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Abstract. We consider in this paper the basis finite automaton and its
some properties. We shall also consider some properties of special binary
relation defined on the sets of states of canonical automata for the given
language and for its mirror image. We shall also consider an algorithm
of constructing the basis automaton defining the language which has a
priory given variant of this relation.

1 Introduction

The basis automaton for the given regular language was firstly defined in [11].
And in [6], we considered an extension of the basis automaton, which can
describe all the possible labels of inputs, outputs and loops for any state of
any nondeterministic automaton defining the given language.
The basis automaton can be considered as a complete invariant of regular

language, like automaton of canonical form and Conway’s universal automaton
([2, 5]). But using the basis automaton, we can formulate some properties of
regular language; using other formalisms, these properties could be formulated
in a more complicated way. Some of such properties were already considered
in [8, 9, 11].
In this paper, we shall consider some other such properties and some exam-

ples for them. Among other things, we shall consider some properties of special
binary relation defined on the sets of states of two canonical automata: for the
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given language and for its mirror image. We shall also consider an algorithm of
constructing the basis automaton defining the language, for which there holds
the a priory given variant of this relation.

2 Preliminaries

We shall use the notation and preliminaries of [6, 7]. Let us repeat the main
ones for the ease of reading.
We shall consider nondeterministic finite automaton

K = (Q,Σ, δ, S, F ) (1)

without ε-edges, i.e., we consider transition function δ of automaton (1) as

δ : Q× Σ → P(Q) .

Its language will be denoted by L(K); unless other fact is formulated, we shall
suppose that L(K) = L.
The input language of the state q ∈ Q, i.e., the language of automaton

(Q,Σ, δ, S, {q}), will be denoted by LinK (q). Similarly, the output language of
the state q ∈ Q, i.e., the language of automaton (Q,Σ, δ, {q}, F), will be denoted
by LoutK (q).

L̃ is the canonical automaton defining L, without the useless (“dead”) state.

Let automata L̃ and L̃R for the given language L be as follows:

L̃ = (Qπ, Σ, δπ, {sπ}, Fπ) and L̃R = (Qρ, Σ, δρ, {sρ}, Fρ)

(where π and ρ are indexes which indicate languages of two canonical au-
tomata, i.e., languages L and LR respectively).
Binary relation # ⊆ Qπ × Qρ is defined in the following way. For some

states A ∈ Qπ and X ∈ Qρ, condition A#X holds if and only if there exist

some words u ∈ Lin
˜L
(A) and v ∈ Lout

˜LR
(X), such that uvR ∈ L(K). In [7], we

considered a simple algorithm for constructing this relation.
Also in [6, 8, 7], we considered state-marking functions ϕin and ϕout for

automaton (1); those are the function of the type

ϕin
K : Q → P(Qπ) and ϕout

K : Q → P(Qρ)

defined in the following way. We set ϕin
K (q) � A (where q ∈ Q and A ∈ Qπ)

if and only if

(∃u ∈ Σ∗) (u ∈ LinK (q)&u ∈ Lin
˜L
(A)) , i.e., LinK (q) ∩ Lin

˜L
(A) �= �o .
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Similarly, we set ϕout
K (q) � X (where q ∈ Q and X ∈ Qρ) if and only if

(
LoutK (q)

)R
∩ Lin

˜LR
(X) �= �o .

A simple algorithm for constructing these functions was also given in [7].
For language L defined by automaton (1), we define the equivalent basis

automaton BA(L); in this paper, we use the version of its definition of [6].
Thus, for the given regular language L, this automaton will be denoted by

BA(L) = (Q̂, Σ, δ̂, Ŝ, F̂ ), (2)

where 1:

• Q̂ is the set of pairs of the type A
X , such that A ∈ Qπ, X ∈ Qρ and A#X;

• transition function δ̂ is defined in the following way: for each A
X ,

B
Y ∈ Q̂

and a ∈ Σ, we have A
X

a−→̂
δ

B
Y if and only if A

a−→
δπ

B and Y
a−→
δρ

X;

• Ŝ =
{

sπ
X

∣∣∣ sπ#X
}
;

• similarly, F̂ =
{

A
sρ

∣∣∣A#sρ

}
.

Thus, we can think that considering the given regular language L, we also
have notation for its:

• two automata of canonical form (i.e., L̃ and L̃R), and also their states,
transition functionc etc;

• binary relation #;

• state-marking functions ϕin and ϕout;

• basis automaton BA(L).

We also shall sometimes consider automaton (L̃R)R which also defines language
L.

1 See [7] for some more details, e.g., for binary relation #.
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3 The correctness of the definition BA(L):
the complete proof

As we said before, the definition of the basis automaton was firstly given in
[11], we use the equivalent definition of [6]. Also in [11], there was given the
proof of the correctness of that definition. But that proof was incomplete: in
fact, we have proved only that each word of the given language can be accepted
by automaton BA(L). In this section, we consider the complete version of this
proof. This complete version will be also used in Section 7.

Proposition 1 L
(
BA(L)

)
= L.

Proof. We shall prove the equivalence of automata L̃ and BA(L).
1. Firstly, let us consider some word u ∈ L, i.e., u ∈ L(L̃). Then uR ∈ LR,

i.e., uR ∈ L(L̃R). Let |u| = n.
Let the accepting of the word u by automaton L̃ is the following sequence

of transitions beginning (the only) initial state sπ:

p0=sπ, p1, p2, . . . , pn−2, pn−1, fπ=pn , (3)

where pi ∈ Qπ for each i ∈ { 1, . . . , n−1 } (i.e., each pi is some state of au-
tomaton L̃), and fπ ∈ Fπ (i.e., fπ is some final state of automaton L̃). Because
L̃ is deterministic automaton, sequence (3) is the (unique) accepting run of L̃
on u.
Similarly, automaton L̃R reading letters of the word uR has the following

sequence of transitions:

r0=sρ, r1, r2, . . . , rn−2, rn−1, fρ = rn (4)

(where ri ∈ Qρ for each i ∈ { 1, . . . , n−1 }, and fρ ∈ Fρ); as before, sρ is the
only initial state. Sequence (4) is also defined by the given word u (or uR) in
the only way. The numbers of elements of the sequences (3) and (4) are the

same; they are equal to n+ 1. The sequence of transitions for automata L̃, L̃R

and (L̃R)R reading words u and uR is shown on the following diagram:

L̃ : sπ −→ p1 −→ p2 . . . pn−2 −→ pn−1 −→ fπ
a1 a2 . . . an−1 an

fρ ←− rn−1 ←− rn−2 . . . r2 ←− r1 ←− sρ : L̃R

(L̃R)R : fρ −→ rn−1 −→ rn−2 . . . r2 −→ r1 −→ sρ
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Let us rewrite the sequence (4) in the reverse order:

fρ, rn−1, rn−2, . . . , r2, r1, sρ , (5)

then let us combine elements of (3) and (5) in the following sequence of the
pairs:

sπ

fρ
,

p1

rn−1
,

p2

rn−2
, . . . ,

pn−2

r2
,

pn−1

r1
,

fπ

sρ
.

By the definition of relation #, each pair of this sequence can be considered
as a state of automaton BA(L), because for each such pair (let it be qi

rn−i
), we

can write a word of L (i.e., the given word u) by u = vw, where

v = a1 . . . ai ∈ Lin
˜L
(pi) and w = ai+1 . . . an ∈

(
Lin

˜LR
(rn−i)

)R
.

Besides, by definition of BA(L), state sπ
fρ

belongs to Ŝ (the set of initial states

of automaton BA(L)), and state fπ
sρ

belongs to F̂ (the set of final states). And

for each i ∈ { 0, . . . , n−1 }, we have

pi

rn−i

ai−→
BA(L)

pi+1

rn−(i+1)

by definition of BA(L). Therefore L ⊆ L
(
BA(L)

)
.

2. Secondly, let us consider some word u ∈ L
(
BA(L)

)
. Let also |u| = n, and

u = a1a2 . . . an. Then for BA(L) and u, we can write the following sequence of
transitions:
p0

rn

a1−→
BA(L)

p1

rn−1

a2−→
BA(L)

p2

rn−2
. . .

pn−2

r2

an−1−→
BA(L)

pn−1

r1

an−→
BA(L)

pn

r0
. (6)

By definition of BA(L) we obtain, that p0 = sπ, and also

pi
ai+1−→̃
L

pi+1 for each i ∈ { 0, . . . , n−1 } .

We have to prove, that pn ∈ Fπ.
Let pn /∈ Fπ. By definition of relation # (see [7]) and pair pn

r0
for it, there

exists a word u ′ ∈ L, such that u ′ = vw, where

v ∈ Lin
˜L
(pn) and wR ∈ Lin

˜LR
(r0) .

By (6), we can think that v = u; then uw ∈ L, and therefore uR ∈ Lout
˜LR

(r0).

Then (because ε ∈ Lin
˜LR
(r0) and automaton L̃R is deterministic) uR ∈ LR,

therefore u ∈ L.
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4 Some properties of the state-marking functions

In this section we consider some properties of the state-marking functions.
They were formulated in [10], and afterwards were used in some other our
papers. In this section we shall prove them without other facts, i.e., using the
definitions only. All these properties combine in the common expressions the
values of input and output languages of the states (i.e., of Lin and Lout, see
[7]):

• of any nondeterministic finite automaton K defining considered regular
language;

• of canonical automata for languages L(K) and L(KR).

It is important to remark, that by following Propositions 6 and 7, correspond-
ing languages are also input and output languages of the states of the equiv-
alent basis automaton.
The first proposition of this section formulates the sufficient condition of the

given word: whether or not it belongs to the corresponding output language.

Proposition 2 LoutK (q) ⊆
⋃

q̃∈ϕinK (q)

Lout
˜L

(q̃) .

Proof. Let for some word v and state of canonical automaton q̃ ∈ ϕin
K (q)

condition v /∈ Lout
˜L

(q̃) holds. Then we prove, that v /∈ LoutK (q).
Consider some word

u ∈ LinK (q) ∩ Lin
˜L
(q̃) ;

such a word u exists by definition of the function ϕin. Automaton L̃ is deter-
ministic, then uv /∈ L(K). Therefore, condition v ∈ LinK (q), which is equivalent

to uv ∈ L(K), contradicts the equality L(L̃) = L(K).

The “mirror” fact is the following

Proposition 3

LinK (q) ⊆
( ⋂

q̃∈ϕoutK (q)

Lout
˜LR

(q̃)
)R

.

In the two following propositions we consider subsets of some language using
output languages of the states.
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Proposition 4

LinK (q) ·
( ⋂

q̃∈ϕinK (q)

Lout
˜L

(q̃)
)
⊆ L(K) .

Proof. Consider any word u ∈ LinK (q). By definition of function ϕin, for

some state q̃ ∈ ϕin
K (q), the word u belongs to the language Lin

˜L
(q̃). For each

word
v ∈

⋂
q̃∈ϕinK (q)

Lout
˜L

(q̃) ,

condition v ∈ Lout
˜L

(q̃) holds. Therefore,

uv ∈ Lin
˜L
(q̃) · Lout

˜L
(q̃) ⊆ L(L̃) = L(K) ,

and the last condition proves the proposition.

The “mirror” fact is the following

Proposition 5 ( ⋂
q̃∈ϕoutK (q)

Lout
˜LR

(q̃)
)R

· LoutK (q) ⊆ L(K) .

5 The first example

In this section, we shall consider an example for Proposition 4. For this thing,
we shall use the automaton considered in detail in [7, Sect. 3].
For the ease of reading, let us give this figure once again (Fig. 1). And the

equivalent canonical automaton (i.e., L̃) is given on Fig. 2.
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For automaton on Fig. 1, we shall consider state 3. By simple definitions of
[7], input language of this state can be defined by the following automaton of
Fig. 3:
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b


a

Figure 3

Then it can also be defined by regular expression

a(b+ ba)∗. (7)

For state 3, this language is the first factor of condition of Proposition 4.
By [7, Sect. 3], ϕin

K (3) = {B,C,D}. There is evident, that Lout
˜L

(C) = Σ∗.

Then we have to define the intersection of languages Lout
˜L

(B) and Lout
˜L

(D).
The automaton defining language of their intersection is shown on the fol-

lowing Fig. 4. It can be simply constructed using (deterministic) automaton
of Fig. 2. E.g., the (initial) state marked B∩D symbolized the intersection of
languages Lout

˜L
(B) and Lout

˜L
(D). We have

B
b−→̃
L

D and D
b−→̃
L

C ,

then in constructed automaton, we have B ∩D
b−→C ∩D, etc.
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The language of this automaton can also be defined be regular expression

ε+ b(ab)∗(a+ ε+ b(a+ b)∗)) .

Then considering the last expression and (7), we obtain, that each word defined
by the following expression

a(b+ ba)∗ · (ε+ b(ab)∗(a+ ε+ b(a+ b)∗)))

belongs to L.
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6 Input and output languages
of the states of the basis automaton

In this section we consider properties of input and output languages of the
states of the basis automaton; these properties also can be called by the prop-
erties of the table of binary relation #. Those are properties, which combine:

• input and output languages of the basis automaton;

• and also input and output languages of two canonical automata (i.e., of

automata L̃ and L̃R).

The canonical automaton L̃R contains no more than 2m−1 states (where m

is the number of states of automaton L̃). 2 Then we can limit by this value the
number of possible columns of the table of binary relation #, which has m

rows. Besides, this table cannot have duplicate rows and duplicate columns.
The next propositions 6–9 are proved by the definition of the basis automa-

ton.

Proposition 6 Let there are given some regular language L and some state

A ∈ Qπ of automaton L̃. Then for each state X of automaton L̃R, such that
A#X, the following condition holds:

LinBA(L)(
A
X ) = Lin

˜L
(A).

Proof. Condition
LinBA(L)(

A
X ) ⊆ Lin

˜L
(A)

is the direct consequence of the definition of automaton BA(L). Let us prove
the reverse inclusion

Lin
˜L
(A) ⊆ LinBA(L)(

A
X ),

i.e., that for every word w ∈ Σ∗, the following fact holds:

w ∈ Lin
˜L
(A) implies w ∈ LinBA(L)(

A
X ).

We shall prove this fact by induction by |w|.
The basis of induction (i.e., w = ε) is evident, because if ε ∈ LinBA(L)(

A
X ) then

ε ∈ Lin
˜L
(A). Then let us prove the step of induction.

2 Remark once again, that we consider canonical automaton without possible “dead”
state.
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Let w = w ′a, where w ′ ∈ Σ∗ and a ∈ Σ; let also w ∈ Lin
˜L
(A). Because

A#X, there exist words u, v ∈ Σ∗, such that

uv ∈ L , u ∈ Lin
˜L
(A) and vR ∈ Lin

˜LR
(X).

Because w also belongs to the language Lin
˜L
(A), we obtain, that wv ∈ L, i.e.,

w ′av ∈ L. Let also:

• B be some state of automaton L̃, such that w ′ ∈ Lin
˜L
(B);

• Y be some state of automaton L̃R, such that vRa ∈ Lin
˜LR
(Y);

both the states (B and Y) do exist, because w ′av ∈ L. Then B#Y, and, by the
induction hypothesis, w ′ ∈ LinBA(L)((B, Y)). And using the fact δT ((B, Y), a) �
A
X , we obtain that w ∈ LinBA(L)(

A
X ).

The “mirror” fact is the following

Proposition 7 Let there are given some regular language L and some state

X ∈ Qρ of automaton L̃R. Then for each state A of automaton L̃, the following
condition holds:

LoutBA(L)(
A
X ) =

(
Lin

˜LR
(X)

)R
= Lout

(˜LR)R
(X).

Proposition 8 Let there is given some regular language L. Then for each
state A ∈ Qπ of automaton L̃, the following condition holds:

Lout
˜L

(A) =
⋃

X∈Qπ

LoutBA(L)

(
A
X

)
.

Proof. Consider some word uv ∈ L, such that

u ∈ Lin
˜L
(A) and v ∈ Lout

˜L
(A).

By [11] (and also by consequence of the proof of Proposition 1), automaton
BA(L) has the only accepting path for the word uv, and for some x ∈ Qρ the
following conditions hold:

u ∈ LinBA(L)(
A
X ) and v ∈ LoutBA(L)(

A
X ).
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Then combining all the possible v, we obtain, that

Lout
˜L

(A) ⊆
⋃

X∈Qπ

LoutBA(L)

(
A
X

)
.

The reverse inclusion, i.e., that
⋃

X∈Qπ

LoutBA(L)

(
A
X

)
⊆ Lout

˜L
(A),

is evident.

The “mirror” fact is the following

Proposition 9 Let there is given some regular language L. Then for each

state X ∈ Qρ of automaton L̃R, the following condition holds:

(
Lout

˜LR
(X)

)R
= Lin

(˜LR)R
(X) =

⋃
A∈Qρ

LinBA(L)

(
A
X

)
.

Proposition 10 Let canonical automaton L̃ for the given regular language L

has at least 2 states, and A,B ∈ Qπ is a pair of such states. Then there exists

a state X ∈ Qρ of automaton L̃R, such that automaton BA(L) contains exactly
one state of the following 2 ones: A

X and B
X .

Proof. This proposition can be considered as a consequence of the classical
algorithm of constructing of canonical automaton (which includes imperative
combining equivalent states) and also [7, Th. 4.1].

The “mirror” fact is the following

Proposition 11 Let canonical automaton L̃R for the mirror image of the
given regular language L has at least 2 states, and X, Y ∈ Qρ is a pair of

such states. Then there exists a state A ∈ Qπ of automaton L̃, such that au-
tomaton BA(L) contains exactly one state of the following 2 ones: A

X and A
Y .

Two the following propositions (we briefly talked about them at the begin-
ning of this section) are the direct consequences of two previous propositions.
They formulate facts about the possible size of the table of binary relation #
for the given regular language.
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Proposition 12 Let regular language L be given, and automaton L̃ contains

exactly n states (i.e., |Qπ| = m). Then automaton L̃R contains no more than
2m−1 states (i.e., |Qρ| ≤ 2m−1).

Proposition 13 Let regular language L be given, and automaton L̃R contains
exactly n states (i.e., |Qρ| = n). Then automaton L̃ contains no more than
2n−1 states (i.e., |Qπ| ≤ 2n−1).

In the next section we shall obtain, that such maximums (i.e., the values
2m−1 and 2n−1) can be achieved.

7 On the possible set of the states
of the basis automaton

In this section we shall formulate some properties for all the possible states
of a basis automaton (or, in other words, all the possible variants of binary
relation #). We shall obtain, that if there hold all the limitations formulated
in previous section for the table of the binary relation #, then such table can
really describe such relation for some regular language. Besides, such proof is
constructive, i.e., we obtain an algorithm of constructing the basis automaton
for regular language having such table of a priori given binary relation #.

Proposition 14 Let binary relation # be given, and for it, all the limita-
tions formulated before hold. 3 Then there exists a regular language, for which
corresponding binary relation # coincides with the given one.

Proof. Thus, we think, that the sets of states Qπ (where |Qπ| = m) and
Qρ (where |Qρ| = n) are already given. Binary relation # ⊆ Qπ ×Qρ is also
given. These objects satisfy all the limitations formulated before.

3 Let us formulate them once again, for the table of #. Let |Qπ| = m and |Qρ| = n. Then:

• 1 ≤ m ≤ 2n−1;

• 1 ≤ n ≤ 2m−1;

• there are no duplicate rows;

• there are no duplicate columns;

• there are no empty rows (i.e., there are no row A, such that A#X holds for none
column X);

• there are no empty columns.
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Consider the following alphabet:

Σ# =
{
a

A
X

∣∣∣A ∈ Qπ, X ∈ Qρ

}
.

Over this alphabet, consider the arbitrary states sπ ∈ Qπ and sρ ∈ Qρ. For
them, consider following automaton

K#sπsρ = (Qπ, Σ#, δπ, {sπ}, Fπ )

(or, briefly, K#, when sπ and sρ are meant), where:

• Fπ = { fπ ∈ Qπ | fπ#sρ };
4

• transition function δπ is defined in the following way:

for each A,B ∈ Qπ and X ∈ Qρ , δπ(A,a
B

X

) =

{
{B}, if A#X ;

�o, otherwise

(we allow for the possibility A = B).

Let us prove that the language L(K#) is the desired one.
By the construction, automaton L(K#) is deterministic. The conditions of

Proposition 10 hold, because we made automaton using relation corresponding
#; therefore automaton K# has no pairs of equivalent states. Also by the
construction, the transition graph of is automaton is strongly connected ([3]);
then it contains no useless states. Therefore, automaton K# is canonical (for
its language), i.e.,

for the language L# = L(K#) , we have K# = L̃# .

Over the same alphabet Σ#, consider also automaton

K#sπsρ = (Qρ, Σ#, δρ, {sρ}, Fρ )

(or, briefly, K#, when sπ and sρ are meant), where:

• Fρ = { fρ ∈ Qπ | sπ#fρ };

4 Such a choice is possible, because of limitations formulated before. Remark also, that
choosing various sπ ∈ Qπ and sρ ∈ Qρ, we obtain a set of languages having the given binary
relation #.



240 B. Melnikov, A. Melnikova

• transition function δρ is defined in the following way:

for each B ∈ Qπ and X, Y ∈ Qρ , δρ(Y, a B
X

) =

{
{X}, if B#Y ;

�o, otherwise

(we allow for the possibility X = Y).

Like automaton K# we can prove, that automaton K# is canonical (for its

language), i.e., for the language L# = L(K#), we have K# = L̃#.
Let us prove, that L# = (L#)R. For this thing, consider any word u ∈ L#.

Let
u = a

A1
X1

a
A2
X2

. . . a
Ak
Xk

.

Then we can write the following sequence of transitions of canonical automaton

K# = L̃# while readind the word u:

sπ

a
A1
X1−→
K#

A1

a
A2
X2−→
K#

A2 . . . Ak−1

a
Ak
Xk−→
K#

Ak , where Ak ∈ Fπ .

Since Ak ∈ Fπ, we have Ak#sρ. Then for this sequence, we can construct the

following sequence of transitions of automaton K# = L̃#:

sρ

a
Ak
Xk−→
K#

Xk−1 . . . X2

a
A2
X2−→
K#

X1

a
A1
X1−→
K#

X0

for the sequence of states Xk−1, . . . , X2, X1 selected before and some new state
X0. Like the proof of Proposition 1, we obtain that X0 ∈ Fρ.
We proved that L# ⊆ (L#)

R. The reverse inclusion, i.e., (L#)
R ⊆ L#, can be

proved similarly.
Thus, automata K# and K# are canonical automata for the languages L#

and (L#)R = L#. Then for them, we can construct the following basis automa-
ton

BA(L#) = ( T , Σ#, δT , ST , FT ),

(over the alphabet Σ# defined before), where:

• T =
{

A
X

∣∣∣A ∈ Qπ, X ∈ Qρ, A#X
}
;

• for each A,B ∈ Qπ and X ∈ Qρ, such that A#X (we admit the possibility
of A = B), we set

δT

(
A
X , a B

X

)
=

{
B
Y

∣∣∣ (∃Y ∈ Qρ) (B#Y)
}
;
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• for each other cases a ∈ Σ#,
5 A,B ∈ Qπ and X, Y ∈ Qρ, we set

δT (
A
X , a) = �o ;

• ST =
{

sπ
X

∣∣∣ sπ#X
}
;

• ST =
{

A
sρ

∣∣∣A#sρ

}
;

(where the states sπ and sρ were also previously selected). This automaton
is BA(L#) by the process of its constructing. And also by its constructing, its
set of states T forms the given binary relation #.

As a consequence of the Proposition 14 we obtain, that these maximums
of the number of states of two canonical automata (i.e., the values 2m−1 and
2n−1) can be achieved. But there is important to remark the following thing. In
some books ([1] etc.), there are examples, when the given automaton contains
n states, and the equivalent canonical automaton contains 2n−1 states. 6 This
fact (i.e., the possible fulfilment the upper bound 2n−1) is not a consequence
of these results: it proved there for arbitrary nondeterministic finite automata
(having no limitations), and we consider it for automata which are mirror
automata for canonical ones. E.g. we can say, that these automata are not
deterministic, but they are unambiguous.

8 The second example

Let us consider a simple example for automata defined in previous section.
However, we describe the whole process of constructing detailed.
Thus, let us consider the following binary relation #:

# X Y

A # –

B # #

Table 1

Certainly, this relation satisfies all the limitations formulated before.

5 Remark once again, that we consider automata without ε-edges.
6 Or 2n states, when we assume the possible “dead” state, considering the canonical

automaton as a total automaton.
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By the previous section, corresponding alphabet Σ# is the following:

Σ# =

{
a

A
X

, a
B

X

, a
A
Y

, a
B

Y

}
.

Let sπ = A, sρ = Y (also by the previous section, we can choose such states).
Then Fπ = {B}, Fρ = {X}, and we obtain the following canonical automaton for
the language L#:

L# a
A
X

a
B

X

a
A
Y

a
B

Y

→ A A B – –

← B A B A B

Table 2

For the convenience, let us rename the letters in the following way:

a
A
X

= a , a
B

X

= b , a
A
Y

= c , a
B

Y

= d .

Then we can rewrite the considered automaton by the following Table 3 or
Fig. 5:

L# a b c d

→ A A B – –

← B A B A B
��

��

��

�	
A

��

��

�a
�

��

��

��

�	
B

��

��

�b, d
�

�
a, c


b

Table 3 Figure 5

The mirror automaton (L#)R is the following (Table 4 or Fig. 6; for the table
of nondeterministic automaton, we use the agreements of [7]):

(L#)R a b c d

← A A,B – B –

→ B – A,B – B
��

��

��

�	
A

��

��

�a
�

��

��

��

�	
B

��

��

�b, d
�

�

a, c



b

Table 4 Figure 6

The process of determinization is given by the following table:
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a b c d

→ B – A,B – B

← A,B A,B A,B B B

Table 5

Renaming {B} for Y and {A,B} for X, we obtain the following automaton L̃ ′ =
L# (where L ′ = (L#)R; see Table 6 or Fig. 7):

L# a b c d

→ Y – X – Y

← X X X Y Y
��

��

��

�	
Y

��

��

�d
�

��

��

��

�	
X

��

��

�a, b
�

�
c, d


b

Table 6 Figure 7

And using the last automaton, we obtain automata (L#)
R and then BA(L#)

(Fig. 8 and 9).

��

��

��

�	
Y

��

��

�d
�

��

��

��

�	
X

��

��

�a, b
�

�
c, d


b

Figure 8

��

��

��

�	
A
X

�

��

��

�a �
�
�
�
�
��

b

Figure 9

�
�

�
�

���

c

�

b

�

a

��

��

��

�	
B
X



� d

b ��

��

��

�	
B
Y

�

��

��

�b
��

��

�d

Certainly, they both also define the language L#. (Compare the given Table 1
and the obtained Fig. 9.)

9 Conclusion

Let us describe some possible problems for the future solution. Thus, we are
going to:

• to show the relationship between the basis automaton and Conway’s
universal automaton;



244 B. Melnikov, A. Melnikova

• to use some propositions proved in this paper to describe the minimiza-
tion algorithms for nondeterministic finite automata;

• vice versa, to use automaton K# to describe algorithms of automatic
constructing some counter-examples for the algorithms of state mini-
mization (the most famous example of such a counter-example is so
called automaton Waterloo, [4]).
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