DOI: 10.2478/ausi-2014-0011

On the k-Fibonacci words

José L. RAMÍREZ

Instituto de Matemáticas y sus Aplicaciones Universidad Sergio Arboleda, Colombia email: Gustavo N. RUBIANO

Departamento de Matemáticas Universidad Nacional de Colombia, Colombia

email: gnrubianoo@unal.edu.co

josel.ramirez@ima.usergioarboleda.edu.co

Abstract. In this paper we define the k-Fibonacci words in analogy with the definition of the k-Fibonacci numbers. We study their properties and we associate to this family of words a family of curves with interesting patterns.

1 Introduction

Fibonacci numbers and their generalizations have many interesting properties and applications to almost every fields of science and arts (e.g. see [13]). The Fibonacci numbers F_n are the terms of the sequence $0,1,1,2,3,5,\ldots$ wherein each term is the sum of the two previous terms, beginning with the values $F_0=0$, and $F_1=1$.

Besides the usual Fibonacci numbers many kinds of generalizations of these numbers have been presented in the literature. In particular, a generalization is the k-Fibonacci numbers [11].

For any positive real number k, the k-Fibonacci sequence, say $\{F_{k,n}\}_{n\in\mathbb{N}}$ is defined recurrently by

$$F_{k,0} = 0, \ F_{k,1} = 1 \ \ \mathrm{and} \ \ F_{k,n+1} = kF_{k,n} + F_{k,n-1}, \ n \geqslant 1. \eqno(1)$$

Computing Classification System 1998: I.3.7, G.2.0

Mathematics Subject Classification 2010: 11B39, 05A05, 68R15

Key words and phrases: Fibonacci word, k-Fibonacci numbers, k-Fibonacci words, k-Fibonacci curves

In [11], k-Fibonacci numbers were found by studying the recursive application of two geometrical transformations used in the four-triangle longest-edge (4TLE) partition. These numbers have been studied in several papers, see [5, 10, 11, 12, 18, 19, 23].

The characteristic equation associated to the recurrence relation (1) is $x^2 = kx + 1$. The roots of this equation are

$$r_{k,1} = \frac{k + \sqrt{k^2 + 4}}{2}, \quad \mathrm{and} \quad r_{k,2} = \frac{k - \sqrt{k^2 + 4}}{2}.$$

Some of the properties that the k-Fibonacci numbers verify are (see [11, 12] for the proofs).

- \bullet Binet Formula: $F_{k,n} = \frac{r_{k,1}^n r_{k,2}^n}{r_{k,1} r_{k,2}}.$
- \bullet Combinatorial Formula: $F_{k,n}=\sum_{i=0}^{\lfloor\frac{n-1}{2}\rfloor}{n-1-i\choose i}k^{n-1-2i}.$
- $\lim_{n\to\infty}\frac{F_{k,n}}{F_{k,n-1}}=r_{k,1}$.

On the other hand, there is a word-combinatorial interpretation of the Fibonacci sequence. Fibonacci words are words over $\{0,1\}$ defined recursively as follows:

$$f_0 = 1, \qquad \ \ f_1 = 0, \qquad \ \ f_n = f_{n-1} f_{n-2}, \quad n \geqslant 2.$$

The words f_n are referred to as the finite Fibonacci words and it is clear that $|f_n| = F_{n+1}$. The limit

$$\mathbf{f} = \lim_{n \to \infty} f_n = 010010100100101001001001001001\cdots$$

is called the Fibonacci word. This word is certainly one of the most studied words in the combinatorics on words, (see, e.g., [2, 6, 7, 9, 15, 22]). It is the archetype of a Sturmian word [14]. This word can be associated with a curve, which has fractal properties obtained from combinatorial properties of f [3, 16, 21].

In this paper we introduce a family of words \mathbf{f}_k that generalize the Fibonacci word. Specifically, the k-Fibonacci words are words over $\{0,1\}$ defined inductively as follows

$$f_{k,0}=0, \qquad f_{k,1}=0^{k-1}\mathbf{1}, \qquad f_{k,n}=f_{k,n-1}^kf_{k,n-2},$$

for all $n \geq 2$ and $k \geq 1$. Then it is clear that $|f_{k,n}| = F_{k,n+1}$. The infinite word

$$\mathbf{f}_k := \lim_{n \to \infty} f_{k,n}$$

is called the k-Fibonacci word. In connection with this definition, we investigate some new combinatorial properties and we associate a family of curves with interesting patterns.

2 Definitions and notation

The terminology and notations are mainly those of Lothaire [14] and Allouche and Shallit [1].

Let Σ be a finite alphabet, whose elements are called symbols. A word over Σ is a finite sequence of symbols from Σ . The set of all words over Σ , i.e., the free monoid generated by Σ , is denoted by Σ^* . The identity element ε of Σ^* is called the empty word and $\Sigma^+ = \Sigma^* \setminus \{\varepsilon\}$. For any word $w \in \Sigma^*$, |w| denotes its length, i.e., the number of symbols occurring in w. The length of ε is taken to be equal to 0. If $\alpha \in \Sigma$ and $w \in \Sigma^*$, then $|w|_{\alpha}$ denotes the number of occurrences of α in w.

For two words $u=a_1a_2\cdots a_k$ and $v=b_1b_2\cdots b_s$ in Σ^* we denote by uv the concatenation of the two words, that is, $uv=a_1a_2\cdots a_kb_1b_2\cdots b_s$. If $v=\varepsilon$ then $u\varepsilon=\varepsilon u=u$, moreover, by u^n we denote the word $uu\cdots u$ (n times). A word v is a subword (or factor) of u if there exist $x,y\in \Sigma^*$ such that u=xvy. If $x=\varepsilon$ ($y=\varepsilon$), then v is called prefix (suffix) of u.

The reversal of a word $u=a_1a_2\cdots a_n$ is the word $u^R=a_n\cdots a_2a_1$ and $\varepsilon^R=\varepsilon$. A word u is a palindrome if $u^R=u$.

An infinite word over Σ is a map $\mathbf{u}: \mathbb{N} \to \Sigma$. It is written $\mathbf{u} = \alpha_1 \alpha_2 \alpha_3 \cdots$. The set of all infinite words over Σ is denoted by Σ^{ω} .

Example 1 The word $\mathbf{p}=(p_n)_{n\geq 1}=0110101000101\cdots$, where $p_n=1$ if n is a prime number and $p_n=0$ otherwise, is an example of an infinite word. \mathbf{p} is called the characteristic sequence of the prime numbers.

Definition 2 Let Σ and Δ be alphabets. A morphism is a map $h: \Sigma^* \to \Delta^*$ such that h(xy) = h(x)h(y) for all $x, y \in \Sigma^*$. It is clear that $h(\varepsilon) = \varepsilon$.

There is a special class of words, with many remarkable properties, the socalled Sturmian words. These words admit several equivalent definitions (see, e.g. [1] or [14]). **Definition 3** Let $\mathbf{w} \in \Sigma^{\omega}$. We define $P(\mathbf{w}, n)$, the complexity function of \mathbf{w} , to be the map that counts, for all integer $n \geq 0$, the number of subwords of length n in \mathbf{w} . An infinite word \mathbf{w} is a Sturmian word if $P(\mathbf{w}, n) = n + 1$ for all integer $n \geq 0$.

Since for any Sturmian word $P(\mathbf{w}, 1) = 2$, then Sturmian words are over two symbols. The word \mathbf{p} , in Example 1, is not a Sturmian word because $P(\mathbf{p}, 2) = 4$.

Given two real numbers $\alpha, \beta \in \mathbb{R}$ with α irrational and $0 < \alpha < 1, 0 \le \beta < 1$, we define the infinite word $\mathbf{w} = w_1 w_2 w_3 \cdots$ as

$$w_n = |(n+1)\alpha + \beta| - |n\alpha + \beta|.$$

The numbers α and β are the slope and the intercept, respectively. This word is called mechanical. The mechanical words are equivalent to Sturmian words [14]. As special case, when $\beta = 0$, we obtain the characteristic words.

Definition 4 Let α be an irrational number with $0 < \alpha < 1$. For $n \ge 1$, define

$$w_{\alpha}(n) := \lfloor (n+1)\alpha \rfloor - \lfloor n\alpha \rfloor,$$

and

$$\mathbf{w}(\alpha) := w_{\alpha}(1)w_{\alpha}(2)w_{\alpha}(3)\cdots,$$

then $\mathbf{w}(\alpha)$ is called a characteristic word with slope α .

On the other hand, note that every irrational $\alpha \in (0,1)$ has a unique continued fraction expansion

$$\alpha=[0,\alpha_1,\alpha_2,\alpha_3,\ldots]=\frac{1}{\alpha_1+\dfrac{1}{\alpha_2+\dfrac{1}{\alpha_3+\cdots}}},$$

where each a_i is a positive integer. Let $\alpha = [0, 1+d_1, d_2, \ldots]$ be an irrational number with $d_1 \geq 0$ and $d_n > 0$ for n > 1. To the directive sequence $(d_1, d_2, \ldots, d_n, \ldots)$, we associate a sequence $(s_n)_{n \geq -1}$ of words defined by

$$s_{-1} = 1$$
, $s_0 = 0$, $s_n = s_{n-1}^{d_n} s_{n-2}$, $(n \ge 1)$.

Such a sequence of words is called a standard sequence. This sequence is related to characteristic words in the following way. Observe that, for any $n \geq 0$, s_n is a prefix of s_{n+1} , which gives meaning to $\lim_{n\to\infty} s_n$ as an infinite word. In fact, one can prove [14] that each s_n is a prefix of $\mathbf{w}(\alpha)$ for all $n \geq 0$ and

$$\mathbf{w}(\alpha) = \lim_{n \to \infty} s_n. \tag{2}$$

Example 5 The infinite Fibonacci word $\mathbf{f} = 0100101001001010 \cdots$ is a Sturmian word [14], exactly $\mathbf{f} = \mathbf{w} \left(\frac{1}{\varphi^2} \right)$ where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden ratio.

Definition 6 The Fibonacci morphism $\sigma : \{0,1\} \rightarrow \{0,1\}$ is defined by $\sigma(0) = 01$ and $\sigma(1) = 0$.

The Fibonacci word \mathbf{f} satisfies that $\lim_{n\to\infty} \sigma^n(1) = \mathbf{f}[1]$.

3 The k-Fibonacci words

Definition 7 The nth k-Fibonacci words are words over {0,1} defined inductively as follows

$$f_{k,0} = 0,$$
 $f_{k,1} = 0^{k-1}1,$ $f_{k,n} = f_{k,n-1}^k f_{k,n-2},$

for all $n \ge 2$ and $k \ge 1$. The infinite word

$$\mathbf{f}_k := \lim_{n \to \infty} f_{k,n}$$

is called the k-Fibonacci word.

It is clear that $|f_{k,n}| = F_{k,n+1}$. For k = 1 we have the word $\overline{\mathbf{f}} = 1011010110110\dots$, where $\overline{\mathbf{a}}$ is a morphism, with $\mathbf{a} \in \{0,1\}$, defined by $\overline{\mathbf{0}} = \mathbf{1}, \overline{\mathbf{1}} = \mathbf{0}$.

Example 8 The first k-Fibonacci words are

$$\begin{array}{lll} \mathbf{f}_1 = 1011010110110 \cdots = \overline{\mathbf{f}} \;, & \mathbf{f}_2 = 0101001010010 \cdots, & \mathbf{f}_3 = 0010010010001 \cdots, \\ \mathbf{f}_4 = 0001000100010 \cdots, & \mathbf{f}_5 = 0000100001000 \cdots, & \mathbf{f}_6 = 0000010000010 \cdots. \\ \end{array}$$

Definition 9 The k-Fibonacci morphism $\sigma_k : \{0,1\} \to \{0,1\}$ is defined by $\sigma_k(0) = 0^{k-1}1$ and $\sigma_k(1) = 0^{k-1}10$.

Theorem 10 For all $n \ge 0$, $\sigma_k^n(0) = f_{k,n}$ and $\sigma_k^{n+1}(1) = f_{k,n+1}f_{k,n}$. Hence, the k-Fibonacci word \mathbf{f}_k satisfies that $\lim_{n\to\infty} \sigma^n(0) = \mathbf{f}_k$.

Proof. We prove the two assertions about σ_k^n by induction on n. They are clearly true for n = 0, 1. Assume for all j < n; we prove them for n:

$$\begin{split} \sigma_k^{n+1}(0) &= \sigma_k^n(0^{k-1}1) = (\sigma_k^n(0))^{k-1}\sigma_k^n(1) = f_{k,n}^{k-1}f_{k,n}f_{k,n-1} = f_{k,n}^kf_{k,n-1} = f_{k,n+1}.\\ \sigma_k^{n+2}(1) &= \sigma_k^{n+1}(0^{k-1}10) = (\sigma_k^{n+1}(0))^{k-1}\sigma_k^{n+1}(1)\sigma_k^{n+1}(0) = f_{k,n+1}^{k-1}f_{k,n+1}f_{k,n}f_{k,n+1}\\ &= f_{k,n+1}^kf_{k,n}f_{k,n+1} = f_{k,n+2}f_{k,n+1}. \end{split}$$

Proposition 11

1.
$$|f_{k,n}|_1 = F_{k,n}$$
 and $|f_{k,n+1}|_0 = F_{k,n+1} + F_{k,n}$ for all $n \ge 0$.

2.
$$\lim_{n \to \infty} \frac{|f_{k,n}|}{|f_{k,n}|_0} = \frac{r_{k,1}^2}{1 + r_{k,1}}.$$

3.
$$\lim_{n \to \infty} \frac{|f_{k,n}|}{|f_{k,n}|} = r_{k,1}.$$

4.
$$\lim_{n\to\infty} \frac{|f_{k,n}|_0}{|f_{k,n}|_1} = 1 + \frac{1}{r_{k,1}}$$
.

Proof.

1. It is clear by induction on n.

$$2. \lim_{n \to \infty} \frac{|f_{k,n}|}{|f_{k,n}|_0} = \lim_{n \to \infty} \frac{F_{k,n+1}}{F_{k,n} + F_{k,n-1}} = \lim_{n \to \infty} \frac{\frac{F_{k,n+1}}{F_{k,n}}}{1 + \frac{F_{k,n-1}}{F_{k,n}}} = \frac{r_{k,1}^2}{1 + r_{k,1}}.$$

$$3. \ \lim_{n \to \infty} \frac{|f_{k,n}|}{|f_{k,n}|_1} = \lim_{n \to \infty} \frac{F_{k,n+1}}{F_{k,n}} = r_{k,1}.$$

4.
$$\lim_{n \to \infty} \frac{|f_{k,n}|_0}{|f_{k,n}|_1} = \lim_{n \to \infty} \frac{F_{k,n} + F_{k,n-1}}{F_{k,n}} = 1 + \frac{1}{r_{k,1}}.$$

Proposition 12 The k-Fibonacci word and the nth k-Fibonacci word satisfy that

- 1. The word 11 is not a subword of the k-Fibonacci word, $k \geq 2$.
- 2. Let ab be the last two symbols of $f_{k,n}$. For $n \geq 1$, we have ab = 10 if n is even and ab = 01 if n is odd, $k \geq 2$.
- 3. The concatenation of two successive k-Fibonacci words is "almost commutative", i.e., $f_{k,n-1}f_{k,n-2}$ and $f_{k,n-2}f_{k,n-1}$ have a common prefix the length $F_{k,n}+F_{k,n-1}-2$ for all $n\geq 2$.

Proof.

- 1. It suffices to prove that 11 is not a subword of $f_{k,n}$, for all $n \geq 0$. By induction on n. For n=0,1 it is clear. Assume for all j < n; we prove it for n. We know that $f_{k,n} = f_{k,n-1}^k f_{k,n-2}$ so by the induction hypothesis we have that 11 is not a subword of $f_{k,n-1}$ and $f_{k,n-2}$. Therefore, the only possibility is that 1 is a suffix and prefix of $f_{k,n-1}$ or 1 is a suffix of $f_{k,n-1}$ and a prefix of $f_{k,n-2}$, both there are impossible.
- 2. By induction on n. For n=1,2 it is clear. Assume for all j< n; we prove it for n. We know that $f_{k,n+1}=f_{k,n}^kf_{k,n-1}$, if n+1 is even then by the induction hypothesis the last two symbols of $f_{k,n-1}$ are 10, therefore the last two symbols of $f_{k,n+1}$ are 10. Analogously, if n+1 is odd.
- 3. By induction on n. For n = 1, 2 it is clear. Assume for all j < n; we prove it for n. By definition of $f_{k,n}$, we have

$$\begin{split} f_{k,n-1}f_{k,n-2} &= f_{k,n-2}^k f_{k,n-3} \cdot f_{k,n-3}^k f_{k,n-4} \\ &= (f_{k,n-3}^k f_{k,n-4})^k \cdot f_{k,n-3}^k f_{k,n-3} f_{k,n-4}, \end{split}$$

and

$$\begin{split} f_{k,n-2}f_{k,n-1} &= f_{k,n-3}^k f_{k,n-4} \cdot f_{k,n-2}^k f_{k,n-3} \\ &= f_{k,n-3}^k f_{k,n-4} \cdot (f_{k,n-3}^k f_{k,n-4})^k \cdot f_{k,n-3} \\ &= (f_{k,n-3}^k f_{k,n-4})^k f_{k,n-3}^k f_{k,n-4} f_{k,n-3}. \end{split}$$

Hence the words have a common prefix of length $k(kF_{k,n-2} + F_{k,n-3}) + kF_{n-2} = k(F_{k,n-1} + F_{k,n-2})$. By the induction hypothesis $f_{k,n-3}f_{k,n-4}$ and $f_{k,n-4}f_{k,n-3}$ have a common prefix of length $F_{k,n-2} + F_{k,n-3} - 2$. Therefore the words have a common prefix of length

$$k(F_{k,n-1} + F_{k,n-2}) + F_{k,n-2} + F_{k,n-3} - 2 = F_{k,n} + F_{k,n-1} - 2.$$

Definition 13 Let $\Phi: \{0,1\}^* \to \{0,1\}^*$ be a map such that Φ deletes the last two symbols, i.e., $\Phi(\alpha_1\alpha_2\cdots\alpha_n) = \alpha_1\alpha_2\cdots\alpha_{n-2} \ (n \geq 2)$.

Corollary 14 The nth k-Fibonacci word, satisfy for all $n \ge 2$ that

- 1. $\Phi(f_{k,n-1}f_{k,n-2}) = \Phi(f_{k,n-2}f_{k,n-1}).$
- 2. $\Phi(f_{k,n-1}f_{k,n-2}) = f_{k,n-2}\Phi(f_{k,n-1}) = f_{k,n-1}\Phi(f_{k,n-2}).$
- 3. If $f_{k,n} = \Phi(f_{k,n})ab$, then $\Phi(f_{k,n-2})ab\Phi(f_{k,n-1}) = f_{k,n-1}\Phi(f_{k,n-2})$.

4. If
$$f_{k,n} = \Phi(f_{k,n})ab$$
, then $\Phi(f_{k,n-2})(ab\Phi(f_{k,n-1}))^k = \Phi(f_{k,n})$.

Proof. Parts (a) and (b) follow immediately from Proposition 12-(3) and because of $|f_{k,n}| \ge 2$ for all $n \ge 2$. (c) In fact, if $f_{k,n} = \Phi(f_{k,n})ab$ then from Proposition 12-(2) we have $f_{k,n-2} = \Phi(f_{k,n-2})ab$. Hence $\Phi(f_{k,n-2})ab\Phi(f_{k,n-1}) = f_{k,n-2}\Phi(f_{k,n-1}) = f_{k,n-1}\Phi(f_{k,n-2})$. (d) It is clear from (c) and definition of $f_{k,n}$.

Theorem 15 $\Phi(f_{k,n})$ is a palindrome for all $n \ge 1$ and $k \ge 1$.

Proof. By induction on n. If n=2 then $\Phi(f_{k,2})=(0^{k-1}1)^{k-1}0^{k-1}$ is a palindrome. Now suppose that the result is true for all j< n; we prove it for n.

$$\begin{split} (\Phi(f_{k,n}))^R &= (\Phi(f_{k,n-1}^k f_{k,n-2}))^R = (f_{k,n-1}^k \Phi(f_{k,n-2}))^R = \Phi(f_{k,n-2})^R (f_{k,n-1}^k)^R \\ &= \Phi(f_{k,n-2}) (f_{k,n-1}^R)^k. \end{split}$$

If n is even then $f_{k,n} = \Phi(f_{k,n})10$ and from Corollary 14-(4), we have that

$$\begin{split} (\Phi(f_{k,n}))^R &= \Phi(f_{k,n-2})((\Phi(f_{k,n-1})01)^R)^k = \Phi(f_{k,n-2})(10(\Phi(f_{k,n-1}))^R)^k \\ &= \Phi(f_{k,n-2})(10\Phi(f_{k,n-1}))^k = \Phi(f_{k,n}). \end{split}$$

If $\mathfrak n$ is odd, the proof is analogous.

Corollary 16 1. If $f_{k,n} = \Phi(f_{k,n})ab$ then $ba\Phi(f_{k,n})ab$ is a palindrome. 2. If u is a subword of the k-Fibonacci word, then so is its reversal, u^R .

Theorem 17 Let $\alpha = \left[0, \overline{k}\right]$ be an irrational number, with k a positive integer, then

$$\mathbf{w}(\alpha) = \mathbf{f}_k$$
.

Proof. Let $\alpha = [0, \overline{k}]$ an irrational number, then its associated standard sequence is

$$s_{-1}=1,\ s_0=0,\ s_1=s_0^{k-1}s_{-1}=0^{k-1}1\ \mathrm{and}\ s_n=s_{n-1}^ks_{n-2},\ n\geq 2.$$

Hence $\{s_n\}_{n>0} = \{f_{k,n}\}_{n>0}$ and from equation (2), we have

$$\mathbf{w}(\alpha) = \lim_{n \to \infty} s_n = \mathbf{f}_k$$
.

Remark. Note that

$$[0, \overline{k}] = \frac{1}{k + \frac{1}{k$$

From the above theorem, we conclude that k-Fibonacci words are Sturmian words.

A fractional power is a word of the form $z=x^ny$, where $n\in\mathbb{Z}^+$ and $x\in\Sigma^+$, and y is power power prefix of x. If |z|=p and |x|=q, we say that z is a p/q-power, or $z=x^{p/q}$. In the expression $x^{p/q}$, the number p/q is the power's exponent. For example, 01201201 is a 8/3-power, 01201201 = $(012)^{8/3}$. The index of an infinite word $\mathbf{w}\in\Sigma^\omega$ is defined by

$$Ind(w) := \sup\{r \in \mathbb{Q}_{\geqslant 1} : w \text{ contains an } r\text{-power}\}$$

For example $\operatorname{Ind}(\mathbf{f}) > 3$ because the cube $(010)^3$ occurs in \mathbf{f} at position 6. In [15] the authors proof that $\operatorname{Ind}(\mathbf{f}) = 2 + \phi \approx 3.618$. A general formula for the index of a Sturmian word was given in [8].

Theorem 18 If u is a Sturmian word of slope $\alpha = [0, \alpha_1, \alpha_2, \alpha_3, \ldots]$, then

Ind(w) =
$$\sup_{n \ge 0} \left\{ 2 + a_{n+1} + \frac{q_{n-1} - 2}{q_n} \right\},$$

where q_n is the denominator of $\alpha = [0, \alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n]$ and satisfies $q_{-1} = 0, q_0 = 1, q_{n+1} = \alpha_{n+1}q_n + q_{n-1}$.

Corollary 19 The index of k-Fibonacci words is $Ind(\mathbf{f}_k) = 2 + k + \frac{1}{r_{k,1}}$.

Proof. f_k is a Sturmian word of slope $\alpha = [0, \overline{k}]$, then it is clear that $q_n = F_{k,n+1}$, and from above theorem

$$\operatorname{Ind}(\mathbf{f}_{k}) = \sup_{n \geqslant 0} \left\{ 2 + k + \frac{F_{k,n} - 2}{F_{k,n+1}} \right\} = 2 + k + \frac{1}{r_{k,1}}.$$

4 The k-Fibonacci Word Curve

The Fibonacci word can be associated to a curve from a drawing rule. We must travel the word in a particular way, depending on the symbol read a particular action is produced, this idea is the same as that used in the L-Systems [17]. In this case, the drawing rule is called "odd-even drawing rule" [16], this is defined as shown in the following table.

Symbol	Action
1	Draw a line forward.
0	Draw a line forward and if the symbol 0 is in a position even
	then turn θ degree and if 0 is in a position odd then turn
	$-\theta$ degrees.

Definition 20 The nth-curve of Fibonacci, denoted by \mathcal{F}_n , is obtained by applying the odd-even drawing rule to the word f_n . The Fibonacci word fractal \mathcal{F} , is defined as

$$\mathcal{F} := \lim_{n \to \infty} \mathcal{F}_n$$
.

Example 21 In Figure 1 we show the curve \mathcal{F}_{10} and \mathcal{F}_{17} . The graphics in this paper were generated using the software Mathematica 9.0, [20].

Figure 1: Fibonacci curves \mathcal{F}_{10} and \mathcal{F}_{17} corresponding to the words f_{10} and f_{17}

Properties of Fibonacci Word Fractal can be found in [3, 4, 16].

Definition 22 The nth k-curve of Fibonacci, denoted by $\mathcal{F}_{k,n}$, is obtained by applying the odd-even drawing rule to the word $f_{k,n}$. The k-Fibonacci word curve \mathcal{F}_k is defined as

$$\mathcal{F}_k := \lim_{n \to \infty} \mathcal{F}_{k,n}$$
.

Table 1: Some curves $\mathcal{F}_{k,n}$ with $\theta = 90^{\circ}$

In Table 1, we show some curves $\mathcal{F}_{k,n}$ with an angle $\theta = 90^{\circ}$.

In Table 2, we show some curves $\mathcal{F}_{k,n}$ with an angle $\theta=60^{\circ}$. In general these curves have a lot of patterns because the index is large, see Corollary 19.

Proposition 23 The k-Fibonacci word curve and the curve $\mathcal{F}_{k,n}$ have the following properties:

- 1. The k-Fibonacci curve \mathcal{F}_k is composed only of segments of length 1 or 2.
- 2. The $\mathcal{F}_{k,n}$ is symmetric.
- 3. The number of turns in the curve $\mathcal{F}_{k,n}$ is $F_{k,n}+F_{k,n-1}$.
- 4. If n is even then the $\mathcal{F}_{k,n}$ curve is similar to the curve $\mathcal{F}_{k,n-2}$ and if n is odd then the $\mathcal{F}_{k,n}$ curve is similar to the curve $\mathcal{F}_{k,n-3}$.

Proof.

- 1. It is clear from Proposition 12-1, because 110 and 111 are not subwords of \mathbf{f}_k .
- 2. It is clear from Theorem 15, because $f_{k,n} = \Phi(f_{k,n})ab$, where $\Phi(f_{k,n})$ is a palindrome.
- 3. It is clear from definition of odd-even drawn rule and because $|f_{k,n+1}|_0 = F_{k,n+1} + F_{k,n}$.

Table 2: Some curves $\mathcal{F}_{k,n}$ with $\theta = 60^{\circ}$

4. If n is even. It is clear that $\sigma_k^2(f_{k,n-2}) = f_{k,n}$. We are going to proof that σ_k^2 guaranties the odd-even alternation required by the odd-even drawing rule. In fact, $\sigma_k^2(0) = \sigma_k(0^{k-1}1) = (0^{k-1}1)^k 0$ and $\sigma_k^2(1) = (0^{k-1}1)^k 0^k 1$. As k is even, then $|\sigma_k^2(0)|$ and $|\sigma_k^2(1)|$ are odd. Hence if |w| is even (odd) then $|\sigma_k^2(w)|$ is even (odd). Since σ_k^2 preserves the parity of length then any subword in the k-Fibonacci word preserves the parity of position.

Finally, we have to proof that the resulting angle of a pattern must be preserved or inverted by σ_k^2 . Let a(w) be the function that gives the resulting angle of a word w through the odd-even drawing rule of angle

$$\begin{array}{l} \theta. \ \mathrm{Note \ that} \ \alpha(00) = 0^{\circ}, \alpha(01) = -\theta^{\circ} \ \mathrm{and} \ \alpha(10) = \theta^{\circ}. \ \mathrm{Therefore} \\ \alpha(\sigma_k^2(00)) = \alpha((0^{k-1}1)^k 0 (0^{k-1}1)^k 0) \\ \qquad = \alpha((0^{k-1}1)^k) \alpha(00^{k-1}) \alpha(1(0^{k-1}1)^{k-1}0) \\ \qquad = -k\theta^{\circ} + 0^{\circ} + k\theta^{\circ} = 0^{\circ} \\ \alpha(\sigma_k^2(01)) = \alpha((0^{k-1}1)^k 0 (0^{k-1}1)^k 0^k 1) \\ \qquad = \alpha((0^{k-1}1)^k) \alpha(00^{k-1}) \alpha(1(0^{k-1}1)^{k-1}0) \alpha(0^{k-1}1) \\ \qquad = -k\theta^{\circ} + 0^{\circ} + k\theta^{\circ} - \theta^{\circ} = -\theta^{\circ} \\ \alpha(\sigma_k^2(10)) = \alpha((0^{k-1}1)^k 0^k 1 (0^{k-1}1)^k 0) \\ \qquad = \alpha((0^{k-1}1)^k) \alpha(0^k) \alpha(1(0^{k-1}1)^k 0) \\ \qquad = -k\theta^{\circ} + 0^{\circ} + (k+1)\theta^{\circ} = \theta^{\circ} \end{array}$$

Then σ_k^2 inverts the resulting angle, i.e., $a(w) = -a(\sigma_k^2(w))$ for any word w. Therefore the image of a pattern by σ_k^2 is the rotation of this pattern by a rotation of $-\theta^{\circ}$. Since $\sigma_k^2(f_{k,n-2}) = f_{k,n}$, then the curve $\mathcal{F}_{k,n}$ is similar to the curve $\mathcal{F}_{k,n-2}$.

If n is odd the proof is similar, but using σ_k^3 .

Example 24 In Figure 2 $\mathcal{F}_{4,4}$ looks similar to $\mathcal{F}_{4,6}$, $\mathcal{F}_{4,8}$ and so on.

Figure 2: Curves $\mathcal{F}_{4,4}$, $\mathcal{F}_{4,6}$, $\mathcal{F}_{4,8}$ with $\theta=60^{\circ}$

In Figure 3 $\mathcal{F}_{5,3}$ looks similar to $\mathcal{F}_{5,6}$.

Acknowledgements

The first author was partially supported by Universidad Sergio Arboleda under grant number USA-II-2012-14.

Figure 3: Curves $\mathcal{F}_{5,3}, \mathcal{F}_{5,6}$ with $\theta = 60^{\circ}$

References

- J. Allouche, J. Shallit, Automatic Sequences, Cambridge University Press, 2003.
 ⇒ 214, 216
- [2] J. Berstel, Fibonacci words—a survey, in: G. Rosenberg, A. Salomaa (Eds.), *The Book of L*, Springer, Berlin, 1986, pp. 11–26. \Rightarrow 213
- [3] A. Blondin-Mass, S. Brlek, A. Garon, S. Labb, Two infinite families of polyominoes that tile the plane by translation in two distinct ways, *Theoret. Comput. Sci.* **412** (2011) 4778–4786. \Rightarrow 213, 221
- [4] A. Blondin-Mass, S. Brlek, S. Labb, M. Mends France, Complexity of the Fibonacci snowflake, Fractals **20** (2012) 257–260. \Rightarrow 221
- [5] C. Bolat, H. Kse, On the properties of k-Fibonacci numbers, Int. J. Contemp. Math. Sciences, 22, 5 (2010) 1097–1105. \Rightarrow 213
- [6] J. Cassaigne, On extremal properties of the Fibonacci word, RAIRO Theor. Inf. Appl. 42, (4) (2008) 701–715. \Rightarrow 213
- [7] W. Chuan, Fibonacci words, Fibonacci Quart., 30, 1 (1992) 68–76. \Rightarrow 213
- [8] D. Damanik, D. Lenz, The index of Sturmian sequences, European J. Combin.,
 23 (2002) 23–29. ⇒220
- [9] A. de Luca, Sturmian words: structure, combinatorics, and their arithmetics, *Theor. Comput. Sci.* **183**, 1 (1997) 45–82. \Rightarrow 213
- [10] S. Falcon, A. Plaza, On k-Fibonacci sequences and polynomials and their derivatives, Chaos Solitons Fractals 39, 3 (2009) 1005–1019. ⇒213
- [11] S. Falcon, A. Plaza, On the Fibonacci k-numbers, Chaos Solitons Fractals 32, 5 (2007) 1615-1624. $\Rightarrow 212, 213$
- [12] S. Falcon, A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Solitons Fractals 33, 1 (2007) 38–49. \Rightarrow 213
- [13] T. Koshy, Fibonacci and Lucas numbers with Applications, Wiley-Interscience, 2001. \Rightarrow 212
- [14] M. Lothaire, Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2002. ⇒213, 214, 215, 216

- [15] F. Mignosi, G. Pirillo, Repetitions in the Fibonacci infinite word, RAIRO Theor. Inf. Appl. **26** (1992) 199–204. \Rightarrow 213, 220
- [16] A. Monnerot, The Fibonacci word fractal, preprint, 2009. \Rightarrow 213, 221
- [17] P. Prusinkiewicz, A. Lindenmayer, The Algorithmic Beauty of Plants, Springer-Verlag, Nueva York, 2004. \Rightarrow 221
- [18] J. Ramírez, Incomplete k-Fibonacci and k-Lucas numbers, Chinese Journal of Mathematics (2013). \Rightarrow 213
- [19] J. Ramírez. Some properties of convolved k-Fibonacci numbers. ISRN Combinatorics (2013) ID759641, 5pp. \Rightarrow 213
- [20] J. Ramírez, G. Rubiano, Generating fractals curves from homomorphisms between languages [with Mathematica®] (Spanish), Rev. Integr. Temas Mat. 30, $2 (2012) 129-150. \Rightarrow 221$
- [21] J. Ramírez, G. Rubiano, R. de Castro, A generalization of the Fibonacci word fractal and the Fibonacci snowflake, preprint arXiv:1212.1368, 2013. \Rightarrow 213
- [22] W. Rytter, The structure of subword graphs and suffix trees of Fibonacci words, Theoret. Comput. Sci. 363, 2 (2006) 211–223. ⇒213
- [23] A. Salas. About k-Fibonacci numbers and their associated numbers, *Int. Math. Forum.* **50**, 6 (2011) 2473–2479. \Rightarrow 213

Received: June 12, 2013 • Revised: October 25, 2013