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Institute of Mathematics and
Informatics, Ifjúság u. 6
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Abstract. It is an empirical fact that coloring the nodes of a graph can
be used to speed up clique search algorithms. In directed graphs tran-
sitive subtournaments can play the role of cliques. In order to speed up
algorithms to locate large transitive tournaments we propose a scheme
for coloring the nodes of a directed graph. The main result of the paper
is that in practically interesting situations determining the optimal num-
ber of colors in the proposed coloring is an NP-hard problem. A possible
conclusion to draw from this result is that for practical transitive tourna-
ment search algorithms we have to develop approximate greedy coloring
algorithms.

1 Introduction

Let G = (V, E) be a finite simple graph, that is, G has finitely many nodes and
G does not have any loop or double edge. A subgraph D is a clique in G if each
two distinct nodes of D are connected in G. If the clique D has k nodes, then
we say that D is a k-clique in G. The number of nodes of a clique sometimes
referred as the size of the clique. A k-clique in G is a maximum clique if G
does not have any (k + 1)-clique. The graph G may have several maximum
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cliques but their common size is a well defined number. This number is called
the clique number of the graph G and it is denoted by ω(G). The problem of
determining the clique number of a given graph is an important problem in
many areas of applied discrete mathematics. (For a list of applications see [1].)
It is known that the problem is NP-complete. (For proofs see [5] or [12].) The
most commonly used clique search algorithms employ coloring of the nodes
of a graph to speed up the computations. (See [2, 8, 9, 11, 14].) The coloring
of the nodes of the graph G with k colors assigns exactly one color to each
node of the graph such that adjacent nodes never receive the same color. This
type of coloring of the nodes sometimes referred as legal or well coloring of
the nodes. The minimum number of colors with which the nodes of G can be
legally colored is a well defined number. It is called the chromatic number of
G and it is denoted by χ(G). Determining the chromatic number of a given
graph is another important problem in the applied discrete mathematics with
many applications. It is known that the problem of deciding if a given graph
can be colored with k color is NP-complete for any fixed k, where k ≥ 3. (See
[5] or [12].) The problem for k = 2 belongs to the P (polynomial) complexity
class.
Let G = (V, E) be a finite simple directed graph. This means that G has

finitely many nodes and G does not have any loop or double edges directed in
parallel manner. In the particular case when there is exactly one directed edge
between any two distinct nodes, then G is called a tournament. Tournaments
can look back to a venerable history. (See [13, 3, 4, 10].) The directed graph
G is transitive if (x, y), (y, z) ∈ E implies (x, z) ∈ E. Motivated by applications
in information theory [7] introduced the problem of determining the size of a
maximum subtournament in a given finite simple directed graph. Since col-
oring proved to be advantageous in improving the efficiency of clique search
algorithms we address the problem if coloring can be exploited in the algo-
rithms locating maximum transitive tournaments in a given graph. We propose
a type of colorings of the nodes of a finite simple directed graph. We will show
that this coloring leads to an NP-hard problem. A practical implication of
the result is that for coloring we should rely on approximate greedy coloring
procedures instead of trying to compute the optimal number of colors.
Colorings are employed in at least two ways in clique search algorithms.

One can color the nodes of a graph G before the clique search starts. In these
cases the coloring is used as a possible preprocessing or preconditioning tool.
On the other hand if in the course of the clique search algorithm one recolors
the nodes of the subgraphs of G under consideration, then we call it an on-line
coloring.
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It must be ample clear that the requirements for preconditioning or for
on-line coloring algorithms are not necessarily the same. In the case of precon-
ditioning the graph coloring is a well separated phase of the computation. We
may afford to use more time and memory space. While in the case of on-line
coloring we have to trade speed for the quality of coloring.
By the main result of the paper determining the optimal number of colors

is not a practically recommended option. In the same time there is a real need
to introduce, implement and test various greedy coloring algorithms. We hope
that our paper will stimulate this activity.

2 Coloring the nodes

Let T be a tournament whose nodes are a1, . . . , ak, where k ≥ 2.

Lemma 1 If T is a transitive tournament, then there is a permutation
b1, . . . , bk of a1, . . . , ak such that

(1) (bi, bi+1), . . . , (bi, bk) are edges of T for each i, 1 ≤ i < k.

(2) The listed n(n− 1)/2 edges are all the edges of T .

(3) Each subgraph of T is a transitive tournament.

Proof. Statement (1) clearly holds for k = 2. We assume that k ≥ 3 and start
an induction on k.
If T has a vertex, say a1, such that each edge incident to a1 goes out of a1,

then a1 can be identified with b1 and the inductive assumption is applicable
to the graph whose nodes are a2, . . . , ak.
If T has a vertex, say ak such that each edge incident to ak goes into ak,

then ak can be identified with bk and the inductive assumption is applicable
to the graph whose nodes are a1, . . . , ak−1.
For the remaining part of the proof of statement (1) we may assume that

each vertex of T has an incident edge going in and has an incident edge going
out. In this case T contains a directed cycle. On the other hand a transitive
tournament cannot contain a directed cycle.
The reason why statement (2) holds is that a transitive tournament has

n(n− 1)/2 directed edges and we listed all of them in statement (1).
Statement (3) follows from the definition of the transitive tournament and

statement (1), as any subset of the nodes can be ordered the same way. �
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A finite simple directed graph G = (V, E) can be represented by an |V | by |V |

adjacency matrix. The rows and the columns are labeled by the nodes of G. If
the ordered pair (u, v) is an edge of G, then we put a bullet into the cell at the
intersection of row u and column v. The adjacency matrix of course has 0, 1
entries when stored in a computer. The practice of using bullets instead of 1’s
is taken from [6]. It seems that it has a good visual effect and the computations
are less prone to clerical errors when carried out using paper and pencil.
By Lemma 1, a tournament T is a transitive tournament if and only if the

rows and the columns of its adjacency matrix can be permuted such that
the adjacency matrix became an upper triangular matrix. A simple directed
graph H with r nodes has a transitive tournament of r nodes if the adjacency
matrix of H can be rearranged such that the upper triangular part is filled
with bullets.
Let G = (V, E) be a finite simple directed graph. Let U be a subset of V and

let s be an integer such that U �= ∅ and s ≥ 3. The subset U of V is called an
s-free subset if U does not contain any transitive tournament with s nodes. A
partition of V into the subsets V1, . . . , Vk is called an s-free partition of V if
Vi is an s-free set for each i, 1 ≤ i ≤ k.
A coloring of the nodes of a finite simple directed graph G = (V, E) can be

described by means of an onto function f : V → {1, . . . , k}. Here the numbers
1, . . . , k are used as colors and node v receives color f(v). The c-level set Vc of
f is defined to be Vc = {v : f(v) = c, v ∈ V}.
The coloring f : V → {1, . . . , k} of the nodes of the finite simple directed

graph G = (V, E) is called an s-free coloring if the level sets V1, . . . , Vk form an
s-free partition of V . The name intends to express the fact that color classes
cannot contain any transitive tournament of size s. In other words color classes
are free of tournaments of size s.
In the s = 2 special case a color class of an s-free coloring cannot contain

any edge. ¿From this reason we will mainly deal with the s ≥ 3 case.
The number of the color classes of an s-free coloring of the graph G can

be used to establish an upper estimate of the size of a maximum transitive
tournament in G.

Lemma 2 If the finite simple directed graph G admits an s-free coloring with
k colors and G has a transitive tournament of size r, then r ≤ k(s− 1).

Proof. Suppose G has a transitive tournament T of size r. Let V1, . . . , Vk

be the color classes of the s-free coloring and let W be the set of nodes of
T . By Lemma 1, the subgraph of T with set of nodes Vi ∩ W is a transitive
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tournament. Since the coloring is s-free, it follows that |Vi ∩W| ≤ s − 1. We
get that

r = |W| = |V1 ∩W|+ · · ·+ |Vk ∩W| ≤ k(s− 1),

as required. �
From Lemma 2 we can see that the smaller is k, the better is the upper

estimate of the size of the maximum transitive tournament in G. The following
problem comes to mind naturally.

Problem 3 Given a finite simple directed graph G = (V, E). Further given
integers r, s such that r ≥ 3, s ≥ 3. Decide if G has an s-free coloring with r

colors.

When we deal with coloring the nodes of a graph G we inevitably have to
deal with incomplete or partial colorings, where each of the nodes of G receives
at most one of the colors 1, . . . , r but some of the nodes of G are left uncolored.
Allocating color 0 for the uncolored nodes we can incorporate the incomplete
colorings into the family of complete colorings.

3 Two auxiliary graphs

In this section we describe two finite simple directed graphs. They will play
the roles of building blocks or switching devices in further constructions. Let
r, s be fixed integers such that r ≥ 3, s ≥ 3. Set

h = (s− 1)(r− 1) + (s− 2) + 2.

Let us consider the directed simple graph H = (V, E), where V = {1, . . . , h}.
Set W = {2, . . . , h− 1}. We draw directed edges between the nodes in W such
that the subgraph of H whose set of nodes is W forms a transitive tournament.
From the node 1 we direct edges towards each node of W. Similarly, from the
node h we direct edges towards each node of W.
For the sake of the illustration we worked out the special case r = 3, s = 3 in

details. The adjacency matrix of H is in Table 1. A geometric representation
of H is depicted in Figure 1.
We spell out the properties of the graph H we will use later as a Lemma.
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1 2 3 4 5 6 7

1 • • • • •
2 • • • •
3 • • •
4 • •
5 •
6
7 • • • • •

Table 1: The adjacency matrix of the graph H in the special case r = s = 3.

Lemma 4 (1) The nodes of the graph H have an s-free coloring with r col-
ors.

(2) In each s-free coloring of the nodes of H with r colors the nodes 1 and h

must receive the same colors.

(3) Each partial coloring of the nodes of H, where nodes 1, h receive the
same color (and the remainig nodes of of H are left uncolored) can be
extended to an s-free coloring of the nodes of H using r colors.

Proof. In order to prove statement (1) let us consider the subsets C1, . . . , Cr,

Cr+1 of V such that these subsets are pair-wise disjoint and

|C1| = · · · = |Cr−1| = s− 1, |Cr| = s− 2, Cr+1 = {1, h}.

Set W = {2, . . . , h − 1}. Clearly, C1, . . . , Cr form a partition of W. We use
C1, . . . , Cr as color classes to define a coloring of the subgraph L of H whose
set of nodes is W.
By Lemma 1, the subgraph of H whose set of nodes is Ci is a transitive

tournament for each i, 1 ≤ i ≤ r. As |Ci| ≤ s − 1, it follows that this graph
does not contain a transitive tournament with s nodes. Therefore the coloring
of L is an s-free coloring. The subgraph of H whose set of nodes is Ci ∪ {1} is a
transitive tournament with s nodes. Consequently, the node 1 cannot receive
color i for each i, 1 ≤ i ≤ r− 1. On the other hand node 1 can receive color r
since the subgraph of H whose set of nodes is Cr ∪ {1, h} is not an obstruction.
Similarly node h may receive color r. This completes the proof of statement
(1).
We can use the coloring constructed in the previous part and combine it

with the fact that the colors in an s-free coloring of the nodes of H can be
permuted among each other freely to settle statement (3).
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7 (3)

2 (1) 3 (1) 4 (2) 5 (2) 6 (3)

1 (3)

Figure 1: The auxiliary graph H in the special case r = s = 3. The numbers
in parentheses are the colors of the nodes.

To prove statement (2) let us suppose that f : V → {1, . . . , r} is an s-free
coloring of the nodes of H. Let us consider the subgraph L of H whose set of
nodes is W = {2, . . . , h − 1}. The restriction of f to W is an s-free coloring of
the nodes of L. Let C1, . . . , Cr be the colors classes of this coloring. We may
assume that |C1| ≥ · · · ≥ |Cr| since this is only a matter of exchanging the
colors 1, . . . , r among each other.
By Lemma 1, the subgraph of H whose set of nodes is Ci is a transitive

tournament for each i, 1 ≤ i ≤ r. It follows that |Ci| ≤ s− 1. Using

|C1|+ · · ·+ |Cr| = (s− 1)(r− 1) + (s− 2)

we get that |C1| = · · · = |Cr−1| = s − 1 and |Cr| = s − 2. The subgraph of H
whose set of nodes is Ci ∪ {1} is a transitive tournament with s nodes for each
i, 1 ≤ i ≤ r − 1. We get that the node 1 cannot receive color i and so node 1
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must receive color r. A similar reasoning gives that node h must receive color
r too. This completes the proof of statement (2). �
Let r, s ≥ 3 be fixed integers. We construct a new auxiliary directed graph

K. Let T be a transitive tournament with nodes 1, . . . , s. We consider s − 1

isomorphic copies H1, . . . , Hs−1 of H. We choose the notation such that H =
(V, E) with V = {1, . . . , h} and Hi = (Vi, Ei) with Vi = {(1, i), . . . , (h, i)}. The
correspondence

1 ←→ (1, i), . . . , h ←→ (h, i)

defines the isomorphism between H and Hi.
Let us consider the nodes (1, 1), . . . , (1, s − 1) of H1, . . . , Hs−1, respectively

and solder these nodes together to form a node u of K. Let us consider the
nodes (h, 1), . . . , (h, s−1) of H1, . . . , Hs−1, respectively and solder these nodes
together with the nodes 1, . . . , s − 1 of the tournament T , respectively. We
rename node s of T to be v.
The graph K has

1+ (h− 2) + · · ·+ (h− 2)
︸ ︷︷ ︸

(s−1) times

+s = 1+ (s− 1)(h− 2) + s

nodes. We set k = 1 + (s − 1)(h − 2) + s and rename the nodes of K by the
numbers 1, . . . , k such that 1 = u and k = v. We illustrated the construction
in the special cases s = 3 and s = 4. The geometric versions of K can be seen
in Figures 2 and 3.
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3 = v

1 = (h, 1) 2 = (h, 2)

u = (1, 1) = (1, 2)

H1 H2

Figure 2: The auxiliary graph K in the special case s = 3. The double lines
represent isomorphic copies of H.



Coloring the nodes of a directed graph 125

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������

�����

�������

�����

�������

�����
�

�������

�����

� �
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

� �

�

�

4 = v

1 = (h, 1) 3 = (h, 3)

2 = (h, 2)

u = (1, 1) = (1, 2) = (1, 3)

H1

H2

H3

Figure 3: The auxiliary graph K in the special case s = 4. The double lines
represent isomorphic copies of H.

The next lemma summarizes the essential properties of the graph K what
we need later.

Lemma 5 (1) The nodes of the graph K admit an s-free coloring with r

colors.

(2) In each s-free coloring of the nodes of the graph K with r colors the nodes
1 and k cannot receive the same colors.

(3) Each partial coloring of the nodes of K, where the nodes 1 and k are
colored with distinct colors (and the other nodes of K are left uncolored)
can be extended to an s-free coloring of the nodes of K using r colors.

Proof. By Lemma 4, the nodes of the graph H admit and s-free coloring with
r colors. Consequently, the nodes of each of the graphs H1, . . . , Hs−1 admit an
s-free coloring with r colors. These colorings provide the same fixed color for
s − 1 nodes of the tournament T . The uncolored node v of T can be colored
with any of the remaining r− 1 colors. This proves statement (1).
By Lemma 4, the node V cannot receive the same color as node u. This

settles statement (2).
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By Lemma 4, each partial coloring of the nodes of H can be extended to
an s-free coloring of the nodes of H using r colors. It follows that each partial
coloring of the nodes of Hi can be extended to an s-free coloring of the nodes
of Hi using r colors for each i, 1 ≤ i ≤ s − 1. This provides a partial coloring
of the nodes of the tournament T . In this partial coloring of the nodes of T
each node except node v receives the same color. Namely the color of node u.
The last uncolored node v clearly can be colored with any of the remaining
r− 1 colors. This proves statement (3). �

4 The main result

The main result of this paper is the following theorem

Theorem 6 Problem 3 is NP-hard for each r, s ≥ 3.

Proof. Let r, s ≥ 3 be fixed integers. Assume on the contrary that Problem
3 is not NP-hard, that is, there is an “efficient” (polynomial running time)
algorithm that solves Problem 3. Let G = (V, E) be a finite simple graph with
undirected edges. Using G and the auxiliary graphs H, K described in the
previous chapter we construct a finite simple directed graph G′ = (V ′, E′) such
that the following conditions hold.

(1) If the nodes of G′ have an s-free coloring with r colors, then the nodes
of G have a legal coloring with r colors.

(2) If the nodes of G have a legal coloring with r colors, then the nodes of
G′ have an s-free coloring with r colors.

(3) The number of nodes G′ can be upper bounded by a polynomial of the
number of the nodes of G.

Thus for each legal (edge free) coloring problem we can construct a directed
s-free coloring problem. If the second can be solved in polynomial time, it
means that the first one can be solved in polynomial time as well.
Let v1, . . . , vn be the edges of G. In other words let V = {v1, . . . , vn}. We

consider an isomorphic copy Ki,j = (Wi,j, Fi,j) of the auxiliary graph K = (W,F)
for each i, j, 1 ≤ i < j ≤ n. We recall that the nodes of K are labeled by
the numbers 1, . . . , k. The nodes of Ki,j will be labeled by the ordered triples
(i, j, 1), . . . , (i, j, k). Here the correspondence
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1 ←→ (i, j, 1), . . . , k ←→ (i, j, k)

defines the isomorphism between K and Ki,j.
With each of the nodes v1, . . . , vn we associate a node v′1, . . . , v

′
n of the graph

G′. At this moment our only concern is that v′1, . . . , v
′
n are pair-wise distinct

points and they are nodes of G′. But G′ may have further nodes.
If the unordered pair {vi, vj} is an edge of G, then we add additional k − 2

nodes to G′. We identify the nodes (i, j, 1), (i, j, k) of Ki,j with the nodes v′i,
v′j of G

′, respectively. Next, we add the remaining k − 2 nodes of Ki,j to the
nodes of G′. Finally, we add all the edges of Ki,j to the edges of G′.
If the unordered pair {vi, vj} is not an edge of G, then we do not add any

nodes and we do not add any edges to G′. Clearly, G′ has directed edges and it
has |V |+ |E|(k−2) nodes. Since r, s are fixed numbers, it follows that k−2 = c

is a constant and so |V ′| can be upper bounded by n+ cn(n− 1)/2 which is a
second degree polynomial in terms of n. This observation shows that condition
(3) is satisfied.
In order to show that condition (1) is satisfied let us assume that f′ : V ′ →

{1, . . . , r} is an s-free coloring of the nodes of G′. Using f′ we define a coloring
f : V → {1, . . . , r} of the nodes of G. We set f(vi) to be equal to f′(v′i).
We claim that f(vi) = f(vj) implies that the unordered pair {vi, vj} is not an

edge of G.
To verify the claim we assume on the contrary that f(vi) = f(vj) and {vi, vj}

is an edge of G. The restriction of f′ to Wi,j is an s-free coloring of the nodes
of the graph Ki,j. By Lemma 5, the nodes (i, j, 1) and (i, j, k) cannot receive
the same color. Using v′i = (i, j, 1), v′j = (i, j, k) we get the

f(vi) = f′(v′i) �= f′(v′j) = f(vj)

contradiction.
To demonstrate that condition (2) is satisfied let us suppose that f : V →

{1, . . . , r} is a legal coloring of the nodes of G. Using f we define a coloring
f′ : V ′ → {1, . . . , r} of the nodes of G′. We set f′(v′i) to be equal to f(vi).
Let us consider two distinct nodes v′i, v

′
j of G

′. If the unordered pair {v′i, v
′
j} is

an edge of G′, then by the construction of G′ the nodes v′i, v
′
j are identical with

the nodes (i, j, 1), (i, j, k) of Ki,j, respectively. Thus v
′
i = (i, j, 1), v′j = (i, j, k).

Since f is a legal coloring of the nodes of G, it follows that f(vi) �= f(vj) and
so by the definition of f′, we get that f′(v′i) �= f′(v′j).
For the sake of definiteness let us suppose that f′(v′i) = 1 and f′(v′j) = 2. We

have a partial coloring of the nodes of Ki,j. Namely, the nodes (i, j, 1), (i, j, k)
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are colored with colors 1, 2, respectively. Other nodes of Ki,j are left uncolored.
By Lemma 5, this partial coloring of Ki,j can be extended to an s-free coloring
of Ki,j. Since this can be accomplished in connection with each adjacent nodes
v′i, v

′
j of G

′, it follows that the nodes of G′ have an s-free coloring with r colors.
�

5 A second proof of the main result

In the proof of Theorem 6 we used only the auxiliary graph K. The auxiliary
graph H made an appearance only in the proof of Lemma 5 when we estab-
lished the key properties of the auxiliary graph K. In this section we present an
informal new proof where the graph H plays a more direct role. The node edge
incidence matrix M of a finite simple graph G = (V, E) is a |V | by |E| matrix.
The rows and the columns of M are labeled by the nodes and the edges of
G, respectively. If e = {u, v} is an edge of G, then we place two bullets into
M. We put one bullet into the cell at the intersection of row u and column e.
Then we put a bullet into the cell at the intersection of row v and column e.

�
�
�
�
�
�
��

�
�
�
�
�
�� � �

� �

v1 v2 v3

v5 v4

e1 e4

e7

e3 e5 e6e2

Figure 4: The toy example Γ .

e1 e2 e3 e4 e5 e6 e7
v1 • • •
v2 • • •
v3 • •
v4 • • • •
v5 • •

Table 2: The node edge incidence matrix of the toy example Γ .
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v1

v2

v3

v4

v5

e1 e2 e3 e4 e5 e6 e7

Figure 5: The graph Γ∗ associated with the toy example Γ .

For the sake of illustration we included a toy example. The graph Γ can be
seen in Figure 4. The node edge incidence matrix of Γ is in Table 2.
Suppose we are given a finite simple undirected graphG = (V, E). UsingG we

construct a graph G∗ = (V∗, E∗). The construction is guided by the node edge
incidence matrix of G. Let V = {v1, . . . , vn}, E = {e1, . . . , em}. If et = {vi, vj},
then we add the ordered pairs (i, t), (j, t) to the set of nodes of G∗. Thus V∗

is a set whose elements are ordered pairs. Clearly |V∗| = 2|E| = 2m.
We can form a mesh consisting of n horizontal and m vertical lines. The

intersection of the horizontal and vertical lines form (n)(m) mesh points. The
nodes of G∗ can be identified with some of these mesh points.
Two distinct nodes (i, t) and (j, t) of G∗ on a vertical mesh line are connected

with a vertical undirected edge in G∗. Two distinct nodes (i, x) and (i, z) of
G∗ on a horizontal line are connected with a horizontal undirected edge in G∗

if there is no node in the form (i, y) such that x < y < z. Figure 5 depicts the
graph Γ∗ associated with the toy example Γ . The mesh lines are represented
by thin lines. Bold lines represent the edges of Γ∗.
We replace each horizontal edge of G∗ by an isomorphic copy of the auxiliary

graph H. Next we replace each vertical edge of G∗ by an isomorphic copy of
the auxiliary graph K. After all possible replacements we get a finite simple
directed graph G′.
Suppose that the nodes of G′ have an s-free coloring with r colors. The

isomorphic copies of the auxiliary graph H guarantee that the nodes of G′ on
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a fixed horizontal line all receive the same color. The isomorphic copies of the
auxiliary graph K make sure that the two nodes of G′ on a fixed vertical line
receive distinct colors. In this way we get a legal coloring of the nodes of G
with r colors.
Next suppose that the nodes of G have a legal coloring with r colors. This

coloring will provide partial colorings of the nodes of the isomorphic copies
of the graphs H and K. One can extend these partial colorings to a complete
s-free coloring of the nodes of G′ with r colors.
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11-1-2012-0001 “National Excellence Program - Elaborating and operating
an inland student and researcher personal support system”. The project was
subsidized by the European Union and co-financed by the European Social
Fund.

References

[1] I. M. Bomze, M. Budinich, P. M. Pardalos, M. Pelillo, The maximum clique
problem, in Handbook of Combinatorial Optimization Vol. 4, Eds. D.-Z. Du and
P. M. Pardalos, Kluwer Academic Publisher, Boston, MA 1999. ⇒118

[2] R. Carraghan, P. M. Pardalos, An exact algorithm for the maximum clique
problem, Operation Research Letters 9, 6 (1990), 375–382. ⇒118
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