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Abstract. In this paper we define the k-Fibonacci words in analogy with
the definition of the k-Fibonacci numbers. We study their properties and
we associate to this family of words a family of curves with interesting
patterns.

1 Introduction

Fibonacci numbers and their generalizations have many interesting properties
and applications to almost every fields of science and arts (e.g. see [13]). The
Fibonacci numbers F,, are the terms of the sequence 0,1,1,2,3,5,... wherein
each term is the sum of the two previous terms, beginning with the values
F() :O, and F1 =1.

Besides the usual Fibonacci numbers many kinds of generalizations of these
numbers have been presented in the literature. In particular, a generalization
is the k-Fibonacci numbers [11].

For any positive real number k, the k-Fibonacci sequence, say {Finjnen is
defined recurrently by

Fk)o =0, 1 = 1 and Fyng1 = ka,n + Fkynq, n>l. (1)
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In [11], k-Fibonacci numbers were found by studying the recursive applica-
tion of two geometrical transformations used in the four-triangle longest-edge
(4TLE) partition. These numbers have been studied in several papers, see
[5, 10, 11, 12, 18, 19, 23].

The characteristic equation associated to the recurrence relation (1) is x
kx + 1. The roots of this equation are

k+Vk?+4 k—Vk?+4

T = — 7 and Ty = 7

2:

Some of the properties that the k-Fibonacci numbers verify are (see [11, 12]
for the proofs).

Bi F la: Fy, = M1 i
[ ] . = =
inet Formula: Fyn T

n-1 : .
e Combinatorial Formula: Fy ,, = ZL@ . (“fg 7‘)k“_]_2‘.

. F
o limy_ oo Fkkn: =Tk

On the other hand, there is a word-combinatorial interpretation of the Fi-
bonacci sequence. Fibonacci words are words over {0, 1} defined recursively as
follows:

fo=1, f1 =0, fn="fnafno, mn=>2.

The words f,, are referred to as the finite Fibonacci words and it is clear that
[fal = Fryp1. The limit

f= lim f,, =0100101001001010010100100101 - - -
n—oo

is called the Fibonacci word. This word is certainly one of the most studied
words in the combinatorics on words, (see, e.g., [2, 6, 7, 9, 15, 22]). It is
the archetype of a Sturmian word [14]. This word can be associated with a
curve, which has fractal properties obtained from combinatorial properties of
f [3, 16, 21].

In this paper we introduce a family of words fi that generalize the Fibonacci
word. Specifically, the k-Fibonacci words are words over {0, 1} defined induc-
tively as follows

k—1 k
fro =0, fr,1 =071, fen = fk,n_]fk,n—b
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for all n > 2 and k > 1. Then it is clear that [f n| = Fin41. The infinite word

fk = lim fk,n
n—oo
is called the k-Fibonacci word. In connection with this definition, we investi-
gate some new combinatorial properties and we associate a family of curves
with interesting patterns.

2 Definitions and notation

The terminology and notations are mainly those of Lothaire [14] and Allouche
and Shallit [1].

Let X be a finite alphabet, whose elements are called symbols. A word over
Y is a finite sequence of symbols from X. The set of all words over X, i.e.,
the free monoid generated by X, is denoted by X*. The identity element € of
I* is called the empty word and Z+ = Z* \ {e}. For any word w € L*, |w|
denotes its length, i.e., the number of symbols occurring in w. The length of €
is taken to be equal to 0. If a € £ and w € L, then |w[, denotes the number
of occurrences of a in w.

For two words u = aja; ---ax and v =b1b, - - - bg in X* we denote by uv the
concatenation of the two words, that is, uv = ajay---axbiby---bs. If v=-—¢
then ue = eu = u, moreover, by u™ we denote the word uu---u (n times). A
word v is a subword (or factor) of u if there exist x,y € L* such that u = xvy.
If x =€ (y =€), then v is called prefix (suffix) of u.

The reversal of a word U = aja;---ay is the word uk = an---aya; and
eR = e. A word u is a palindrome if uR = .

An infinite word over X is a map u: N — X. It is written u = aqjaxaz---.
The set of all infinite words over X is denoted by X%.

Example 1 The word p = (pn)n>1 = 0110101000101 - - -, where pp =1 if n
is a prime number and pn = 0 otherwise, is an example of an infinite word. p
1s called the characteristic sequence of the prime numbers.

Definition 2 Let L and A be alphabets. A morphism is a map h : &* — A*
such that h(xy) = h(x)h(y) for all x,y € Z*. It is clear that h(e) = €.

There is a special class of words, with many remarkable properties, the so-
called Sturmian words. These words admit several equivalent definitions (see,
e.g. [1] or [14]).
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Definition 3 Let w € £¥. We define P(w,n), the complexity function of w,
to be the map that counts, for all integer 1 > 0, the number of subwords of
length n in w. An infinite word w is a Sturmian word if P(w,n) =n+1 for
all integer n > 0.

Since for any Sturmian word P(w,1) = 2, then Sturmian words are over
two symbols. The word p, in Example 1, is not a Sturmian word because
P(p,2) =4.

Given two real numbers «, f € R with acirrationaland 0 < a < 1,0 < < 1,
we define the infinite word w = wiwows - -+ as

wp=|m+1Da+B] —|na+B].

The numbers o and {3 are the slope and the intercept, respectively. This word
is called mechanical. The mechanical words are equivalent to Sturmian words
[14]. As special case, when B = 0, we obtain the characteristic words.

Definition 4 Let « be an irrational number with 0 < o« < 1. Forn > 1,
define

wa(n) = [(n+ N« — [na],
and

w(a) = we(lwa(2)wa(3) -,
then w(a) is called a characteristic word with slope .

On the other hand, note that every irrational « € (0,1) has a unique con-
tinued fraction expansion

oc=[0,a1,a2,a3,...]: )
a +
a +

.l
a3+

where each a; is a positive integer. Let « = [0,1+ dy,d,...] be an irra-
tional number with d; > 0 and d, > 0 for n > 1. To the directive sequence
(dy,dz,...,dn,...), we associate a sequence (Sn)n>—1 of words defined by

d
s.p=1, s0=0, sp=s"sp2, (M>1).



216 J. Ramirez, G. Rubiano

Such a sequence of words is called a standard sequence. This sequence is related
to characteristic words in the following way. Observe that, for any n > 0, s,
is a prefix of s;1, which gives meaning to lim;, ., Sn as an infinite word. In
fact, one can prove [14] that each s, is a prefix of w(«) for all n > 0 and

w(a) = nlgr;() Sn- (2)

Example 5 The infinite Fibonacci word f =0100101001001010- - - is a Stur-
mian word [14], exactly f =w (#) where ¢ = % is the golden ratio.
Definition 6 The Fibonacci morphism o :{0,1} — {0, 1} is defined by o(0) =
01 and o(1) = 0.

The Fibonacci word f satisfies that limy_,o, 0™ (1) = f [1].

3 The k-Fibonacci words

Definition 7 The nth k-Fibonacci words are words over {0,1} defined induc-
tively as follows

fk‘o =0, fk)1 = Oki1 1, fk,n = fllz,nflfk,an)
for allm > 2 and k > 1. The infinite word
fk = lim fk,n
n—oo

is called the k-Fibonacci word.

It is clear that [fi n| = Finy1. For k = 1 we have the word f =1011010110110.. .,
where @ is a morphism, with a € {0, 1}, defined by 0 = 1,1 = 0.

Example 8 The first k-Fibonacci words are

f; =1011010110110---=f, £ =0101001010010---, f3=0010010010001 - - -,
f, = 0001000100010 - -, fs = 0000100001000---, f5=0000010000010--- .

Definition 9 The k-Fibonacci morphism oy : {0,1} — {0,1} is defined by
0k (0) = 051 and oy (1) = 0% T10.

Theorem 10 For alln > 0, op(0) = fin and O'E+](1) = ficnt1fin. Hence,
the k-Fibonacci word fy satisfies that limy, o, 0™(0) = fi.
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Proof. We prove the two assertions about o} by induction on n. They are
clearly true for n =0, 1. Assume for all j < n; we prove them for n:

op™1(0) = o (047'1) = (01 (0))* Tof (1) = i infin 1 = finfion 1 = fioni.
O'E-Fl(l) = UEH(OK—UO) = (GLIH(O))k—] UEH(”GEH(O) _ ft,;:—]fk,n-ﬁ—] fionfrns

= fllz,nﬂ fenfinet = fns2fintt. N
Proposition 11

1. [finlt = Fen and fixnitlo = Fongr + Fn for allm > 0.

. f 2
2. lim | k’“' = k1
n—oo [finlo 1T+ Ti

. f
3. lim fionl =Ty
n—oo [fi n i

i |fk,n|0 o 1
1m

Cnooo [fnlt T

Proof.

1. It is clear by induction on n.

. f . F ) T
2. llm M — llm L“F] — llm l]c:,n — k)] .
n—oo [fi nlo oo Fn +Fn1  nooo ] 4 1}<:,n7‘1 T+ Tk
k,m
. f . F
3. lim M = lim M =T
W Tfnht  noBo Fin
. el . Fen+ Fenot 1
4. lim Y = lim =t onml g 4 )

Proposition 12 The k-Fibonacci word and the nth X-Fibonacci word satisfy
that

1. The word 11 is not a subword of the k-Fibonacci word, k > 2.

2. Let ab be the last two symbols of fyn. Forn > 1, we have ab =10 if n
s even and ab =01 if n is odd, k > 2.

3. The concatenation of two successive k-Fibonacci words is “almost com-
mutative”, i.e., fyn_1fin2 and fyn_2fin_1 have a common prefix the
length Fyn + Fxno1 — 2 for allm > 2.
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Proof.

1. It suffices to prove that 11 is not a subword of fy ,, for all n > 0. By
induction on n. For n = 0,1 it is clear. Assume for all j < n; we prove it
for n. We know that fy,, = f}i n—1fkn—2 so by the induction hypothesis
we have that 11 is not a subword of fyn—1 and fy 2. Therefore, the
only possibility is that 1 is a suffix and prefix of fy n_7 or 1 is a suffix of
fyn—1 and a prefix of fy n_, both there are impossible.

2. By induction on n. For n = 1,2 it is clear. Assume for all j < n; we
prove it for n. We know that fy 11 = flﬁnfk,n—h if n 41 is even then by
the induction hypothesis the last two syfnbols of fyn—1 are 10, therefore
the last two symbols of fy 41 are 10. Analogously, if n + 1 is odd.

3. By induction on n. For n = 1,2 it is clear. Assume for all j < n; we
prove it for n. By definition of fy ,,, we have

K K
fin—1fign—2 = T n2fign-3 * fin—3fkn—a

K K ek
= (fin—3fin-4)" - fn3fin—3fign—4,

and

fk,n—ka,n—1 = f]l;n—?,fk,n—ll ’ flﬁ,n—sz,n—ii
= fin3fion—a - (FEn 3fin—a)® - ficns
= (fl]z,nfgfk,n74 ) kflﬁ,nfg fin—afin—3.
Hence the words have a common prefix of length k(kFy > + Fxn_3) +
kFn—2 = K(Fxn—1 + Fxn—2). By the induction hypothesis fy n_3fxn—4 and

fi n—4afi n—3 have a common prefix of length Fy ;, > +Fy n—3 —2. Therefore
the words have a common prefix of length

K(Fino1 +Fn2) + Fn2 + Fn-3 — 2 = Fn + Fenr — 2. 0

Definition 13 Let @ : {0,1}" — {0,1}" be a map such that ® deletes the last
two symbols, i.e., D(ajay---an) = aqjaz---an_2 (N> 2).

Corollary 14 The nth k-Fibonacci word, satisfy for allm > 2 that

1. © (fk,nf1 fk,an) =0 (fk,nfsz,nf1 ) .
2. @ (fk,n—1 fk,n—Z) = 1:k,n—ZCD (fk,n—l ) = 1:k,n—l @ (fk,n—Z) .
3. If fk,n = (D(fk,n) ab, then @ (fk,an) ab® (fk,nfl ) = fk,nfl ) (fk,an) .
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4. If fun = O(fxn)ab, then O (fin_2)(ab®(fin_1))* = @ (fin).

Proof. Parts (a) and (b) follow immediately from Proposition 12-(3) and be-
cause of [fyn| > 2 foralln > 2. (c) In fact, if fy , = @ (fxn)ab then from Propo-
sition 12-(2) we have fyn—2 = @(fxn—2)ab. Hence ®(fin2)abd(fyn1) =
fin2@(fin-1) = fin1@(fin—2). (d) It is clear from (c) and definition of
flen. 0

Theorem 15 O(fyy) is a palindrome for alln > 1 and k > 1.

Proof. By induction on n. If n = 2 then ®(fy,) = (0% T1)k=10kT is a palin-
drome. Now suppose that the result is true for all j < n; we prove it for
mn.

(@ (fin))® = (O (1 Fin2))° = (FE 1@ (fin-2))% = O(fin2) " (F 1R
= D (frn2) (FR )

If n is even then fi n = ®(fn)10 and from Corollary 14-(4), we have that

(@ (fin))® = O (fin—2) (@ (fin-1)01)%)* = O (fx n2) (10(D(Fin—1))%)*
= O(fin-2) (10D (fin1))* = O(ficp).

If n is odd, the proof is analogous. O

Corollary 16 1. If fyn = O(fin)ab then bad(fin)ab is a palindrome.
2. If u is a subword of the k-Fibonacci word, then so is its reversal, u® .

Theorem 17 Let x = [O,ﬂ be an irrational number, with k a positive integer,
then

W(O() = fk
Proof. Let o« = [0,ﬂ an irrational number, then its associated standard
sequence is
s.1=1, sp=0, s1= 55_15_1 =01 and s, = sﬁ_1sn_z, n> 2.

Hence {sn},~o = {fixnty>o and from equation (2), we have

w(o) = limp_se0 S = L. O
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Remark. Note that

1  —k+VkI+4
1 N 2
1

[0,K] = — 1
k+

k+

1
k+—

From the above theorem, we conclude that k-Fibonacci words are Sturmian
words.

A fractional power is a word of the form z = x™y, wheren € Z* and x € Lt
and y is power power prefix of x. If |z] = p and [x| = q, we say that z is a
p/q-power, or z = xP/9. In the expression xP/9, the number p/q is the power’s
exponent. For example, 01201201 is a 8/3-power, 01201201 = (012)3/3. The
index of an infinite word we X is defined by

Ind(w) :=sup{r € Q-1 : w contains an r-power}
For example Ind(f)> 3 because the cube (010)3 occurs in f at position 6. In

[15] the authors proof that Ind(f)=2 + ¢ ~ 3.618. A general formula for the
index of a Sturmian word was given in [8].

Theorem 18 If u is a Sturmian word of slope « = [0, aj, az, az,...l, then

n>0 n

12
Ind(w) = sup {2 + any1 + qn1},
where qn is the denominator of « = [0, ar,az,a3,...,anl and satisfies q—1 =
0,do =1, qn+1 = an41qn + gn-1-

Corollary 19 The index of k-Fibonacci words is Ind(f) =2+ k + ——.

Tk,1

Proof. fy is a Sturmian word of slope ¢ = [O,ﬂ, then it is clear that qn =
Fint1, and from above theorem

Fxn—2 1
Ind(f) =supd2+k+ =24 k4 —.
. n}% { Fk,n-H } O
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4 The k-Fibonacci Word Curve

The Fibonacci word can be associated to a curve from a drawing rule. We must
travel the word in a particular way, depending on the symbol read a particular
action is produced, this idea is the same as that used in the L-Systems [17].
In this case, the drawing rule is called “odd-even drawing rule” [16], this is
defined as shown in the following table.

Symbol | Action
1 Draw a line forward.
0 Draw a line forward and if the symbol 0 is in a position even
then turn 0 degree and if 0 is in a position odd then turn
—0 degrees.

Definition 20 The nth-curve of Fibonacci, denoted by Fyn, is obtained by
applying the odd-even drawing rule to the word . The Fibonacci word fractal
F, is defined as

F = lim Fj.

n—oo

Example 21 In Figure 1 we show the curve Fio and Fi7. The graphics in
this paper were generated using the software Mathematica 9.0, [20].

Figure 1: Fibonacci curves Fjp and Fj7 corresponding to the words fio and fy7

Properties of Fibonacci Word Fractal can be found in [3, 4, 16].

Definition 22 The nth k-curve of Fibonacci, denoted by Fy n, is obtained by
applying the odd-even drawing rule to the word fyn. The k-Fibonacci word
curve Fy is defined as

Fi= lim Fn.
n—oo
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Fis

Table 1: Some curves Fi, with 0 = 90°

In Table 1, we show some curves Fi, with an angle 0 = 90°.

In Table 2, we show some curves Fi, with an angle 6 = 60°. In general
these curves have a lot of patterns because the index is large, see Corollary
19.

Proposition 23 The k-Fibonacci word curve and the curve Fyn have the
following properties:

The k-Fibonacci curve Fy is composed only of segments of length 1 or 2.
The Fyn is symmetric.

The number of turns in the curve Fin is Fin + Feno1.

If n is even then the Fin curve is similar to the curve Fyn—p and if n
is odd then the Fyn curve is similar to the curve Fin_3.

oo~

Proof.

1. It is clear from Proposition 12-1, because 110 and 111 are not subwords
of fk.

2. It is clear from Theorem 15, because fin = ®(fin)ab, where O(fy ;) is
a palindrome.

3. It is clear from definition of odd-even drawn rule and because [fxn41lo =
Feng1 + Fene
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F210

Fa7

Table 2: Some curves Fin with 0 = 60°

4. If n is even. It is clear that Gﬁ(fk’n,z) = fin. We are going to proof that
Gﬁ guaranties the odd-even alternation required by the odd-even drawing
rule. In fact, 02(0) = 0% (0%'1) = (0%'1)%0 and o%(1) = (0% '1)k01.
As k is even, then IGi(O)I and IGi(l)l are odd. Hence if [w| is even (odd)
then |02 (w)| is even (odd). Since oZ preserves the parity of length then
any subword in the k-Fibonacci word preserves the parity of position.

Finally, we have to proof that the resulting angle of a pattern must be
preserved or inverted by Gi. Let a(w) be the function that gives the
resulting angle of a word w through the odd-even drawing rule of angle
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0. Note that a(00) = 0°,a(01) = —0° and a(10) = 6°. Therefore

a(0£(00)) = a((0*1)*0(0*1)*0)
= a((0*"1)%)a(00* Ma(1(0® 1) o)
= —k0° 4+ 0° + k0° = 0°
a(o?(01)) = a((0® '1)*0(0*T1)k0¥1)
= a((0* 1)) a(00¥ Na(1(0* 1) T0)a(0* 1)
= —k0° +0°+k0° —0° =—0°
a(0%(10)) = a((0® 1)*0*1 (0% T1)k0)
= a((0 1)) a(0®)a(1(0* "1)*0)
=—k6°4+0°+ (k+1)0° =6°
Then Gﬁ inverts the resulting angle, i.e., a(w) = —a(oﬁ(w)) for any word
w. Therefore the image of a pattern by O'i is the rotation of this pattern

by a rotation of —8°. Since Ui(fk,n—z) = fin, then the curve Fy, is
similar to the curve Fin 2.

If n is odd the proof is similar, but using O‘i. 0

Example 24 In Figure 2 Fy4 looks similar to Fag, Fag and so on.

Figure 2: Curves Fy4, F46, F4,8 with 0 = 60°

In Figure 3 Fs3 looks similar to Fsg.
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Figure 3: Curves F53, F56 with 0 = 60°
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