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Gergő GOMBOS
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Abstract. In the paper we report on the parallel enumeration of the
degree sequences (their number is denoted by G(n)) and zerofree de-
gree sequences (their number is denoted by (Gz(n)) of simple graphs
on n = 30 and n = 31 vertices. Among others we obtained that the
number of zerofree degree sequences of graphs on n = 30 vertices is
Gz(30) = 5 876 236 938 019 300 and on n = 31 vertices is Gz(31) =
22 974 847 474 172 374. Due to Corollary 21 in [52] these results give the
number of degree sequences of simple graphs on 30 and 31 vertices.

1 Introduction

In the practice an often occuring problem is the ranking of different objects
(examples can be found e.g. in [52]), assigning points to the objects and then
ranking of the objects on the base of the sum of the assigned to them points.
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Especially extensive bibliography has the case when the results are rep-
resented by a simple graph and the problem is the test, reconstruction and
enumeration of the degree sequences. Havel in 1955 [42], Erdős and Gallai in
1960 [16, 32, 77], Hakimi in 1962 [39], Knuth in 2008 [61], Tripathi et al. in 2010
[89] proposed a method to decide, whether a sequence of nonnegative integers
can be the degree sequence of a simple graph. Sierksma and Hoogeven in 1991
[83] compared seven known methods. The running time of their algorithms
in worst case is Ω(n2). In 2007 Takahashi [86], in 2009 Hell and Kirkpatrick
[43], in 2011 Iványi et al. [52] and in April of 2012 Király [58] proposed an
algorithm, whose worst running time is Θ(n).
There are several new proofs for the classical Havel-Hakimi and Erdős-Gallai

theorems [26, 32, 63, 70, 75, 87, 88, 89].
Extensions of the algorithms for (0, b)-graphs [8, 9, 24, 23, 25, 27, 69, 75,

90, 92] and (a, b)-graphs [44, 45, 46, 53] are also known.
As an application of our linear time algorithm we describe Erdős-Gallai-

Enumerative algorithm (EGE) and its parallel version used to enumerate
the different degree sequences of simple graphs for 30 vertices. We also present
the linear test version of Havel-Hakimi algorithm (HHL).
Let n ≥ 1. We call a sequence s = (s1, . . . , sn) (l, u, n)-bounded, if 0 ≤

si ≤ n for i = 1, . . . , n, n-bounded, if it is (0, n − 1, n)-bounded, n-regular, if
the conditions n − 1 ≥ s1 ≥ · · · ≥ sn ≥ 0 hold, and n-even, if the sum of the
elements of s is even. If there exists a graph with n vertices which has the
degree sequence s, then we say that s is n-graphical. If such graph does not
exist, then we say that s is nongraphical. A sequence is zerofree, if it does not
contain zero. If n is not necessary, then we omit it in the terms n-bounded,
n-regular, n-even and n-graphical. The first i elements of an n-regular s are
called the head, and the last n− i elements are called the tail, belonging to the
element i of s.

2 Earlier results

A classical problem of the graph theory is the enumeration of the sorted degree
sequences of different graphs—among others simple graphs. For example The
On-Line Encyclopedia of Integer Sequences contains for n = 1, . . . , 29 vertices
the number of degree sequences of simple graphs (the values for n = 20, . . . , 23

were set in July of 2011 by Nathann Cohen [28], and for 24, . . . , 29 in 15
November, 2011 by us [48, 52]) and the number of zerofree degree sequences
of simple graphs (the values for n = 1, . . . , 9 were set in 12 June, 2004 by
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N. J. Sloane, for n = 10, . . . , 20 in 12 August, 2006 by Gordon Royle, for
n = 21, 22, and 23 in August 31, 2011, and in December 10, 2012 by Frank
Ruskey [80], and the values for n = 24, . . . , 29 by us [50, 51].
In this section we review the theoretical and practical results connected with

the enumeration of simple graphs.

2.1 Exact enumeration results

It is known [52, equation (23)] that if n ≥ 1, then the number R(n) of the
regular sequences is

R(n) =

(
2n− 1

n

)
(1)

and the number Rz(n) of the zerofree regular sequences is [52, equation (24)]

Rz(n) =

(
2n− 2

n

)
(2)

implying [52]

lim
n→∞

R(n+ 1)

R(n)
= lim

n→∞

Rz(n+ 1)

Rz(n)
= 4 (3)

and

lim
n→∞

Rz(n)

R(n)
=

1

2
, (4)

and

R(n) =
4n

2
√
πn

+O

(
4n

n3/2

)
(5)

and

Rz(n) =
4n

4
√
πn

+O

(
4n

n3/2

)
. (6)

Table 1 in [52] shows the values values of R(n) for n = 1, . . . , 38, Table
4 in [51] for n = 39, . . . , 60, and in [47, 51, 68] the values are presented for
n = 1, . . . , 1200. Table 1 in Subsection 3.3 presents the values R(n)/R(n+ 1)
for n = 1, . . . , 32 and [68] for n = 1, . . . , 1200.
Figure 1 in Subsection 3.3 shows the values of Rz(n)/Rz(n + 1)) for n =

1, . . . , 32.
In 1987 Ascher derived the following explicit formula for the number E(n)

of even sequences.
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Lemma 1 (Ascher [2], Sloane and Pfoffe [85]) If n ≥ 1, then the number of
even sequences E(n) is

E(n) =
1

2

((
2n− 1

n

)
+

(
n− 1

�n/2�
))

. (7)

Proof. See [2]. �
Table 1 in [52] contains the values of E(n) and E(n + 1)/E(n) for n =

1, . . . , 31.
(7) implies (see [52])

lim
n→∞

E(n+ 1)

E(n)
= 4 (8)

and

E(n) =
4n

8
√
πn

+O

(
4n

n3/2

)
. (9)

further (1) and (7) imply

lim
n→∞

E(n)

R(n)
=

1

2
, (10)

(2) and (7) imply

Rz(n)

E(n)
=

2n− 2

2n− 1
= 1−

1

2n− 1
and lim

n→∞

Rz(n)

E(n)
= 1. (11)

Table 1 in [52] shows the values of E(n) for n = 1, . . . , 38, Table 4 in
[51] for n = 39, . . . , 60, the list of [64] for n = 1, . . . , 1000, and [68] for
n = 31, . . . , 1200.
Figure 3 in [52] shows the values of Ez(n) for n = 1, . . . , 20, and [68] n =

1, . . . , 1200. Table 5 in [51] shows the values of Ez(n/R(n) for n = 1, . . . , 20.
Using (1) and (7) we computed E(n) and E(n+ 1)/E(n) for i = 1, . . . , 750

(see [52, 68]). Recently Librandi [64] published the values of E(n) up to n =
1000 and we continued the computations up to 1200 [51, 68].
The following theorem gives a very useful connection between the values

of G(n) and Gz(n): it helped to decrease the computing time of G(29) with
about 50 %.

Lemma 2 (Iványi, Lucz, Móri, Sótér [52]) If n ≥ 2, then the number of n-
graphical sequences G(n) can be computed from the number of (n−1)-graphical
sequences G(n− 1) and the number of n-graphical zero-free sequences Gz:

G(n) = G(n− 1) +Gz(n),
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and if n ≥ 1 then

G(n) = 1+

n∑
i=2

Gz(i).

Proof. If an even sequence s = (s1, . . . , sn) contains at least one zero, then
sn = 0 and s ′ = (s1, . . . , sn−1) is graphical or not. If a = (a1, . . . , an−1) is
(n− 1)-graphical, then a ′ = (a1, . . . , an−1, 0) is n-graphical.
The set of the n-graphical sequences S(n) consists of two subsets: set of

zerofree sequences Sz(n) and the set of the remaining sequences S0(n). There
is a bijection between the set of the (n − 1)-graphical sequences and such n-
graphical sequences, which contain at least one zero. Therefore |S | = |Sz| +
|S0| = Gz(n) +G(n− 1). �
Using the parallel version EGP (see the next section) of EGE we computed

G(n) up to n = 29. These numbers can be found in Table 2 of [52].

Theorem 3 (Burns [22]) There exist positive constants c and C such that the
following bounds of the function G(n) are true for n ≥ 1:

4n

cn
< G(n) <

4n

(logn)C
√
n
. (12)

Proof. See [22]. �
This result implies that the asymptotic density of the graphical sequences

is zero among the even sequences.

Corollary 4 If n ≥ 1, then there exists a positive constant C such that

G(n)

E(n)
<

1

(log2 n)
C

(13)

and

lim
n→∞

G(n)

E(n)
= 0. (14)

Proof. (13) is a direct consequence of (7) and (12). �
Table 1 in [52] contains the values of G(n) and G(n + 1)/G(n) for n =

1, . . . , 29. Table 5 in [51] contains values ofGz(n),Gz(n)/R(n), andG(n)/R(n)
for n = 1, . . . , 29.
We remark that a zerofree degree sequence belongs to a graph not containing

isolated vertex, therefore the number of zerofree graphical degree sequences
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Gz(n) is at the same time also the number of degree sequences of simple
graphs, not containing isolated vertex.
There are several classic asymptotic results, e.g. due to Bender and Canfield

[7], Bollobás [17, 18, 19], Harary and Palmer [41], Kleitman and Winston
[56, 60], Reid [78], Winston and Kleitman [91]. A modern direction is to get
approximate results by sampling of random graphs (see e.g. the papers of
Erdős, Király and Miklós [34], further of Miklós, Erdős and Soukup [?].
An interesting connected problem is the characterization of pairs of different

directed graphs having a pair of prescribed indegree and outdegree sequences
[8, 9, 10, 11, 12, 14, 15, 20, 40, 72, 76, 81].
Another interesting related questions are the unicity of the realizations of

the degree sequences [29, 55, 62, 82] and the parallel realization of degree
sequences [1].
Several recent papers consider the problem of approximate enumeration of

the number of all realizations of simple graphs (see e.g. [13, 34, 35, 36, 37, 38,
59, 71]). In 1978 Bender and Canfield [7] characterized the asymptotic number
of realizations of given graphical degree sequences, while in 2012 Zoltán Király
[58] proposed an algorithm which with polynomial delay lists all realizations
of a given graphical sequence.

2.2 Earlier algorithmic results

In this subsection the linear Havel-Hakimi algorithm (HHL) based on Havel-
Hakimi theorem [39, 42] and the enumerating Erdős-Gallai algorithm (EGE)
based on Erdős-Gallai theorem [32] are shortly described.

2.2.1 Linear Havel-Hakimi algorithm (HHL)

In a previous paper [52] we described the classical Havel-Hakimi [39, 42] and
Erdős-Gallai [32] algorithms and their some improvements as linear Erdős-
Gallai (EGL) and jumping Erdős-Gallai (EGLJ) algorithms.
it is worth to remark that our linear Erdős-Gallai algorithm is applied in the

solution of different problems connected with degree sequences [5, 6, 21, 31].
Here we present the linear version of Havel-Hakimi algorithm (HHL) [46]

and compare it with the previous linear algorithms EGL and EGLJ [52]. It is
important to remark that this linear version of HH only tests the investigated
sequences without their reconstruction.
In the worst case the original Havel-Hakimi algorithm requires quadratic

time to test the (0, 1, n)-regular sequences. Using the new concepts weight
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point and reserve we reduced the worst running time to O(n).
Let s = (s1, . . . , sn) be a potential graphical sequence. The definition of

the weight point wi belonging to si was introduced in [52] in connection with
Erdős-Gallai-Linear: if s1 ≥ i, then wi is the largest k (1 ≤ k ≤ n) having
the property sk ≥ i. But if s1 < i, then wi = 0. EGL exploits the property wi

ensuring that if i ≤ wi, then the key expression min j, sk in the Erdős-Gallai
theorem equals i, otherwise equals sk.
In HHL the weight point wi determines the increment of the tail capacity

when we switch to the investigation of the next element of s.
The reserve ri belonging to si is defined as the unused part of the actual

tail capacity and can be computed by the formulas

r1 = w1 − 1− s1 (15)

and
ri = wi + ri−1 − si for 2 ≤ i ≤ n− 1. (16)

Theorem 5 The running time of Havel-Hakimi-Linear is in best case
Θ(1), and in worst case it is Θ(n).

Proof. If the condition in line 1 or 3 holds, then the running time is Θ(1).
If not, then we decrease the actual w at most n times and the remaining
operations require O(1) operations for all reductions. �

2.2.2 Enumerating Erdős-Gallai algorithm (EGE)

A classical problem of the graph theory is the enumeration of the degree
sequences of different graphs—among others simple graphs. For example The
On-Line Encyclopedia of Integer Sequences [84] contains for n = 1, . . . , 30

vertices the number of degree sequences of simple graphs (the values for n =
20, . . . , 23 were set in July of 2011 by Nathann Cohen, in November 15, 2011
for 24, . . . , 29 and in 29 July of 2013 for n = 30 by us [48]).
We applied the new quick EGL to get these numbers for larger values of n.
Our starting point was to test all regular sequences and so to enumerate the

graphical ones. Equation 1 gives the number of regular sequences.
According to Erdős-Gallai theorem [32] the sum of the elements of a graph-

ical sequence is always even. Therefore it is sufficient to test only the even
sequences. In 1987 Ascher [2] derived Lemma 1, containing an explicit formula
for the number of even sequences E(n).
According to Lemma 2 it is enough to test only the zerofree even sequences.
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This lemma was the base of Erdős-Gallai Enumerative algorithm (EGE)
used to enumerate the graphical sequences for n = 23, . . . , 29 [51].
We enumerated the graphical sequences of simple graphs on n = 30 and 31

vertices using algorithm EGE2. The running time of EGE was substantially
(with about 30 %) decreased due to Lemma 9.
We prepare the enumeration of degree sequences of simple graphs on 32

vertices. The running time of EGE2 would be about 320 years for a computer
with one processor having 2,2 GHz speed. We wish to decrease the running
time of EGE2 using Lemmas 10 and 11.

2.3 Earlier simulation results

The papers [44, 45, 46, 51, 52, 66] and OEIS [64, 73, 74] contain many simu-
lation results. We describe them together with the new results in Subsection
3.3.
It is worth to mention other methods of enumeration of graph sequences as

generation of random graphs (e.g. [65] and generation of graphical partitions
(see e.g. [3, 4, 30, 33].

3 New results

In this section we describe the new mathematical and simulation results.

3.1 New enumerative results

At first we give a new formula for the number of zerofree even sequences.
This formula is more sophisticated than Ascher’s formula, and its application
requires more time, but it has the adventage that we can extend it to a formula
for Ez(n). Let s be an n-even sequence and let s ′ = (s ′1, . . . , s

′
n) be defined by

s ′i = si+n−i for i = 1, . . . , n. Then the number of different possible sequences
s is E(n) and the number of different sequences s ′ is R(n).
If j = 0, 1, 2, or 3 and n = 4k+ j, then let E(n) be denoted by E(k, j).

Lemma 6 If n ≥ 1 and n = 4k+ j, then

E(k, 0) =

2k−1∑
i=0

(
4k− 1

2i

)(
4k

4k− 2i

)
, (17)

E(k, 1) =

2k∑
i=0

(
4k

2i

)(
4k+ 1

4k− 2i+ 1

)
, (18)
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E(k, 2) =

2k∑
i=0

(
4k+ 1

2i+ 1

)(
4k+ 2

4k− 2i+ 1

)
, (19)

E(k, 3) =

k∑
i=0

(
4k+ 2

2i+ 1

)(
4k+ 3

4k− 2i+ 2

)
. (20)

Proof. Let
n∑
i=1

si = S(s) and
n∑
i=1

s ′i = S ′(s). (21)

According to the value of j we consider four cases. Since s is an even se-
quence, therefore S(s) is even in all cases.

1. If j = 0, then

S ′(s) = S(s) +

4k−1∑
i=0

i = S(s) + 2k(4k− 1), (22)

and so S(s ′) is also even, therefore it contains an even number of odd
elements. The interval [0, 8k − 2] contains 8k − 1 elements and among
them 4k even and 4k − 1 odd elements, so for s ′ we can choose 2i odd
elements from 4k− 1 candidates and 4k− 2i (i = 0, 1, . . . , 2k− 1) even
elements from 4k+ 1 candidates, so

E(k, 0) =

2k−1∑
i=0

(
4k− 1

2i

)(
4k

4k− 2i

)
. (23)

2. If j = 1, 2 or j = 3, then the proof is similar to the proof in the first
case.

�
For example let n = 4, then k = 1, j = 0 and

E(4) = E(1, 0) =

1∑
i=0

(
3

2i

)(
4

4− 2i

)
= 1 · 1+ 3 · 6 = 19. (24)

As another example let n = 6, then k = 1, j = 2 and

E(6) =

2∑
i=0

(
5

1

)(
6

3

)
+

(
5

5

)(
6

1

)
= 530+ 200+ 6 = 236. (25)
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Let the number of zerofree even sequences denoted by Ez(n). Let q =
(q1, . . . , qn) be a zerofree n-even sequence and let q ′ = (q ′

1, . . . , q
′
n) be defined

by q ′
i = qi + n − i for i = 1, . . . , n. Then the number of different possible

sequences q is Ez(n) and the number of different sequences q ′ is Rz(n).

Theorem 7 Let n = 4k + j for k = 0, 1, . . . and j = 0, 1, 2, 3, further let
Ez(n) be denoted by Ez(k, j). Then

Ez(k, 0) =

2k−1∑
i=0

(
4k− 1

2i

)(
4k− 1

4k− 2i

)
, (26)

Ez(k, 1) =

2k∑
i=0

(
4k

2i

)(
4k

4k− 2i+ 1

)
, (27)

Ez(k, 2) =

2k∑
i=0

(
4k+ 1

2i+ 1

)(
4k+ 1

4k− 2i+ 1

)
, (28)

Ez(k, 3) =

2k+1∑
i=0

(
4k+ 2

2i+ 1

)(
4k+ 2

4k− 2i+ 2

)
. (29)

Proof. Let
n∑
i=1

qi = Q(q) and

n∑
i=1

q ′
i = Q ′(q). (30)

According to the value of j we consider four cases. Since q is an even se-
quence, therefore Q(q) is alwys even.

1. If j = 0, then

Q ′(q) = Q(q) +

4k−1∑
i=0

i = Q(q) + 2k(4k− 1) (31)

is even, therefore the number of odd elements of q ′ is also even. The
interval [1, 8k−2] contains 8k−2 elements and among them 4k−1 even
and 4k− 1 odd elements, so for q ′ we can choose 2i odd elements from
4k − 1 candidates and 4k − 2i (i = 0, . . . , 2k − 1) even elements from
4k− 1 candidates, so we get (26).
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2. If j = 1, then

Q ′(q) = Q(q) +

4k∑
i=0

i = Q(q) + 2k(4k+ 1), (32)

is even, therefore the number of odd elements of q ′ is also even. The
interval [1, 8k] contains 8k elements and among them 4k odd and 4k even
elements, so for q ′ we can choose 2i odd elements from 4k candidates
and 4k − 2i + 1 (i = 0, . . . , 2k) even elements from 4k − 1 candidates,
so we get (27).

3. If j = 2, then

Q ′(q) = Q(q) +

4k+1∑
i=0

i = Q(q) + (2k+ 1)(4k+ 1) (33)

is odd, therefore the number of odd elements of q ′ is also odd. The
interval [1, 8k+2] contains 8k+2 elements and among them 4k+1 even
and 4k + 1 odd elements, so for q ′ we can choose 2i + 1 odd elements
from 4k+2 candidates and 4k−2i−1 (i = 0, . . . , 2k−1) even elements
from 4k+ 1 candidates, so we get (28).

4. If j = 3, then

Q ′(q) = Q(q) +
4k+2∑
i=0

i = Q(q) + (2k+ 1)(4k+ 3), (34)

and so Q(q ′) is also odd, therefore q ′ contains an odd number of odd
elements. The interval [1, 8k + 4] contains 8k + 4 elements and among
them 4k+2 even and 4k+2 odd elements, so for q ′ we can choose 2i+1

odd elements from 4k+ 2 candidates and 4k− 2i− 1 (i = 0, . . . , 2k− 1)
even elements from 4k+ 2 candidates, so

Ez(k, 3) =

2k+1∑
i=0

(
4k+ 2

2i+ 1

)(
4k+ 2

4k− 2i+ 2

)
. (35)

�
Table 1 shows the values of R(n)/R(n + 1), Rz(n)/Rz(n + 1), E(n)/R(n),

E(n)/E(n+ 1), Ez(n)/Ez(n+ 1), and Ez(n)/Rz(n) for n = 1, . . . , 32.
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n
R(n)

R(n+1)
Rz(n)

Rz(n+1)
E(n)
R(n)

E(n)
E(n+1)

Ez(n)
Ez(n+1)

Ez(n)
Rz(n)

1 0.333333 0.000000 1.00000000 0.000000 0.000000 − − −
2 0.300000 0.250000 0.66666667 0.500000 0.500000 1.000000

3 0.287714 0.266667 0.60000000 0.222220 0.222222 0.500000

4 0.277778 0.257857 0.487179 0.321427 0.321429 0.600000

5 0.270562 0.266667 0.523810 0.254545 0.254545 0.500000

6 0.269231 0.265151 0.510823 0.277778 0.277778 0.523810

7 0.266667 0.263736 0.505828 0.260698 0.260698 0.500000

8 0.264706 0.262500 0.502720 0.265559 0.265559 0.505828

9 0.263158 0.261437 0.501440 0.260687 0.260687 0.500000

10 0.261905 0.260526 0.500682 0.261276 0.261276 0.501440

11 0.260870 0.259740 0.500357 0.259555 0.259555 0.500000

12 0.260000 0.259058 0.500171 0.259243 0.259243 0.500357

13 0.259259 0.258461 0.500089 0.258415 0.258416 0.500000

14 0.258621 0.257937 0.500043 0.257982 0.257982 0.500089

15 0.258065 0.257471 0.500022 0.257460 0.257460 0.500000

16 0.257578 0.257056 0.500011 0.257068 0.257068 0.500022

17 0.257143 0.256684 0.500005 0.256682 0.256682 0.500000

18 0.256757 0.256349 0.500003 0.256352 0.256352 0.500006

19 0.256410 0.256046 0.500001 0.256045 0.256045 0.500000

20 0.256098 0.255769 0.500001 0.255770 0.255770 0.500001

21 0.255814 0.255517 0.50000034 0.255517 0.255517 0.500000

22 0.255556 0.255285 0.50000016 0.255286 0.255286 0.50000034

23 0.255319 0.255072 0.50000009 0.255072 0.255072 0.50000000

24 0.255102 0.254876 0.50000004 0.254876 0.254876 0.50000000

25 0.254902 0.254694 0.50000002 0.254694 0.254694 0.50000009

26 0.254717 0.254525 0.50000001 0.254525 0.254525 0.50000000

27 0.254545 0.254368 0.50000001 0.254368 0.254368 0.50000000

28 0.254386 0.254221 0.50000000 0.254221 0.254221 0.50000000

29 0.254237 0.254083 0.50000000 0.254083 0.254083 0.50000000

30 0.254098 0.253854 0.50000000 0.253955 0.253955 0.50000000

31 0.253968 0.253834 0.50000000 0.253834 0.253834 0.50000000

32 0.253846 0.253720 0.50000000 0.253720 0.253720 0.50000000

Table 1: The values of R(n)/R(n+1), Rz(n)/Rz(n+1), E(n)/R(n), E(n)/E(n+
1), Ez(n)/Ez(n+ 1), and Ez(n)/Rz(n) for n = 1, . . . , 32

It is remarkable that in R(101)/R(102) and Rz(101)/Rz(102) the first nine
decimal digits are equal.
For example let n = 4, then k = 1, j = 0 and

Ez(4) = Ez(1, 0) =

(
3

0

)(
3

4

)
+

(
3

2

)(
3

2

)
= 1 · 0+ 3 · 3 = 9. (36)

If n = 5, then k = 1, j = 1 and

Ez(5) =

(
4

0

)(
4

5

)
+

(
4

2

)(
4

3

)
+

(
4

4

)(
4

1

)
= 0+ 24+ 4 = 28. (37)
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If n = 6, then k = 1, j = 2 and

Ez(6) =

(
5

1

)(
5

5

)
+

(
5

3

)(
5

3

)
+

(
5

5

)(
5

1

)
= 5+ 100+ 5 = 110. (38)

If n = 7, then k = 1, j = 3 and

Ez(7) =

(
6

1

)(
6

6

)
+

(
6

3

)(
6

4

)
+

(
6

5

)(
6

2

)
= 6+ 300+ 90 = 396. (39)

If n = 8, then k = 2, j = 0 and

Ez(8) =

(
7

0

)(
7

8

)
+

(
7

2

)(
7

6

)
+

(
7

4

)(
7

4

)
+

(
7

6

)(
7

2

)
= 1519. (40)

Simulaton results in Table 1 show, that if 1 ≤ n ≤ 32 and n is odd, then
Ez(n)/Rz(n) = 0.5. This property is true for larger odd n’s too.

Lemma 8 If 1 ≤ k ≤ 600, then

Ez(2k− 1)

Rz(2k− 1)
= 0.5. (41)

Proof. See the computed values of Rz(n) and Ez(n) in [68]. �
Table 2 contains the ratios Ez(n)/Gz(n) for n = 23, . . . , 29 and the ratios

T(n)/Gz(n) for n = 30 and n = 31.
The data in Table 2 show that the function Gz/Ez) is decreasing. We suppose

that this function tends monotonically decreasing to zero when n tends to
infinity (in a similar way as the function G(n)/E(n) tends to zero according
to Corollary 23 [52, page 260].
Table 3 contains the values of Gz(n), T(n), and Gz(n)/T(n) for n = 30 and

n = 31: the ratio of the graphical and tested sequences is much higher and
these ratios are increasing. These changes are dut to the fact that EGE2 jumps
many nongraphical zerofree ebven sequences withous testing them.

3.2 New algorithmic results

Using the following Lemma 9 later we will further fasten EGE.
If b = (b1, . . . , bn) is a regular sequence, then c = (c1, . . . , cn) is called

lexicographically i-smaller, than b if there exist indices i and j such that

1 ≤ i < j <≤ n, (42)
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n Gz(n) Ez(n) Gz(n)/Ez(n)

17 130 038 230 282 861 360 0.459724

18 499 753 855 1 101 992 870 0.453500

19 1 924 912 894 4 298 748 300 0.447784

20 7 429 160 296 16 789 046 494 0.442500

21 28 723 877 732 65 641 204 200 0.437589

22 111 236 423 288 256 895 980 068 0.433002

23 431 403 470 222 1 006 308 200 040 0.428699

24 1 675 316 535 350 3 945 186 233 014 0.424648

25 6 513 837 679 610 15 478 849 767 888 0.420821

26 25 354 842 100 894 60 774 332 618 300 0.417197

27 98 794 053 269 694 238 775 589 937 976 0.413752

28 385 312 558 571 890 938 702 947 395 204 0.410473

29 1 504 105 116 253 904 3 692 471 324 505 040 0.407344

30 5 876 236 938 019 300 14 532 512 180 224 216 0.404351

31 22 974 847 474 172 100 57 224 797 531 384 560 0.400148

Table 2: The values of Gz(n), Ez(n), and Gz(n)/Ez(n) for n = 17, . . . , 31

n Gz(n) T(n) Gz(n)/T(n)

31 5 876 236 938 019 300 6 790 865 476 867 340 86, 531487

32 22 974 847 471 172 100 26 507 499 250 791 700 86, 673010

Table 3: The values of Gz(n), T(n), and Gz(n)/T(n) for n = 30 and n = 31

further

ck = bk for k = 1, . . . , i, (43)

and
n∑

k=i+1

ck ≤
n∑

k=i+1

bk. (44)

Lemma 9 If b = (b1, . . . , bn) and is a nongraphical sequence and c = (c1, . . . , cn)
is lexicographically i-smaller than b for some i (1 ≤ i < n, then c is also
graphical.

Proof. See [54]. �
Using this lemma the running time of EGLJ decreased substantially. It was

very useful when we enumerated the edge sequences of the simple graphs on
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30 vertices between June 21 and 18 July of 2013 and on 31 vertices between
18 July and 24 August (the results see in Table 4).
Using the results of Tripathi and Vijay [52, Lemma 6 and Theorem 7] we can

substantially decrease the average testing time of the zerofree even sequences.
It is known that the expected number of checking points proposed by Tripathi
and Vijay is about n/2 [52].
Algorithm EGE2 [51, pages 274–277] used in the enumerations for n = 30

and n = 31 vertices is based on Lemma 9.
We develop algorithm EGE3 for the enumeration of the degree sequences in

the case of 32 vertices. EGE3 will be based on Lemmas 10 and 11.

Lemma 10 If the investigated by EG3 sequence is graphical and has the form
b = bc1

i1
bc2
i2

and the upper bound c1(c1−1) of the inner capacity of the c1-length
head of b covers Hn, that is if

c1(c1 − 1) ≥ Hn (45)

then all sequences starting with bc1
1 are graphical.

Proof. See [54]. �
The next lemma allows to enumerate many graphical sequences without

their time consuming testing.

Lemma 11 If the investigated by EG3 graphical sequence has the form b =
bc1
1 bc2

2 . . . b
cp
p 1cp+1, where p ≥ 1, b1 > b2 > · · · > bp ≥ 3, c1, . . . , cp+1 ≥ 1,

then all zerofree even sequences starting with the prefix

bc1
1 bc2

2 . . . b
cp−1

p−1 b
cp−1
p (bp − 1)

are also graphical.

Proof. See [54]. �

3.3 New simulation results

Table 4 contains the values of Gz(n) and G(n) for n = 1, . . . , 31. The values
for n = 1, . . . , 9 were computed by E. Weisstein, for n = 10, . . . , 20 by G.
Royle in 2006, for n = 21, 22 and n = 23 by F. Ruskey in 2006, for n =
24, . . . , 29 by T. Matuszka in January of 2013, for n = 30 by L. Lucz in July
of 2013 and for n = 31 also by L. Lucz in September of 2013 [48, 50, 51, 52, 79].
Column 4 of Table 4 supports the following conjecture formulated by Gordon

Royle in 2012.
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Conjecture 12 (Royle, 2012). If n tends to infinity, then Gz(n + 1)/Gz(n)
tends to 4.

We think, that the following conjecture is also true.

Conjecture 13 If n tends to infinity, then G(n+ 1)/G(n) tends to 4.

We observed that when we enumerated these sequences, that in the case
n = 30 vertices 85.40 percent, while in the case n = 31 vertices 86.67 percent
of the investigated potential degree sequences was graphical. Therefore it is
useful if we know without a linear time testing that a given tested sequence is
graphical.
Figure 1 shows the number of the tested and the graphical sequences as the

function of the index of the slices when n = 30.

Figure 1: The number of tested (trimmed even) sequences and the number of
graphical sequences as the function of the index of slices when n = 30

Figure 2 shows the similar data for n = 31.
We remark that on the site of the journal the Figures 1 and 2 are color (the

graphical sequences are represented by red, while the tested sequences by blue
color).
Table 5 contains the data of PC’s used for the enumeration of Gz(31), where

Comp. alg. = Computer Algebra, Prog. lang. = Program languages, Core =
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n Gz(n) G(n) Gz(n+1)
Gz(n)

G(n+1)
G(n)

1 0 1 0.000000 0.500000

2 1 2 0.500000 0.500000

3 2 4 3.500000 3.750000

4 7 11 2.857143 2.818182

5 20 31 3.550000 3.290323

6 71 102 3.380282 3.352941

7 240 342 3.629167 3.546784

8 871 1 213 3.614237 3.595218

9 3 148 4 361 3.702351 3.672552

10 11 655 16 016 3.717889 3.705544

11 43 332 59 348 3.756323 3.742620

12 162 769 222 117 3.773434 3.786674

13 614 198 836 315 3.794439 3.802710

14 2 330 537 3 166 852 3.808465 3.817067

15 8 875 768 12 042 620 3.822189 3.828918

16 33 924 859 45 967 479 3.833125 3.839418

17 130 038 230 176 005 709 3.843130 3.848517

18 499 753 855 675 759 564 3.851172 3.856630

19 1 924 912 894 2 600 672 458 3.859479 3.863844

20 7 429 160 296 10 029 832 754 3.866369 3.870343

21 28 723 877 732 38 753 710 486 3.872612 3.876212

22 111 236 423 288 149 990 133 774 3.878257 3.881553

23 431 403 470 222 581 393 603 996 3.883410 3.886431

24 1 675 316 535 350 2 256 710 139 346 3.888124 3.890907

25 6 513 837, 679 610 8 770 547 818 956 3.894458 3.895031

26 25 354 842 100 894 34 125 389 919 850 3.895503 3.897978

27 98 794 053 269 694 132 919 443 189 544 3.900159 3.898843

28 385 312 558 571 890 518 232 001 761 434 3.903597 3.902238

29 1 504 105 116 253 904 2 022 337 118 015 338 3.906814 3.905666

30 5 876 236 938 019 300 7 898 574 056 034 638 3.909789 3.908734

31 22 974 847 474 172 100 30 873 429 530 206 738 −−− −−−

Table 4: The number Gz(n) of zerofree graphical sequences and the number
G(n) of graphical sequences for n = 1, . . . , 31, further the ratiosGz(n)/Gz(n+
1) and G(n)/G(n+ 1) for n = 1, . . . , 30

Core(TM)Kása 1 = Z. Kása (Cluj), Kása 2 = Z. Kása (Tg.-Mureś), Kása 3 =
Z. Kása // (Tg.-Mureś), Sp1 = Speed of a machine in GHz, Sp2 = Speed of
the laboratory in GFLOPS, Intel (R) = Intel (R) Xeon (R).
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Figure 2: The number of tested (trimmed even) sequences and the number of
graphical sequences as the function of the index of slices when n = 31

The total number of machines was 350.
Table 6 contains the algorithms, running times and number of jobs in the

case n = 25, . . . , 31.

3.4 The growth of the functions R(n), E(n), Rz(n), Ez(n), G(n)
and Gz(n)

In this subsection we present concrete values of the functions characterizing
the sizes of the investigated sets of sequences.
The number R(n) of the regular sequences is presented in Figure 1 of [52]

for n = 1, . . . , 38 and up to n = 1200 in [47].
The values of the zerofree regular Rz(n) can be quickly computed using

formula (22) in [47]. The values for n = 1, . . . , 1200 can be found in [68].
The number E(n) of even sequences is presented in Figure 1 of [52] for

n = 1, . . . , 38 and up to 1000 in [49] and up to n = 1200 in [68].
The number Ez(n) of the zerofree even sequences is contained in Figure 3

of [52] for n = 1, . . . , 20 (these data are the results of brute force simulation)
and up to n = 1200 in [68].
The order of growth of these functions is Θ(4n/n).
According to theorem of Burns [22, 52] the order of growth of G(n) is smaller

(see 12).
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Laboratory Number Type Sp1 Sp2

Central 87 Core 2 Duo 2.93 2041
Comp. algebra 13 Core 2 Duo 2.13 403
Data base 34 Core 2 Duo 3.25 1631
Graphical 16 Core 2 Quad 2.33 597
Prog. lang. 54 Core 4 Duo 3.25 6621
PC1 20 Core i5-2320 3.00 1920
PC3 28 Core i3-2100 3.10 1389
PC4 19 Core 2 Duo 2.93 446
PC5 19 Core 4 Duo 2.93 446
PC6 18 Core 2 Quad 2,33 672
PC7 18 Core 2 Quad 2.40 691
PC9 19 Core 2 Quad 2.66 810
Server 1 Core i5 650 3.20 26

Kása 1 1 AMD K7 0.75 8
Kása 2 1 Intel (R) 3.00 50
Kása 3 1 Intel (R) 2.13 23

P. Ősze 1 Core 4 Duo 2.20 37

Total 350 17811

Table 5: Names of laboratories, number of machines, type of machines, speed
of machines in GHz, speed of laboratories in GLOPS, used in the case n = 31

The known values of G(n) and Gz(n) are summarized in Table 4.

3.5 Further plans

Our new program (EGE3) is able to jump the test of some part of zerofree
graphical sequences [54]. Due to this property of the new program EGE3 the
number of tested sequences is smaller than the number of zerofree graphical
ones (see Table 7).

4 Summary

The log files and source codes of our programs can be found at

http://people.inf.elte.hu/lulsaai/Holzhacker .
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n Algorithm Running time Running time Number of jobs
(in days) (in years)

25 EGE 26 0.0712 435
26 EGE 70 0.1918 435
27 EGE 316 0.8657 435
28 EGE 1 130 3.0959 2 001
29 EGE 6 733 18.4466 15 119

30 EGE2 7 221 19.7835 351 155

31 EGE2 32 702 89.5954 448 957

Table 6: Number of vertices, used algorithm, total running time (in days and
in years) and number of jobs

n T(n) Gz(n)

3 3 2
4 8 7
5 24 20
6 77 71
7 245 240
8 852 871
9 2991 3148
10 10807 11655
11 39407 43332
12 145673 162769
13 542531 614198
14 2036196 2330537
15 7684164 8875768
16 29143362 33924859
17 110973050 130038230
18 424055902 499753855
19 1625265958 1924912894
20 6245498873 7429160296

Table 7: Number of vertices (n), number of tested sequences (T(n)) and num-
ber of zerofree graphical sequences (Gz(n))
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and Tg.-Mureś) and for Péter Ősze (Ustream Hungary Kft.) for running the
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[47] A. Iványi, L. Lucz, G. Gombos, T. Matuszka C(2n + 1, n + 1): number of ways
to put n+ 1 indistinguishable balls into n+ 1 distinguishable boxes = number of
(n+ 1)-st degree monomials in n+ 1 variables = number of monotone maps from
1 . . n + 1 to 1 . . n + 1, in (ed. N. J. A. Sloane): The On-Line Encyclopedia of
the Integer Sequences. 2013. http://oeis.org/A001700. ⇒247, 262
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