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On the k-Fibonacci words
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Abstract. In this paper we define the k-Fibonacci words in analogy with
the definition of the k-Fibonacci numbers. We study their properties and
we associate to this family of words a family of curves with interesting
patterns.

1 Introduction

Fibonacci numbers and their generalizations have many interesting properties
and applications to almost every fields of science and arts (e.g. see [13]). The
Fibonacci numbers Fn are the terms of the sequence 0, 1, 1, 2, 3, 5, . . . wherein
each term is the sum of the two previous terms, beginning with the values
F0 = 0, and F1 = 1.
Besides the usual Fibonacci numbers many kinds of generalizations of these

numbers have been presented in the literature. In particular, a generalization
is the k-Fibonacci numbers [11].
For any positive real number k, the k-Fibonacci sequence, say {Fk,n}n∈N is

defined recurrently by

Fk,0 = 0, Fk,1 = 1 and Fk,n+1 = kFk,n + Fk,n−1, n � 1. (1)
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In [11], k-Fibonacci numbers were found by studying the recursive applica-
tion of two geometrical transformations used in the four-triangle longest-edge
(4TLE) partition. These numbers have been studied in several papers, see
[5, 10, 11, 12, 18, 19, 23].
The characteristic equation associated to the recurrence relation (1) is x2 =

kx+ 1. The roots of this equation are

rk,1 =
k+

√
k2 + 4

2
, and rk,2 =

k−
√
k2 + 4

2
.

Some of the properties that the k-Fibonacci numbers verify are (see [11, 12]
for the proofs).

• Binet Formula: Fk,n =
rnk,1−rnk,2
rk,1−rk,2

.

• Combinatorial Formula: Fk,n =
∑�n−1

2
�

i=0

(
n−1−i

i

)
kn−1−2i.

• limn→∞

Fk,n
Fk,n−1

= rk,1.

On the other hand, there is a word-combinatorial interpretation of the Fi-
bonacci sequence. Fibonacci words are words over {0,1} defined recursively as
follows:

f0 = 1, f1 = 0, fn = fn−1fn−2, n � 2.

The words fn are referred to as the finite Fibonacci words and it is clear that
|fn| = Fn+1. The limit

f = lim
n→∞

fn = 0100101001001010010100100101 · · ·

is called the Fibonacci word. This word is certainly one of the most studied
words in the combinatorics on words, (see, e.g., [2, 6, 7, 9, 15, 22]). It is
the archetype of a Sturmian word [14]. This word can be associated with a
curve, which has fractal properties obtained from combinatorial properties of
f [3, 16, 21].
In this paper we introduce a family of words fk that generalize the Fibonacci

word. Specifically, the k-Fibonacci words are words over {0,1} defined induc-
tively as follows

fk,0 = 0, fk,1 = 0k−11, fk,n = fkk,n−1fk,n−2,
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for all n ≥ 2 and k ≥ 1. Then it is clear that |fk,n| = Fk,n+1. The infinite word

fk := lim
n→∞

fk,n

is called the k-Fibonacci word. In connection with this definition, we investi-
gate some new combinatorial properties and we associate a family of curves
with interesting patterns.

2 Definitions and notation

The terminology and notations are mainly those of Lothaire [14] and Allouche
and Shallit [1].
Let Σ be a finite alphabet, whose elements are called symbols. A word over

Σ is a finite sequence of symbols from Σ. The set of all words over Σ, i.e.,
the free monoid generated by Σ, is denoted by Σ∗. The identity element ε of
Σ∗ is called the empty word and Σ+ = Σ∗ \ {ε}. For any word w ∈ Σ∗, |w|

denotes its length, i.e., the number of symbols occurring in w. The length of ε
is taken to be equal to 0. If a ∈ Σ and w ∈ Σ∗, then |w|a denotes the number
of occurrences of a in w.
For two words u = a1a2 · · ·ak and v = b1b2 · · ·bs in Σ∗ we denote by uv the

concatenation of the two words, that is, uv = a1a2 · · ·akb1b2 · · ·bs. If v = ε

then uε = εu = u, moreover, by un we denote the word uu · · ·u (n times). A
word v is a subword (or factor) of u if there exist x, y ∈ Σ∗ such that u = xvy.
If x = ε (y = ε), then v is called prefix (suffix) of u.
The reversal of a word u = a1a2 · · ·an is the word uR = an · · ·a2a1 and

εR = ε. A word u is a palindrome if uR = u.
An infinite word over Σ is a map u : N → Σ. It is written u = a1a2a3 · · · .

The set of all infinite words over Σ is denoted by Σω.

Example 1 The word p = (pn)n≥1 = 0110101000101 · · · , where pn = 1 if n
is a prime number and pn = 0 otherwise, is an example of an infinite word. p
is called the characteristic sequence of the prime numbers.

Definition 2 Let Σ and Δ be alphabets. A morphism is a map h : Σ∗ → Δ∗

such that h(xy) = h(x)h(y) for all x, y ∈ Σ∗. It is clear that h(ε) = ε.

There is a special class of words, with many remarkable properties, the so-
called Sturmian words. These words admit several equivalent definitions (see,
e.g. [1] or [14]).
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Definition 3 Let w ∈ Σω. We define P(w, n), the complexity function of w,
to be the map that counts, for all integer n ≥ 0, the number of subwords of
length n in w. An infinite word w is a Sturmian word if P(w, n) = n+ 1 for
all integer n ≥ 0.

Since for any Sturmian word P(w, 1) = 2, then Sturmian words are over
two symbols. The word p, in Example 1, is not a Sturmian word because
P(p, 2) = 4.
Given two real numbers α,β ∈ R with α irrational and 0 < α < 1, 0 ≤ β < 1,

we define the infinite word w = w1w2w3 · · · as

wn = �(n+ 1)α+ β�− �nα+ β�.

The numbers α and β are the slope and the intercept, respectively. This word
is called mechanical. The mechanical words are equivalent to Sturmian words
[14]. As special case, when β = 0, we obtain the characteristic words.

Definition 4 Let α be an irrational number with 0 < α < 1. For n ≥ 1,
define

wα(n) := �(n+ 1)α�− �nα� ,

and

w(α) := wα(1)wα(2)wα(3) · · · ,

then w(α) is called a characteristic word with slope α.

On the other hand, note that every irrational α ∈ (0, 1) has a unique con-
tinued fraction expansion

α = [0, a1, a2, a3, . . .] =
1

a1 +
1

a2 +
1

a3 + · · ·

,

where each ai is a positive integer. Let α = [0, 1+ d1, d2, . . . ] be an irra-
tional number with d1 ≥ 0 and dn > 0 for n > 1. To the directive sequence
(d1, d2, . . . , dn, . . . ), we associate a sequence (sn)n≥−1 of words defined by

s−1 = 1, s0 = 0, sn = sdn

n−1sn−2, (n ≥ 1).
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Such a sequence of words is called a standard sequence. This sequence is related
to characteristic words in the following way. Observe that, for any n ≥ 0, sn
is a prefix of sn+1, which gives meaning to limn→∞ sn as an infinite word. In
fact, one can prove [14] that each sn is a prefix of w(α) for all n ≥ 0 and

w(α) = lim
n→∞

sn. (2)

Example 5 The infinite Fibonacci word f = 0100101001001010 · · · is a Stur-

mian word [14], exactly f = w
(

1
φ2

)
where φ = 1+

√
5

2 is the golden ratio.

Definition 6 The Fibonacci morphism σ : {0,1} → {0,1} is defined by σ(0) =
01 and σ(1) = 0.

The Fibonacci word f satisfies that limn→∞ σn(1) = f [1].

3 The k-Fibonacci words

Definition 7 The nth k-Fibonacci words are words over {0,1} defined induc-
tively as follows

fk,0 = 0, fk,1 = 0k−11, fk,n = fkk,n−1fk,n−2,

for all n ≥ 2 and k ≥ 1. The infinite word

fk := lim
n→∞

fk,n

is called the k-Fibonacci word.

It is clear that |fk,n| = Fk,n+1. For k = 1 we have the word f = 1011010110110 . . .,
where a is a morphism, with a ∈ {0, 1}, defined by 0 = 1, 1 = 0.

Example 8 The first k-Fibonacci words are

f1 = 1011010110110 · · · = f , f2 = 0101001010010 · · · , f3 = 0010010010001 · · · ,
f4 = 0001000100010 · · · , f5 = 0000100001000 · · · , f6 = 0000010000010 · · · .

Definition 9 The k-Fibonacci morphism σk : {0,1} → {0,1} is defined by
σk(0) = 0k−11 and σk(1) = 0k−110.

Theorem 10 For all n ≥ 0, σn
k (0) = fk,n and σn+1

k (1) = fk,n+1fk,n. Hence,
the k-Fibonacci word fk satisfies that limn→∞ σn(0) = fk.
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Proof. We prove the two assertions about σn
k by induction on n. They are

clearly true for n = 0, 1. Assume for all j < n; we prove them for n:

σn+1
k (0) = σn

k (0
k−11) = (σn

k (0))
k−1σn

k (1) = fk−1
k,n fk,nfk,n−1 = fkk,nfk,n−1 = fk,n+1.

σn+2
k (1) = σn+1

k (0k−110) = (σn+1
k (0))k−1σn+1

k (1)σn+1
k (0) = fk−1

k,n+1fk,n+1fk,nfk,n+1

= fkk,n+1fk,nfk,n+1 = fk,n+2fk,n+1. �

Proposition 11

1. |fk,n|1 = Fk,n and |fk,n+1|0 = Fk,n+1 + Fk,n for all n � 0.

2. lim
n→∞

|fk,n|

|fk,n|0
=

r2k,1
1+ rk,1

.

3. lim
n→∞

|fk,n|

|fk,n|1
= rk,1.

4. lim
n→∞

|fk,n|0
|fk,n|1

= 1+
1

rk,1
.

Proof.

1. It is clear by induction on n.

2. lim
n→∞

|fk,n|

|fk,n|0
= lim

n→∞

Fk,n+1

Fk,n + Fk,n−1
= lim

n→∞

Fk,n+1

Fk,n

1+ Fk,n−1

Fk,n

=
r2k,1

1+ rk,1
.

3. lim
n→∞

|fk,n|

|fk,n|1
= lim

n→∞

Fk,n+1

Fk,n
= rk,1.

4. lim
n→∞

|fk,n|0
|fk,n|1

= lim
n→∞

Fk,n + Fk,n−1

Fk,n
= 1+

1

rk,1
.

�

Proposition 12 The k-Fibonacci word and the nth k-Fibonacci word satisfy
that

1. The word 11 is not a subword of the k-Fibonacci word, k ≥ 2.

2. Let ab be the last two symbols of fk,n. For n ≥ 1, we have ab = 10 if n
is even and ab = 01 if n is odd, k ≥ 2.

3. The concatenation of two successive k-Fibonacci words is “almost com-
mutative”, i.e., fk,n−1fk,n−2 and fk,n−2fk,n−1 have a common prefix the
length Fk,n + Fk,n−1 − 2 for all n ≥ 2.
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Proof.

1. It suffices to prove that 11 is not a subword of fk,n, for all n ≥ 0. By
induction on n. For n = 0, 1 it is clear. Assume for all j < n; we prove it
for n. We know that fk,n = fkk,n−1fk,n−2 so by the induction hypothesis
we have that 11 is not a subword of fk,n−1 and fk,n−2. Therefore, the
only possibility is that 1 is a suffix and prefix of fk,n−1 or 1 is a suffix of
fk,n−1 and a prefix of fk,n−2, both there are impossible.

2. By induction on n. For n = 1, 2 it is clear. Assume for all j < n; we
prove it for n. We know that fk,n+1 = fkk,nfk,n−1, if n+ 1 is even then by
the induction hypothesis the last two symbols of fk,n−1 are 10, therefore
the last two symbols of fk,n+1 are 10. Analogously, if n+ 1 is odd.

3. By induction on n. For n = 1, 2 it is clear. Assume for all j < n; we
prove it for n. By definition of fk,n, we have

fk,n−1fk,n−2 = fkk,n−2fk,n−3 · fkk,n−3fk,n−4

= (fkk,n−3fk,n−4)
k · fkk,n−3fk,n−3fk,n−4,

and

fk,n−2fk,n−1 = fkk,n−3fk,n−4 · fkk,n−2fk,n−3

= fkk,n−3fk,n−4 · (fkk,n−3fk,n−4)
k · fk,n−3

= (fkk,n−3fk,n−4)
kfkk,n−3fk,n−4fk,n−3.

Hence the words have a common prefix of length k(kFk,n−2 + Fk,n−3) +
kFn−2 = k(Fk,n−1+ Fk,n−2). By the induction hypothesis fk,n−3fk,n−4 and
fk,n−4fk,n−3 have a common prefix of length Fk,n−2+Fk,n−3−2. Therefore
the words have a common prefix of length

k(Fk,n−1 + Fk,n−2) + Fk,n−2 + Fk,n−3 − 2 = Fk,n + Fk,n−1 − 2. �

Definition 13 Let Φ : {0, 1}∗ → {0, 1}∗ be a map such that Φ deletes the last
two symbols, i.e., Φ(a1a2 · · ·an) = a1a2 · · ·an−2 (n ≥ 2).

Corollary 14 The nth k-Fibonacci word, satisfy for all n � 2 that

1. Φ(fk,n−1fk,n−2) = Φ(fk,n−2fk,n−1).

2. Φ(fk,n−1fk,n−2) = fk,n−2Φ(fk,n−1) = fk,n−1Φ(fk,n−2).

3. If fk,n = Φ(fk,n)ab, then Φ(fk,n−2)abΦ(fk,n−1) = fk,n−1Φ(fk,n−2).
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4. If fk,n = Φ(fk,n)ab, then Φ(fk,n−2)(abΦ(fk,n−1))
k = Φ(fk,n).

Proof. Parts (a) and (b) follow immediately from Proposition 12-(3) and be-
cause of |fk,n| � 2 for all n � 2. (c) In fact, if fk,n = Φ(fk,n)ab then from Propo-
sition 12-(2) we have fk,n−2 = Φ(fk,n−2)ab. Hence Φ(fk,n−2)abΦ(fk,n−1) =
fk,n−2Φ(fk,n−1) = fk,n−1Φ(fk,n−2). (d) It is clear from (c) and definition of
fk,n. �

Theorem 15 Φ(fk,n) is a palindrome for all n ≥ 1 and k ≥ 1.

Proof. By induction on n. If n = 2 then Φ(fk,2) = (0k−11)k−10k−1 is a palin-
drome. Now suppose that the result is true for all j < n; we prove it for
n.

(Φ(fk,n))
R = (Φ(fkk,n−1fk,n−2))

R = (fkk,n−1Φ(fk,n−2))
R = Φ(fk,n−2)

R(fkk,n−1)
R

= Φ(fk,n−2)(f
R
k,n−1)

k.

If n is even then fk,n = Φ(fk,n)10 and from Corollary 14-(4), we have that

(Φ(fk,n))
R = Φ(fk,n−2)((Φ(fk,n−1)01)

R)k = Φ(fk,n−2)(10(Φ(fk,n−1))
R)k

= Φ(fk,n−2)(10Φ(fk,n−1))
k = Φ(fk,n).

If n is odd, the proof is analogous. �

Corollary 16 1. If fk,n = Φ(fk,n)ab then baΦ(fk,n)ab is a palindrome.

2. If u is a subword of the k-Fibonacci word, then so is its reversal, uR .

Theorem 17 Let α =
[
0, k

]
be an irrational number, with k a positive integer,

then

w(α) = fk.

Proof. Let α =
[
0, k

]
an irrational number, then its associated standard

sequence is

s−1 = 1, s0 = 0, s1 = sk−1
0 s−1 = 0k−11 and sn = skn−1sn−2, n ≥ 2.

Hence {sn}n≥0 = {fk,n}n≥0 and from equation (2), we have

w(α) = limn→∞ sn = fk. �
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Remark. Note that

[
0, k

]
=

1

k+
1

k+
1

k+
1

. . .

=
−k+

√
k2 + 4

2
= −rk,2

From the above theorem, we conclude that k-Fibonacci words are Sturmian
words.
A fractional power is a word of the form z = xny, where n ∈ Z+ and x ∈ Σ+,

and y is power power prefix of x. If |z| = p and |x| = q, we say that z is a
p/q-power, or z = xp/q. In the expression xp/q, the number p/q is the power’s
exponent. For example, 01201201 is a 8/3-power, 01201201 = (012)8/3. The
index of an infinite word w∈ Σω is defined by

Ind(w) := sup{r ∈ Q�1 : w contains an r-power}

For example Ind(f)> 3 because the cube (010)3 occurs in f at position 6. In
[15] the authors proof that Ind(f)=2 + φ ≈ 3.618. A general formula for the
index of a Sturmian word was given in [8].

Theorem 18 If u is a Sturmian word of slope α = [0, a1, a2, a3, . . . ], then

Ind(w) = sup
n�0

{
2+ an+1 +

qn−1 − 2

qn

}
,

where qn is the denominator of α = [0, a1, a2, a3, . . . , an] and satisfies q−1 =
0, q0 = 1, qn+1 = an+1qn + qn−1.

Corollary 19 The index of k-Fibonacci words is Ind(fk) = 2+ k+ 1
rk,1

.

Proof. fk is a Sturmian word of slope α =
[
0, k

]
, then it is clear that qn =

Fk,n+1, and from above theorem

Ind(fk) = sup
n�0

{
2+ k+

Fk,n − 2

Fk,n+1

}
= 2+ k+

1

rk,1
. �
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4 The k-Fibonacci Word Curve

The Fibonacci word can be associated to a curve from a drawing rule. We must
travel the word in a particular way, depending on the symbol read a particular
action is produced, this idea is the same as that used in the L-Systems [17].
In this case, the drawing rule is called “odd-even drawing rule” [16], this is
defined as shown in the following table.

Symbol Action

1 Draw a line forward.

0 Draw a line forward and if the symbol 0 is in a position even
then turn θ degree and if 0 is in a position odd then turn
−θ degrees.

Definition 20 The nth-curve of Fibonacci, denoted by Fn, is obtained by
applying the odd-even drawing rule to the word fn. The Fibonacci word fractal
F , is defined as

F := lim
n→∞

Fn.

Example 21 In Figure 1 we show the curve F10 and F17. The graphics in
this paper were generated using the software Mathematica 9.0, [20].

Figure 1: Fibonacci curves F10 and F17 corresponding to the words f10 and f17

Properties of Fibonacci Word Fractal can be found in [3, 4, 16].

Definition 22 The nth k-curve of Fibonacci, denoted by Fk,n, is obtained by
applying the odd-even drawing rule to the word fk,n. The k-Fibonacci word
curve Fk is defined as

Fk := lim
n→∞

Fk,n.



222 J. Ramı́rez, G. Rubiano

F1,18 F5,6

F6,6 F7,6

Table 1: Some curves Fk,n with θ = 90◦

In Table 1, we show some curves Fk,n with an angle θ = 90◦.
In Table 2, we show some curves Fk,n with an angle θ = 60◦. In general

these curves have a lot of patterns because the index is large, see Corollary
19.

Proposition 23 The k-Fibonacci word curve and the curve Fk,n have the
following properties:

1. The k-Fibonacci curve Fk is composed only of segments of length 1 or 2.

2. The Fk,n is symmetric.

3. The number of turns in the curve Fk,n is Fk,n + Fk,n−1.

4. If n is even then the Fk,n curve is similar to the curve Fk,n−2 and if n
is odd then the Fk,n curve is similar to the curve Fk,n−3.

Proof.

1. It is clear from Proposition 12-1, because 110 and 111 are not subwords
of fk.

2. It is clear from Theorem 15, because fk,n = Φ(fk,n)ab, where Φ(fk,n) is
a palindrome.

3. It is clear from definition of odd-even drawn rule and because |fk,n+1|0 =
Fk,n+1 + Fk,n.
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F2,10 F4,7

F6,4 F7,6

Table 2: Some curves Fk,n with θ = 60◦

4. If n is even. It is clear that σ2
k(fk,n−2) = fk,n. We are going to proof that

σ2
k guaranties the odd-even alternation required by the odd-even drawing

rule. In fact, σ2
k(0) = σk(0

k−11) = (0k−11)k0 and σ2
k(1) = (0k−11)k0k1.

As k is even, then |σ2
k(0)| and |σ2

k(1)| are odd. Hence if |w| is even (odd)
then |σ2

k(w)| is even (odd). Since σ2
k preserves the parity of length then

any subword in the k-Fibonacci word preserves the parity of position.

Finally, we have to proof that the resulting angle of a pattern must be
preserved or inverted by σ2

k. Let a(w) be the function that gives the
resulting angle of a word w through the odd-even drawing rule of angle
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θ. Note that a(00) = 0◦, a(01) = −θ◦ and a(10) = θ◦. Therefore

a(σ2
k(00)) = a((0k−11)k0(0k−11)k0)

= a((0k−11)k)a(00k−1)a(1(0k−11)k−10)

= −kθ◦ + 0◦ + kθ◦ = 0◦

a(σ2
k(01)) = a((0k−11)k0(0k−11)k0k1)

= a((0k−11)k)a(00k−1)a(1(0k−11)k−10)a(0k−11)

= −kθ◦ + 0◦ + kθ◦ − θ◦ = −θ◦

a(σ2
k(10)) = a((0k−11)k0k1(0k−11)k0)

= a((0k−11)k)a(0k)a(1(0k−11)k0)

= −kθ◦ + 0◦ + (k+ 1)θ◦ = θ◦

Then σ2
k inverts the resulting angle, i.e., a(w) = −a(σ2

k(w)) for any word
w. Therefore the image of a pattern by σ2

k is the rotation of this pattern
by a rotation of −θ◦. Since σ2

k(fk,n−2) = fk,n, then the curve Fk,n is
similar to the curve Fk,n−2.

If n is odd the proof is similar, but using σ3
k.

�

Example 24 In Figure 2 F4,4 looks similar to F4,6,F4,8 and so on.

Figure 2: Curves F4,4,F4,6,F4,8 with θ = 60◦

In Figure 3 F5,3 looks similar to F5,6.
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Figure 3: Curves F5,3,F5,6 with θ = 60◦
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