graphs Ajtai, Erdős, Komlós and Sze-
merédi improved Turán’s bound greatly.

Theorem 3 (Ajtai, Erdős, Komlós and Szemerédi [6, 7, 8]) If G is an n-order
triangle-free graph with average degree d, then

α(G) ≥ cn lnd

d+ 1
. (3)

Proof. See [6, 7, 8]. �
They conjectured that c = 1−o(1) when d tends to ∞. Griggs [72] improved

that c can be 5
12
. Shearer [152] finally proved c = 1 − o(1), thus confirming

the conjecture. In 1994 Selkow improved the bound due to Caro and Wei
supposing that the degrees of the neighbors of the vertices are also known.

Theorem 4 (Selkow [150]) If G(V, E) is a graph, then

α(G) ≥
∑
v∈V

1

d(v) + 1

⎛
⎝1+max

⎛
⎝0,

d(v)

d(v) + 1
−

∑
u∈N(v)

1

d(u) + 1

⎞
⎠
⎞
⎠ . (4)
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Proof. See [150]. �
The bound of Selkow is equal to Caro–Wei bound for regular graph and

always less then twice the Caro–Wei bound. A recent review on lower bounds
for 3-order graphs was published by Henning and Yeo [89].
Let j and k be a positive integers. A subset I ⊆ V(G) is a vertex -k-indepen-

dent set of G, if every vertex in I has at most k − 1 neighbors in I. The
vertex-k-independence number αk(G) of G is the cardinality of the largest
vertex-k-independent set of G.
A subset D ⊆ V(G) is a vertex-j-dominating set of G, if every vertex of D

has at least j− 1 neighbors in D. The vertex-k-independence number γj(G) of
G is the cardinality of the largest vertex-j-dominating set of G.
In 1991 Caro and Tuza [38] extended theorem of Turán to the estimation of

the maximal size of k-independent sets. Thiele [156] in 1999, Csaba, Pick, and
Shokoufandeh [44] in 2012 improved the bound due to Caro and Tuza. In 2008
Favoron, Hansberg and Volkmann [54] analyzed k-domination and minimum
degree in graphs. Harant, Rautenbach, and Schiermeier [81, 83, 84, 85] proved
different lower bounds on vertex independent number.
In 2012 Chellali and Rad [42] published a paper on k-independence criti-

cal graphs. In 2013 Caro and Hansberg [37] proposed a new approach to k-
independence of graphs. Recently Chellali, Favaron, Hansberg, and Volkmann
[41] published a review on k-independence.
Last year Hansberg and Pepper [79] investigated the connection between

αk(G) and γj(G). They proved the following theorems.

Theorem 5 (Hansberg, Pepper [79]) If Let G be an n-order graph, j, k and
m be positive integers such that m = j + k − 1 and let Hm and Gm denote,
respectively, the subgraphs induced by the vertices of degree at least m and the
vertices of degree at least m. Then

αk(Hm) + γj(Gm) ≤ n (5)

and
αk(G) + γj(G) ≤ n(Gm). (6)

Proof. See [79]. �

Theorem 6 (Hansberg, Pepper [79]) Let G be a connected n-order graph with
maximum degree Δ and minimum degree δ ≥ 1. Then

αk(G) + γj(G) = n(G) and αk ′(G) + γj ′(G) = n(G) (7)
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for every pair of integers j, k and j ′, k ′ such that j+k−1 = δ and j ′+k ′−1 = Δ

if and only ig G is regular.

Proof. See [79]. �

Theorem 7 (Hansberg, Pepper [79]) For any graph G the following two state-
ments are equivalent:

γ(G) + αδ(G) = n(G) (8)

and
G is regular or γ(G) + γ2(G) = n(G). (9)

Proof. See [79]. �
Spencer [153] also published some extension of Turán theorem.
In 2014 Henning, Löwenstein, Southey and Yeo [87] proved the following

theorem, which is an improvement of the result due to Fajtlowicz [53].

Theorem 8 (Henning et al. [87]) If G is a graph of order n and p is an
integer, such that for every clique X in G there exists a vertex x ∈ X such, that
d(x) < p− |X|, then α(G) ≥ 2n/p.

There are results on the independence number of random graphs (e.g. Balogh,
Morris, Samotij [18] and Frieze [60], Henning, Löwenstein, Southey and Yeo
[87], on the weighted independence number (see e.g. Halldórsson [75], Kako,
Ono, Hirata, and Halldórsson [98], further Sakai, Mitsunori, and Yamazaki
[149]), and on the enumeration of maximum independent sets (see e.g. Gaspers,
Kratsch, and Liedloff [69].
Let G(n, p) = (V, E) the random graph with vertex set V = {v1, . . . , vn}, p,

α(Gn,p) denote the independence number of Gn,p. In 1990 Frieze [60] proved,
that if d = np and ε > 0 is fixed, then with probability going to 1 as n → ∞

∣∣∣∣α(Gn, p) −
2n(lnd− ln lnd− ln 2+ 1)

d

∣∣∣∣ ≤ εn

d
, (10)

provided dε ≤ d = o(n), where dε is some fixed constant and p is the join
probability for each edge to be included in E.
In 1983 Shearer proved the following lower bound.

Theorem 9 (Shearer [152]) If G is triangle-free, then

α(G) ≥ nf(d), (11)
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where

f(x) =
x ln x− x+ 1

(x− 1)2
, (12)

f(0) = 1 and f(1) = 1
2
.

According to the proof of Shearer for 0 < x < ∞ hold 0 < f(d) < 1, f ′d) < 0

and f ′′(d) < 0. Further f(x) satisfies the differential equation

(x+ 1)f(x) = (x+ 1)d2f ′(x). (13)

It is easy to see that

lim
x→∞

f(x)

x
=

lnx

x
. (14)

In 1995 Füredi [62] determined the number of different vertex maximal
independent set in path graphs.
It is known [22] a minimum covering set of G is also a maximum vertex

independent set of G. Therefore we are interested in the results on dominating
sets (see e.g. [41, 54, 79, 82, 143].
The structure of the paper is as follows. After this introduction in Section 2

we present a review of results connected with th vertex and edge independence
number of hypergraphs, then in Section 3 a lower bound of α(H) is presented
for n-order r-uniform hipergraphs with average degree d(H), and finally in
Section 4 a similar bound is proved for hypergraphs not containing isolated
vertex.

2 Introduction to independence in hypergraphs

Let n ≥ 1 and W = {w1,w2, . . . , wn} be a finite set called vertex set. A
hypergraph H on vertex set W is a pair (W,F), where the edge set F is a family
of the elements of W. We always assume that distinct edges are distinct as
subsets. If each edge in F contains exactly r ≥ 2 vertices, then H is r-uniform.
So any graph G is a 2-uniform hypergraph.
Let w ∈ W and N(w) be the neighborhood of w, namely, the set of vertices

x so that there is an edge which contains both w and x. Let U be a subset
of W. The sub-hypergraph of H induced by U is defined as a hypergraph on
vertex set U with edge set FU = {f ∈ F : f ⊆ U}.
The degree d(w) of a vertex w ∈ W is the number of edges that con-

tain w. Let d(H) = d be the average degree of an r-uniform H, then nd =∑
w∈W d(w) = r|F|.
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For the simplicity we usually omit G and H as arguments of d(H) and similar
notations.
A hypergraph H is linear, if any two edges of H have at most one vertex in

common. Note that a graph G is always linear. Three vertices w1,w2,w3 form
a triangle in H, if there are distinct edges f1, f2, f3 ∈ F such that {fi, fi+1} ⊆ F,
where the indices are taken mod 3.
A subset U ⊆ W of vertices in a hypergraph H is called a vertex independent

set if no two vertices in U are adjacent. The maximum-size vertex independent
set of H is called maximum vertex independent set. The size of the maximum
vertex independent set is called vertex independence number and is denoted by
α(H). The problem of finding a maximum vertex -independent set and vertex
independence number are NP-hard optimization problems [73, 167].
There are exponential time exact (as Alon [9], Tarjan and Trojanowski [155])

and polynomial time approximate algorithms (as Boppana and Haldórsson
[30], Agnarsson, Haldórsson, and Losievskaja [4, 5], Losievskaja [126]). Also
there are known algorithms producing the list of all maximum independent
sets of graphs (see e.g. Johnson and Yannakakis [93], Lawler, Lenstra, Rinnooy
Kan [121]) and hypergraphs (see e.g. Kelsen [107]).
A maximal vertex independent set is a vertex independent set such that

adding any other vertex to the set forces the set to contain an edge. The prob-
lem of finding a maximal vertex independent set can be solved in polynomial
time (see e.g. the algorithms due to Tarjan and Trojanowski [155], Karp and
Widgerson [101], further the improved algorithms due to Luby [128] and Noga
[9]).
In 2012 Dutta, Mubayi, and Subramanian [48] gave new lower bond for the

vertex independence number of sparse hypergraphs.
In 2013 Eustis devoted a PhD dissertation to the problems of hypergraph

independence numbers [51, 52].
An independent edge set of a hypergraph H is a subset of the edges such

that no two edges in the subset share a vertex of H [136]. An independent
edge set of maximum size is called a maximum independent edge set, and
an independent edge set that cannot be expanded to another independent
edge set by addition of any other edge in the hypergraph is called a maximal
independent edge set. The size of the largest independent edge set (i.e., of
any maximum independent edge set) in a hypergraph is known as its edge
independence number (or matching number), and is denoted by ν(H). The
determination of ν(H) is an easy task for bipartite graphs [49, 50], but it is a
polynomially solvable problem for general graphs too [10].
There are many results on the characterization of hypergraph score se-
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quences and on their reconstruction (see e.g. [20, 110, 140, 171, 139, 164, 172]),
on the enumeration of different hypergraphs (see e.g. [21, 47, 138, 144, 145])
and directed hypergraphs (see e.g. [15]).
An r-uniform hypergraph with n vertices is called complete, if its set of

edges has the cardinality
(
n
2

)
. The complement of an r-uniform hypergraph H

is H = (W,F), if |F ∪ F| =
(
n
2

)
and |F ∩ F| = 0.

A set P ⊆ W is called an edge cover of H, if for any non-isolated vertex
x ∈ W there exists an edge fi ∈ P that x ∈ fi. The cardinality of a minimum
set which is an edge covering of H is called the edge covering number of H,
and is denoted by ν(H).
The following lemma, proved in [97], gives a relation between the edge cov-

ering number and the edge independence number in an r-uniform hypergraph
H without isolated vertices.

Lemma 10 (Jucovič, Olejńık [97]) For an r-uniform n-order hypergraph H

with n without isolated vertices the following inequalities hold:

α(H) ≤ n− (kr− 1)ν(H), (15)

α(H) + (r− 1)ν(H) ≤ n. (16)

ν(H) + (r− 1)r− 1ν(H) ≥ n, (17)

Proof. See [97]. �
This lemma generalizes the relations published by Gallai [67] in 1959. In

1991 Tuza [160] extended Gallai’s inequalty for uniform hypergraphs.
In 1989 Olejńık proved the following three theorems characterizing α(H)

and ν(H).

Theorem 11 (Olejńık [136]) For an r-uniform n-order hypergraph H = (W,F)
with n and its complement H = (W,F)

⌊n
r

⌋
≤ ν(H) + ν(H) ≤ 2

⌊n
r

⌋
(18)

and

0 ≤ ν(H)ν(H) ≤
⌊n
r

⌋2
. (19)

Proof. See [136]. �
This bounds are direct generalizations of the bounds published by Chartrand

and Schuster in 1974 [40].
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Theorem 12 (Olejńık [136]) For an r-uniform n-order hypergraph H = (W,F)
and its complement H = (W,F), where neither H nor F have isolated vertices,

⌊n
r

⌋
≤ ν(H) + ν(H) ≤ 2

⌊n
r

⌋
(20)

and

0 ≤ ν(H)ν(H) ≤
⌊n
r

⌋2
. (21)

Proof. See [136]. �
This result is an extension of the work of R. Laskar and B. Auerbach pub-

lished in 1978 [120].

Theorem 13 (Olejńık [136]) For an r-uniform n-order hypergraph H = (W,F)
and its complement H, F, where neither H nor H have isolated vertices and
n �= 2r

2
⌊n
r

⌋
≤ αH+ αH ≤ 2n− (r− 1)

⌊n
r

⌋
− r+ 1 (22)

and ⌊n
r

⌋2
≤ α(H)α(H) ≤ 1

4

(
2n− (r− 1)

⌊n
r

⌋
− k+ 1

)2

. (23)

Proof. See [136]. �
In 1993 Gallo, Longo, Nguyen, and Pallottino [68] studied the applications

of directed hypergraphs. In 2004 Vietri [163] wrote on the complexity of the
arc-coloring of directed hypergraphs. In 2003 Frank, Király and Király [55]
analized the orientation of directed hypergraphs.
Let

B(p, q) =

∫ 1
0

(1− t)p−1tq−1dt (24)

denote the beta-function with p, q > 0. Set constants 0 < a ≤ 1, 0 < b ≤ 1,
and B = B(a, 1− b), and let

fr(x) =
1

B

∫ 1
0

1− t)a

(tb[1+ (x− 1)t]
dr. (25)

In 2004 Zhou and Li [170] proved the following theorem on sparse hyper-
graphs.

Theorem 14 (Zhou, Li [170]) Let H be a triangle-free, r-uniform (r ≥ 2)
n-order linear hypergraph with average degree d. Then its strong vertex inde-
pendence number αs(G) is at least nfr(d).
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Proof. See [170]. �
In 2004 Greenhill, Ruciński, and Wormald [71] analyzed random hyper-

graph processes with degree restrictions. In 2008 Plociennik [141] proposed an
approximation algorithm for the vertex maximum independence set problem
of uniform random hypergraphs. M. Halldórsson, and Losievskaja [4, 5] used
semidefinit programming to find maximum vertex independent set of hyper-
graphs.
Shearer’s result ([152], further (11) and (12)) was generalized in [170] with

the function gr(x) satisfying

(r− 1)2x(x− 1)g′r(x) + [(r− 1)x+ 1]gr(x) = 1 (26)

for r-uniform, triangle-free linear hypergraphs, with sparse neighborhood and
in [125] with the function gr,m(x) satisfying

(r− 1)2x(x−m)g′r,m(x) + [(r− 1)x+ 1]gr,m(x) = 1 (27)

for r-uniform, triangle-free, and double linear hypergraphs, in which each sub-
hypergraph induced by a neighborhood, has maximum degree less than m.
A linear hypergraph is called double linear if for any non-adjacent distinct
vertices w and z, each edge containing w has at most one neighbor of z.
From the uniqueness of solutions of the differential equations, we see that
g2(x) = g(x) and gr,1(x) = gr(x). It is shown [125] that g2,m(x) ∼ log x

x
, and

for gr,m(x) ∼
c

d1/(r−1) for r ≥ 3, where c = c(r,m) > 0 is a constant without
knowing exact values.
Independent sets and numbers are studied in many papers (see e.g. the

papers of Abraham [1], Alon, Uri and Azar [12], Berger and Ziv [23], Bol-
lobás, Daykin and Erdős [27], Bonato, Brown, Mitsche and Pralat [28, 29],
Bordewich, Dyer and Karpiński [31], Boros, Gurvich, Elbassioni, Gurvich and
Khachiyan [32, 33], Borowiecki and Michalak [34], Cutler and Radcliffe [45],
Greenhill [70], Halldórson and Losievskaja [76], Hofmeister and Lehman [90],
Johnson and Yannakakis [93], Khachiyan, Boros, Gurvich, and Elbassioni
[108], Lepin [122], Li and Zhang [125], Losievskaja [126], Shachnai and Srini-
vasan [151], Tarjan and Trojanowski [155], Yuster [168]).
Since independence number and matching number are closely connected, we

are interested in the results on maximum matching algorithms too (see e.g.
[25, 26, 46, 47, 49, 50, 56, 57, 61, 65, 66, 77, 78, 86, 88, 89, 91, 92, 100, 104,
105, 109, 112, 113, 118, 119, 127, 131, 132, 133, 135, 137, 142, 146, 147, 148,
154, 157, 158, 169]).
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Minimum dominating set ofH and maximum vertex independent set ofH are
connected concepts, therefore we are interested in the results on dominating
sets of hypergraphs (see e.g. [2, 96]).
Further connected problems are also often analyzed (see e.g. e.g. in the pa-

pers of Agnarsson, Egilssson, and Halldórson [3], Alon, Frankl, Huan, Rödl,
Ruciński [10], Alon and Yuster [13], Baranyai [19], Balogh, Butterfield, Hu and
Lenz [17], Bertram-Kretzberg and Letzman [24], Bujtás and Tuza [35], Cock-
ayne, Hedetniemi, and Laskar [43], Frank, Király and Király [55], Frankl and
Rödl [58, 59], Füredi, Ruszinkó, and Selver [63, 64], Hán, Person and Schacht
[78], Henning and Yeo [89], Huang, Loh and Sudakov [92], Johnson and Yan-
nakakis [93], Johnston and Lu [94, 95], Jucovič and Olejńık [97], Karonśki
and Luczak [99], Katona [102, 103], Keevash and Sudakov [106], Kelsen [107],
Kohayakawa, Rödl, Skokan [111], Krivelevich [115], Kühn and Loose [117],
Kostochka, Mubayi, Verstraëte [114], Krivelevich, Nathaniel, and Sudakov
[116], Li, Rousseau and Zang [123, 124], Luczak and Szymańska [129, 134],
Szymańska [154], Treglown and Zhao [157, 158], Tuza [160], Yuster [169]).
Although hypergraphs are less often used in the practice than the graphs,

they also have different applications in the practice.
For example Bailey, Manoukian, Ramamohanaro [16], further Gunopolus,

Khardon, Mannila and Toivonen [74] reported on the applications in data
mining, Gallo, Longo, Nguyen, and Pallottino [68], further and Maier [130] in
relational databases.
In 2000 Carr, Lancia, Istrail, and Genomics [39] reported on Branch-and-

Cut algorithms for vertex independent set problem and on their application
to solve problems connected with protein structure alignment.
In this paper, we obtain α(H) ≥

∑
v∈V

1−1/r

d(v)1/(r−1) for any r-uniform hyper-

graph H without the condition of being triangle-free. The algorithm is naive:
it deletes a vertex of maximum degree repeatedly. In order to get a large in-
dependent set, a commonly used algorithm is to find a suitable vertex v, then
delete v and its neighbors, and then do the iterations. Deleting all neighbors
seems to be of no use for hypergraphs as in [125, 170]. After deleting a vertex
v, we delete only one vertex other than v from each edge containing v. Our
new function fr(x) satisfies

[(r− 1)x2 − x]f′r(x) + (x+ 1)fr(x) = 1. (28)

Then fr(x) ∼
c

x1/(r−1) as x → ∞. We do not know the exact value of c = c(r).
However, when we run the algorithm, we note that for a vertex v, we delete
1+d(v) vertices instead of deleting 1+(r− 1)d(v) vertices as in [125, 170]. So
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if c is the constant such that gr(x) ∼
c

x1/(r−1) as x → ∞, then the new constant

seems to be (r− 1)c, namely, fr(x) ∼
(r−1)c

x1/(r−1) .

3 Bound for uniform hypergraphs without isolated
vertex

The following Theorem 15 is a corollary of Theorem 18, but it has an easy
probabilistic proof.

Theorem 15 Let H = (V, E) be an r-uniform hypergraph of order n and av-
erage degree d ≥ 1, then

α(H) ≥
(
1−

1

r

)
n

d1/(r−1)
. (29)

Proof. Define a random subset U ⊆ V by Pr(v ∈ U) = p for some 0 ≤ p ≤ 1

with all these events being mutually independent over v ∈ V .
Let X(U) be the number of vertices in U and let Y(U) be the number of

edges in the subgraph induced by U. Note that for one of the edges of H, the
probability that all of its vertices belong to U is pr. By linearity of expectation,
we have

E(X− Y) = E(X) − E(Y) = np−
nd

r
pr. (30)

Thus there exists a set U satisfying

X(U) − Y(U) ≥ E(X) − E(Y). (31)

Note that U is not that we require, since the sub-hypergraph of H induced by
U may have edges. However, if we delete one vertex from each edge contained
in U, then at most Y(U) vertices are deleted, we thus obtain a new set with
at least E(X)−E(Y) vertices and whose induced sub-hypergraph has no edges.
The desired lower bound follows by taking p = 1

d1/(r−1) . �
For hypergraphs that are not regular, Theorem 18 is stronger than Theorem

15. We need two lemmas for the proof of Theorem 18.

Lemma 16 Let r ≥ 2 be an integer and define

hr(x) =

{
1− x/r if 0 ≤ x < 1
1−1/r

x1/(r−1) if x ≥ 1,
(32)

then hr(x) is positive, decreasing and convex. Furthermore, for x ≥ 1, the
function hr(x) satisfies that (r− 1)xh′(x) + hr(x) = 0.



144 T. A. Chisthi, G. Zhou, S. Pirzada, A. Iványi

Proof. It is easy to see that hr(x) is positive and

h′
r(x) =

{
−1/r if 0 ≤ x < 1
−1/r

xr/(r−1) if x ≥ 1.
(33)

So h′
r(x) is continuous, negative and increasing, thus hr(x) is decreasing

and convex. The fact that hr(x) satisfies the mentioned differential equation
is straightforward. �
Let Δ = Δ(H) denote the maximal degree in H and define

S(G) =
∑
x∈V

h(d(x)), S(H) =
∑
x∈W

h(d(x)). (34)

Lemma 17 If Δ(H) ≥ 1, w ∈ W, d(w) = Δ(H), and H1 = H − {w}, then
S(H1) ≥ S(G).

Proof. For each x ∈ V \ {v}, denote by nx the number of edges of H that
contain both x and v. Then nx = 0 if x and v are not adjacent, and nx ≥ 1

otherwise. It is easy to see ∑
x∈V\{v}

nx = (r− 1)Δ (35)

since H is r-uniform. On the other hand, we have

S(H1) = S(H) − h(Δ) +
∑

x∈V\{v}
[h(d(x) − nx) − h(d(x))]. (36)

From the fact that h′(x) is negative and increasing, we have

h(d(x) − nx) − h(d(x)) = −h′(θx)nx ≥ −h′(Δ)nx, (37)

where θx ∈ [d(x) − nx, d(x)], thus

S(H1) ≥ S(H) − h(Δ) − h′(Δ)
∑

x∈V\{v}
nx

= S(H) − h(Δ) − (r− 1)Δh′(Δ)

= S(H),

proving the claim. �
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Theorem 18 Let H = (V, E) be an r-uniform hypergraph without isolated
vertex, then

α(H) ≥
(
1−

1

r

)∑
v∈V

1

d(v)1/(r−1)
. (38)

Proof. We write hr(x) as h(x) for simplicity and define

S(H) =
∑
x∈V

h(d(x)). (39)

Repeat the algorithm by deleting the vertex of maximum degree if the degree
is at least one, terminate the algorithm if there are no edges. Denote by H0 =
H,H1, . . . , H	 for the sequence of hypergraphs, where H	 has no edge. We get
S(H	) = n− 	 since h(0) = 1, where n− 	 is the order of H	, and α(H) ≥ n− 	.
So

α(H) ≥ S(H	) ≥ S(H	−1) ≥ · · · ≥ S(H0) = S(H), (40)

the assertion follows immediately. �
Since the function 1

x1/(r−1) is convex, Theorem 15 is truly a corollary of
Theorem 18.
Remark. Theorem 18 gives α(G) ≥

∑
v

1
2d(v) for a graph G with δ(G) ≥ 1,

which is weaker than α(G) ≥
∑

v
1

d(v)+1
. However, the later can be proved

similarly by replacing the function h(x) with 1/(x + 1). For details of this
algorithm, see Griggs [72].

4 Bound for uniform linear triangle-free
hypergraphs

In this section triangle-free hypergraphs are considered. To generalize Shearer’s
method [152] and to delete less vertices for a hypergraph, we have a definition
as follows.
Let H = (V, E) be an r-uniform hypergraph and let v be a vertex of H, denote

by Ev = {e ∈ E : v ∈ e} = {e1, e2, . . . , ed(v)} for the set of edges containing v.
A claw of v is a set of neighbors of v of the form {u1, u2, . . . , ud(v)} such that
each ui ∈ ei − v. For a claw T of v, we write as QT , the number of edges that
intersect T .
When we run the algorithm in each step, we will delete v and a claw T , so

QT edges will be deleted. The new function is as follows.
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Let r ≥ 2 be and integer and let b = r−2
r−1

. Define

fr(x) =
1

r− 1

∫ 1
0

1− t

tb[1+ ((r− 1)x− 1)t]
dt. (41)

Lemma 19 The function fr(x) satisfies the differential equation

[(r− 1)x2 − x]f′r(x) + (x+ 1)fr(x) = 1, (42)

and it is positive, decreasing and convex.

Proof. By differentiating under the integral and then integrating by parts, we
have

[(r− 1)x2 − x]f′r(x)

= −[(r− 1)x2 − x]

∫ 1
0

1− t

t1−b[1+ ((r− 1)x− 1)t]2
dt

= x

∫ 1
0

(1− t)t1−b d

dt

(
1

1+ [(r− 1)x− 1]t

)

= −x

∫ 1
0

1

1+ [(r− 1)x− 1]t
[(1− t)(1− b)t−b − t1−b]dt

= −(r− 1)(1− b)xfr(x) + x

∫ 1
0

t1−b

1+ [(r− 1)x− 1]t
dt

= −xfr(x) +
1

r− 1

∫ 1
0

(
1

1− t
−

1

1+ [(r− 1)x− 1]t

)
(1− t)t−bdt

= −xfr(x) + 1− fr(x)

= 1− (x+ 1)fr(x)

which follows by the differential equation. The monotonicity and convexity of
fr(x) can be seen by repeated differentiation under the integral. �

Theorem 20 Let H be an r-uniform n-order hypergraph with average degree
d. If it is triangle-free and linear, then α(H) ≥ nfr(d).

Proof. We apply induction on |V |, the number of vertices of H. The result is
trivial for |V | = 1, since f(0) = 1. Since the case r = 2 is exactly what Shearer
has given, we suppose that r ≥ 3.
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For each v ∈ H, let T = {u1, u2, . . . , ud(v)} be a claw of v. Since H is r-
uniform, linear and triangle-free, we have

QT = d(v) +

d(v)∑
i=1

(d(ui) − 1) =

d(v)∑
i=1

d(ui). (43)

Let Tv be the set of all claws of v, then |Tv| = (r− 1)d(v). Therefore

∑
T∈Tv

QT =
∑
T∈Tv

d(v)∑
i=1

d(ui) =
∑

u∈n(v)
(r− 1)d(v)−1d(u), (44)

and
1

|Tv|
∑
T∈Tv

QT =
∑

u∈n(v)

d(u)

r− 1
. (45)

We write f(x) for fr(x) and set

RT (v) = 1− (d(v) + 1)f(d) + (dd(v) + d− rQT )f
′(d). (46)

Then the average of RT (v) among T ∈ Tv is

1

|Tv|
∑
T∈Tv

RT (v) = 1−(d(v)+1)f(d)+(dd(v)+d)f′(d)−r
∑

u∈n(v)

d(u)

r− 1
f′(d). (47)

Note that
1

n

∑
v∈V

∑
u∈N(v)

d(u)

r− 1
=

1

n

∑
v∈V

d2(v) ≥ d2 (48)

as x2 is a convex function. Since f′(x) < 0, we have

1

n

∑
v∈V

1

|Tv|
∑
T∈Tv

RT (v) ≥ 1− (d+ 1)f(d) + (d2 + d− rd2)f′(d) = 0. (49)

Hence there exists a vertex, say v, and a claw of v, say T = {u1, u2, . . . , ud(v)},
such that R(v) ≥ 0. Now by deleting v and u1, u2, . . . , ud(v), we obtain a new

hypergraph H ′ with n − d(v) − 1 vertices and nd
r
−QT edges. For an edge e

containing v, it contains r ≥ 3 vertices, and we delete exactly two vertices from
e, so H ′ has some vertices. Note that the average degree d̄ of H ′ is nd−rQT

n−d(v)−1
.

By induction hypothesis, we have

α(H) ≥ (n− d(v) − 1)f(d̄) = (n− d(v) − 1)f

(
nd− rQT

n− d(v) − 1

)
. (50)
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Combining the facts that α(H) ≥ 1 + α(H ′) and f(x) ≥ f(d) + f′(d)(x − d)
for all x ≥ 0 as f(x) is convex, we obtain

α(H) ≥ 1+ (n− d(v) − 1)f

(
nd− rQT

n− d(v) − 1

)

≥ 1+ (n− d(v) − 1)f(d) + (dd(v) + d− rQT )f
′(d)

= nf(d) + R(v) ≥ nf(d)

completing the proof. �
We now get an asymptotic form of fr(x) as c

x1/(r−1) without knowing exact
expression of c = c(r) in hope of improving the old constant based on analysis
of the algorithm as mentioned.

Lemma 21 Let r ≥ 3 be an integer. Then

lim x → ∞fr(x) =
c

x1/(r−1)
, (51)

where c = c(r) is a positive constant.

Proof. Recall that a first order linear differential equation dy
dx

= p(x)y+ q(x)
has the unique solution of the form

y = eφ(x)
(
y0 +

∫x
x0

q(t)e−φ(t)dt

)
(52)

satisfying y0 = y(x0), where φ(x) =
∫x
x0
p(t)dt. From the differential equation

that fr(x) satisfies, we set

p(x) = −
x+ 1

(r− 1)x2 − x
, and q(x) =

1

(r− 1)x2 − x
. (53)

For x0 = 2,

φ(x) = −

∫x
2

t+ 1

(r− 1)t2 − t
dt = ln

c1x

[(r− 1)x− 1]
r

r−1

(54)

Hence
eφ(x) =

c1x

[(r− 1)x− 1]
r

r−1

∼
c2

x1/(r−1)
. (55)

Then we have

q(t)e−φ(t) ∼
1

c2(r− 1)
x1/(r−1)−2, (56)
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implying that c3 =
∫
∞

2
q(t)e−φ(t)dt < ∞, and

∫x
2
q(t)e−φ(t)dt = c3 + o(1) as

x → ∞. Therefore,

fr(x) = eφ(x) (y0 + c3 + o(1)) ∼
c

x1/(r−1)
, (57)

where c = c2(y0 + c3) and y0 = fr(2) are positive constants. �
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[31] M. Bordewich, M. Dyer, M. Karpiński, Path coupling using stopping times and
counting independent sets and colorings in hypergraphs Random Structures Alg.
32, 3 (2008) 375–399. ⇒141

[32] E. Boros, K. Elbassioni, V. Gurvich, L. Khachiyan,Generating maximal inde-
pendent sets for hypergraphs with bounded edge-intersections. In: LATIN 2004:
Theoretical informatics, Lecture Notes in Comput. Sci. 2976, Springer, Berlin,
2004, 488–498. ⇒141

[33] E. Boros, V. Gurvich, K. Elbassioni, L. Khachiyan, An efficient incremental
algorithm for generating all maximal independent sets in hypergraphs of bounded
dimension. Parallel Process. Lett. 10, 4 (2000) 253–266. ⇒141

[34] M. Borowiecki, D. Michalak, The independence graphs of hypergraphs and mid-
dle graphs, Discuss. Math. 7 (1985) 31–37. ⇒141

[35] Cs. Bujtás, Zs. Tuza, Uniform mixed hypergraphs: The possible numbers of
colors, Graphs Combin., 24 (2008) 1–12. ⇒142

[36] Y. Caro, New results on the independence number, Technical Report, 1979, Tel-
Aviv University. ⇒134

[37] Y. Caro, A. Hansberg, New approach to the k-independence number of a graph.
Electron. J. Combin. 20, 1 (2013) #P33, 17 pages. ⇒135

[38] Y. Caro, Zs. Tuza, Improved lower bounds on k-independence, J. Graph Theory
15 (1991) 99–107. ⇒135

[39] R. D. Carr, G. Lancia, S. Istrail, C. Genomics, Branch-and-Cut algorithms for
independent set problems: Integrality gap and an application to protein structure
alignment. SAND Report SAND2000-2171, Sandia National Laboratories, 2000.⇒142

[40] G. Chartrand, S. Schuster, On the independence number of complementary
graphs, Trans. New York Acad. Sci., Series II 36, 3 (1974) 247–251. ⇒139

[41] M. Chellali, O. Favaron, A. Hansberg, L. Volkmann, k-domination and k-
independence in graphs: a survey, Graphs Combin. 28, 1 (2012) 1–55. ⇒ 135,
137

[42] M. Chellali, N. J. Rad, On k-independence critical graphs. Australas. J. Combin.
53 (2012) 289–298. ⇒135

[43] E. J. Cockayne, S. T. Hedetniemi, R. Laskar, Gallai theorems for graphs, hyper-
graphs and set systems, Discrete Math. 72 (1988) 35–47. ⇒142

[44] B. Csaba, T. A. Pick, A Shokoufandeh, A note on the Caro-Tuza bound on the
independence number of uniform hypergraphs, Australas. J. Combin. 52 (2012)
235–242. ⇒135

[45] J. Cutler, A. J. Radcliffe, Hypergraph independent sets, Combin. Probab. Com-
put. 22, 1 (2013) 9–20. ⇒141



152 T. A. Chisthi, G. Zhou, S. Pirzada, A. Iványi
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[61] Z. Füredi, Matchings and covers in hypergraphs, Graphs Combin. 4 (1988) 115–

206. ⇒141
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[147] V. Rödl, A. Ruciński, E. Szemerédi, Perfect matchings in uniform hypergraphs
with large minimum degree, Europ. J. Combin. 27 (2006) 1333–1349. ⇒141
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