
Acta Univ. Sapientiae, Informatica, 5, 2 (2013) 184–211

Yang-Mills lattice on CUDA

Richárd FORSTER
Eötvös University

email: forceuse@inf.elte.hu

Ágnes FÜLÖP
Eötvös University

email: fulop@caesar.elte.hu

Abstract. The Yang-Mills fields have an important role in the non-
Abelian gauge field theory which describes the properties of the quark-
gluon plasma. The real time evolution of the classical fields is given by the
equations of motion which are derived from the Hamiltonians to contain
the term of the SU(2) gauge field tensor. The dynamics of the classi-
cal lattice Yang-Mills equations are studied on a 3 dimensional regular
lattice. During the solution of this system we keep the total energy on
constant values and it satisfies the Gauss law. The physical quantities
are desired to be calculated in the thermodynamic limit. The broadly
available computers can handle only a small amount of values, while the
GPUs provide enough performance to reach out for higher volumes of
lattice vertices which approximates the aforementioned limit.

1 Introduction

In particle physics there are many fundamental questions which demand the
GPU, from both theoretical and experimental point of view. In the CERN
NA61 collaboration one of the most important research field is the quark-
gluon plasma’s critical point examination. The topics of theoretical physics
includes the lattice field theory which is a crossover phase transition in the
quark gluon plasma and SU(N) gauge theory with topological lattice action
in the QCD.
We present an algorithm which determines the real time dynamics of Yang-

Mills fields which uses the parallel capabilities of the CUDA platform. We

Computing Classification System 1998: I.1.4
Mathematics Subject Classification 2010: 81T25
Key words and phrases: lattice gauge field, parallel computing, GPU, CUDA

184

DOI: 10.2478/ausi-2014-0010

szabo.beata
Typewritten Text



Yang-Mills lattice on CUDA 185

compare this and the original sequential CPU based program in terms of effi-
ciency and performance.
The real time evolution of these non-Abelian gauge fields is written by the

Hamiltonian lattice SU(2) equation of motions [9, 1]. A lattice method was
developed to solve these systems on the 3 dimensional space which satisfies
Noether theory [2]. This algorithm keeps the Gauss law, the constraint of total
energy and the unitary, orthogonality of the suitable link variable. It enables
us to study the chaotic behavior as full complex Lyapunov spectrum of SU(2)
Yang-Mills fields and the entropy-energy relation utilizing the Kolmogorov-
Sinai entropy which was extrapolated to the large size limit by this numerical
algorithm [6].
In the parallel algorithm all the links are computed concurrently by assigning

a thread to each of them. By taking advantage of the GPUs highly parallel
architecture this increases the precision of the calculation by allowing us to
utilize more dense lattices. Just by adding a few more points to the lattice,
the link count can increase drastically which makes this problem a very pa-
rallel friendly application which can utilize the high amount of computational
resources available in modern day GPUs [8].
By extending the available CPU based implementation we were able to

achieve a 28 times faster runtime compared to the original algorithm. This
approach does not involve any special optimization strategies which will im-
pose more performance boost in future releases.
In the original concept the calculations on the GPU were using only single

precision floating point numbers to make the evaluations work on older gen-
eration cards too, but with the possibility to utilize double precision values,
it is possible to achieve higher precision in energy calculation on the GPU as
well.
There are more kind of open questions in the high energy physics which

can be interesting for the GPU like studying the Yang-Mills-Higgs equations
and the monopoles in the lattice QCD. The action function permits to use the
thermalization of the quantum field theory in the non-equilibrium states. The
solution of these problems requires high calculation power and efficiency.
This paper is constructed as follows. First we review basic definitions dealing

with the Yang-Mills fields on lattice, then introducing the basic principles
of the GPU programming in CUDA and finally we present numerical results
providing comparisons between the CPU and GPU runtimes, extrapolate them
for large N values, show the ratio between the sequential and parallel fraction
of the algorithm, concluding with the thermodynamic limit of the total energy.



186 R. Forster, Á. Fülöp

2 Homogeneous Yang-Mills fields

The non-Abelian gauge field theory was introduced as generalizing the gauge
invariant of electrodynamics to non-Abelian Lie groups which leads to under-
stand the strong interaction of elementary particles. The homogeneous Yang-
Mills contains the quadratic part of the gauge field strength tensor [4, 10].
The Faμν forms the component of an antisymmetric gauge field tensor in the

Minkowski space, it is expressed by gauge fields Aa
μ:

Faμν = ∂μA
a
ν − ∂νA

a
μ + gfabcAb

μA
c
ν, (1)

where μ, ν = 0, 1, 2, 3 are space-time coordinates, the symmetry generators are
labeled by a, b, c = 1, 2, 3, g is the bare gauge coupling constant and fabc is
the structure constant of the continuous Lie group. The generators of the Lie
group fulfills the following relationship [Tb, Tc] = ifbcdTd.
The equation of motion can be expressed by covariant derivative in the

adjoin representation:

∂μFaμν + gfabcAbμFcμν = 0. (2)

We use Hamiltonian approach to investigate the real time dynamics of these
systems SU(2). The lattice regularization of such theories were studied nume-
rically.

3 Lattice Yang-Mills theory

The real time coupled differential equations of motion are solved by numerical
method for basic variables which form matrix-valued link in the 3 dimensional
lattice with lattice elementary size a (Figure 1). These are group elements
which are related to the Yang-Mills potential Ac

i :

Ux,i = exp(aAc
i (x)T

c), where Tc is a group generator.

For SU(2) symmetry group these links are given by the Pauli matrices τ, where
Tc = −(ig/2)τc. The indices x, i denote the link of the lattice which starts at
the 3 dimensional position x and pointing into the nearest neighbor in direction
i, x+ i.
In this article we study the Hamiltonian lattice which can be written as a

sum over single link contribution [1, 3]:

H =
∑
x,i

[
1

2
〈U̇x,i, U̇x,i〉+

(
1−

1

4
〈Ux,i, Vx,i〉

)]
, (3)



Yang-Mills lattice on CUDA 187

Figure 1: Wilson loop

where 〈A,B〉 = tr(AB†) and Vx,i are complement link variables, these are
constructed by products of Ux,i-s along all link triples which close with given
link (x, i) an elementary plaquette. The canonical variable is Px,i = U̇x,i and a
dot means the time derivative.
The non-Abelian gauge field strength can be expressed by the oriented pla-

quette i.e. product of four links on an elementary box with corners (x, x+ i,

x+ i+ j, x+ j):
Ux,ij = Ux,iUx+i,jUx+i+j,−iUx+j,−j,

where Ux,−i = U
†
x−i,i.

Then the local magnetic field strength Bc
x,k is related to the plaquette:

Ux,ij = exp(εijka
2Bc

x,kT
c), (4)

where εijk is +1 or -1 if i, j, k is an even or odd permutation of 1,2,3 and
vanishes otherwise. The electric field Ec

x,i is given in the continuum limit:

Ec
x,i =

2

ag2
tr(TcU̇x,iU

†
x,i). (5)

We use the SU(2) matrices which can be expressed by the quaternion rep-
resentation (u0, u1, u2, u3) for one link, where the components ui i = 0, . . . , 3

are real numbers, it can be written:

U = u0 + iτaua

U =

(
u0 + iu3, iu1 + u2

iu1 − u2, u0 − iu3

)
. (6)



188 R. Forster, Á. Fülöp

The determinant of the quaternion is:

detU = u2
0 + u2

1 + u2
2 + u2

3 = 1.

The length of the quaternion detU = ‖U‖ is conserved, because u̇0u0+u̇aua =
0. The three electric fields Ea

x,i which are updated on each link by the next
form:

Ėa
x,i =

i

ag2

∑
j

tr

[
1

2
τa(Ux,ij −U

†
x,ij)

]
, (7)

where the value of j runs over four plaquettes which are attached to the link
(x, i).
The time evolution of the electric fields constraints the Gauss law:

Dab
i Eb

x,i = 0. (8)

This means charge conservation.
The Hamiltonian equations of motion are derived from expression (3) by

canonical method and these can be solved with dt discrete time steps. The
algorithm satisfies the constraints of total energy and the Gauss law which is
detailed in the next Section 3.1. Update of link variables is derived from the
following implicit recursion forms of the lattice equation of motions:

Ut+1 −Ut−1 = 2dt(Pt − εUt),

Pt+1 − Pt−1 = 2dt(V(Ut) − μUt + εPt), (9)

ε =
〈Ut, Pt〉
〈Ut,Ut〉 , μ =

〈V(Ut), Ut〉+ 〈PtPt〉
〈Ut,Ut〉 , (10)

where ε, μ are the Lagrange multipliers and the symmetry SU(N) fulfills the
unitarity 〈Ut,Ut〉 = 1 and the orthogonality 〈Ut, Pt〉 = 0 conditions.

3.1 Constraint values

This algorithm fulfills the constraints of the system’s total energy and the
Gauss law.
The total energy Etot is determined by the sum over each link of lattice for

every time steps. The energy is defined for a single link at the time step t:

El =
1

2
< P, P > +1−

1

4
< U,V >, (11)



Yang-Mills lattice on CUDA 189

Figure 2: Flux line on the three dimensional lattice, where a means the size
of the box

where U = Ut, V = Vt and P = Pt. The value Etot does not change during
the time evolution. This is a constraint to use the Noether theorem [2]. The
Gauss law is a constraint quantity:

Γ =
∑
l+

PU† −
∑
l−

U†P = 0, (12)

where the sum is performed over links l+ which is started at the box on the
lattice and the l− means the links to end at that side of the grid. This is
conserved by the Hamiltonian equations of motion:

Γ̇ =
∑
l+

VU† −
∑
l−

U†V = 0. (13)

Corresponding to the quantum electrodynamics’ law the charge and flux line
initialization (Figure 2) occur with the following recursion expressions on the
lattice:

P1 = QU1,

Pn = U
†
n−1Pn−1Un (1 ≤ n ≤ N),



190 R. Forster, Á. Fülöp

where the starting value of charge is Q and the end of this quantity equals to
−F†QF. Flux line ordered product is written by the expression

F =

N−1∏
i=1

Ui. (14)

The condition of neutrality is expressed by these equations:

Q− F†QF = 0

trQ = 0

} ⇒ Q =
q

2
(F† − F).

In the next section we discuss the connection between the Hamiltonian ex-
pression and Wilson action, because this plays an important role in the strong
interaction.

3.2 Relation between Wilson action and Hamiltonian lattice

The Wilson action should be summed over all elementary squares of the lat-
tice S =

∑
px,i,j

Spx,i,j . The action function of the gauge theory on lattice is
written over plaquette sum to use the nearest neighbour pairs. Because in the
continuous time limit the lattice spacing at becomes different for the time
direction, therefore the time-like plaquettes has other shape than the space-
like ones. Therefore the coupling on space-like and time-like plaquettes are no
longer equal in the action:

S =
2

g2

∑
pt

(N− tr(Upt)) −
2

g2

∑
ps

(N− tr(Ups)). (15)

The time like plaquette is denoted by Upt and the space like is Ups .
Consider the path is a closed contour i.e. Wilson loop (Figure 1), where the

trace of the group element corresponding to such a contour which is invariant
under gauge changes and independent of the starting point. The product of
such group elements along connected lines is a gauge covariant quantity, the
trace over such products along a closed path is invariant. This lattice system
is very suitable for describing gauge theories. Because the Upt can be series
expansion by at:

Upt = U(t)U†(t+ at) = UU† + atUU̇† +
a2
t

2
UÜ† + ...

N− tr(Upt) = −
a2
t

2
tr(UÜ†) up to O(a3

t) correction.



Yang-Mills lattice on CUDA 191

We investigate the unitarity of the expression UU† = 1 at the beginning of
Section 3, therefore this implies the following:

UU̇+UU̇† = 0 and ÜU† + 2U̇U̇† +UÜ† = 0.

The homogeneous non-Abelian gauge action can be written in the next form:

ΔSH =
2

g2

⎛
⎝a2

t

2

∑
i

tr(U̇iU̇
†
i ) −

∑
ij

(N− tr(Uij))

⎞
⎠ . (16)

The first sum is over all links and the second one goes over space-like plaquet-
tes. The scaled Hamiltonian was derived in the next form. General discretized
ansatz can be written as:

S = at

∑
t

a3
s

∑
s

L, (17)

than the scaled Hamiltonian becomes:

atH =
2

g2

⎛
⎝a2

t

2

∑
i

tr(U̇iU̇
†
i ) +

∑
ij

(N− tr(Uij))

⎞
⎠ . (18)

In the next section we derived the algorithm in the explicit form.

4 Lattice field algorithm

In this section we introduce the numerical solving of the coupling differential
equations of motion by CPU [2]. The initial condition is uniformly random
in the SU(2) group space to fulfil the constraints unitarity, orthogonality and
Gauss law. The update algorithm satisfies the periodic boundary.

4.1 Implicit-explicit-endpoint algorithm

First we determine the forms μ and c corresponding to orthogonality and
unitarity conditions which were introduced in Section 3. We denote:

P
′
= Pt+1 P = Pt.

The equations of motion (9) are written:

P
′

= P + (V − μU+ εP
′
), (19)

U
′

= U+ (P
′
− εU). (20)



192 R. Forster, Á. Fülöp

The Lagrange multiplicators μ, ε are given in the next form to satisfy the
symmetry SU(2):

(1− ε)P
′

= P + (V − μU),

U
′

= (1− ε)U+ P
′
,

where c = 1− ε. First we obtain the value μ from orthogonality:

c〈U ′
, P

′〉 = 〈cU, P〉+ 〈P ′
, P〉+ c〈U,V − μU〉+ 〈P ′

, V − μU〉,
0 = 0+ c(〈U,V〉− μ) + c〈P ′

, P
′〉,

μ = 〈U,V〉+ 〈P ′
, P ′〉.

On the next step we obtain c from unitarity:

〈U ′
, U

′〉 = c〈U ′
, U〉+ 〈U ′

, P
′〉,

1 = c〈U ′
, U〉 = c(〈cU,U〉+ 〈P ′

, U〉),
1 = c2 + c〈P ′

, U〉,

c〈U, P
′〉 = 〈U, P〉+ 〈U,V − μU〉 = 〈U,V〉− μ = −〈P ′

, P
′〉,

1 = c2 − 〈P ′
, P ′〉 ⇒ c =

√
1+ 〈P ′

, P
′〉.

(c > 1, ε < 0).
In the next section we express the explicit and implicit form of the algorithm.

4.1.1 Algorithm

The method is written in implicit form. The final expressions of these equations
of motion are the following:

V† = V − 〈U,V〉U,

P̃ = P + V†,
cP

′
= P̃ − (c2 − 1)U,

U
′

= cU+ P̃.

The resolution of implicit recursion is:

c(P
′
+U

′
) = P̃ + c2U+ (1− c2)U+ cP

′
,

cU
′

= P̃ +U,



Yang-Mills lattice on CUDA 193

but U
′
= cU+ P

′
, so

P
′

= U
′
− cU =

1

c
(P̃ +U) − cU,

cP
′

= P̃ + (1− c2)U.

The length of cP
′
becomes:

c2〈P ′
, P

′〉 = 〈P̃, P̃〉+ 2(1− c2)〈P̃, U〉+ (1− c2)2〈U,U〉,
c2(c2 − 1) = 〈P̃, P̃〉+ (1− c2)2,

(c4 − c2) − (c4 − 2c2 + 1) = 〈P̃, P̃〉,
c2 − 1 = 〈P̃, P̃〉,

⇒ c =
√

1+ 〈P̃, P̃〉.
Finally the algorithm explicitly:

V† = V − 〈U,V〉U,

P̃ = P + V†,

c =

√
1+ 〈P̃, P̃〉,

P
′

=
1

c
(P̃ +U) − cU,

U
′

= cU+ P
′
.

This algorithm was applied on GPU in Section 6. These processes are compared
with the original sequential method on the CPU against the parallel version
on the GPU.

5 Compute unified device architecture

In the last decade the performance increase of the central processing units
have slowed down drastically compared to a decade earlier. At the same time
the graphical processing units are showing a very intense evolution booth
in performance and architecture thanks to their origin from the graphical
computations and thanks to the never-ending need for more computational
power (values on Figure 3 were taken from [12]).



194 R. Forster, Á. Fülöp

Figure 3: Performance increase of the CPU and the GPU

Our idea is to process the Yang-Mills model’s high volume data on the GPU.
This way we can use bigger lattices for calculation, achieving higher precision
and faster runtime. With the many core architecture through the CUDA it
is now possible to evaluate the actual status of the lattice by checking the
individual link values in parallel.

5.1 The compute unified device architecture

Thanks to the modern GPUs now we can process efficiently very big datasets
in parallel [7]. This is supported by the underlying hardware architecture that
now allows us to create general purpose algorithms running on the graphical
hardware. There is no need to introduce any middle abstractions to be able
to use these processors as they have evolved into a more general processing
unit (Figure 4 [14]). The compute unified device architecture (CUDA) divides
the GPUs into smaller logical parts to have a deeper understanding of the
platform. [12] With the current device architecture the GPUs are working like
coprocessors in the system, the instructions are issued through the CPU. In
the earlier generations we were forced to use the device side memory as the
GPUs were not capable to accept direct memory pointers. If we wanted to



Yang-Mills lattice on CUDA 195

utilize the GPUs, then all the data were supposed to be copied over to the
device prior the calculations.

Figure 4: CUDA processing flow

While this is still the main idea behind our parallel calculations as the second
generation of Compute Capability devices were released it has became possible
to issue direct memory transactions thanks to the Unified Virtual Addressing
[17]. This has made it possible to use pointers and memory allocations not
only on the host side, but on the device as well. In earlier generations it the
thread local, shared and global memories have used different address spaces,
which made it impossible to use C/C++ like pointers on the device as the
value of those pointers were unknown at compile time.



196 R. Forster, Á. Fülöp

5.1.1 Thread hierarchy

CUDA is very similar to the C language, the biggest difference in its syntax
is the <<< and >>> brackets which are used for kernel launches [8]. Kernels
are special C like functions with void return value, that will create all the
threads and that will run on the GPU. It also has the usual parameter list
which contains all the variables we want to pass our input through and to
receive the results of our computations. It is important, that for such inputs
and outputs the memory has to be allocated on the GPU prior the kernel call.
All of our threads are started in a grid which consists of many blocks which
will contain the threads (Figure 5).

Figure 5: CUDA thread hierarchy

The maximum number of threads that we can start depends on the actual
compute capability of the GPU, but it is important that this number does not
equal to the actual threads being processed at the same time on the GPU. The



Yang-Mills lattice on CUDA 197

size of the grid and the size of the block depends on the compute capability of
the hardware, but looking solely on the capability restraints we cannot show
the maximum threads being processed.
A GPU can have different number of Streaming Multiprocessors (SM) and

different amount of memory. The CUDA restrictions are containing occupancy
restrictions as well. There are three kinds of these restrictions: resource limita-
tions, block, and thread availability. The SMs are having the maximum limit
on the number of maximum online blocks. Performance wise it is not a good
practice to create algorithms that will be able to reach the resource constraints
even with a very low amount of threads i.e. with high register utilization per
thread [8].
We should divide our algorithm to be called by different kernels thus de-

creasing the resource dependency of our code. The biggest impact on the per-
formance is the memory utilization. It is the most important aspect to keep
all of our midterm results on the device and to keep the host-device memory
transactions to the minimum [11]. The data must be coalesced in the memory
to provide the maximum possible throughput. At the same time the registers
and the shared memory are faster by at least a factor of 100 than the global
memory. This is because the global memory is on the card, while the shared
memory and the registers are on the chip.

5.1.2 Memory access strategies

For older generation of GPUs with Compute Capability 1.x it is important to
use the right access patterns on the global memory. If we will try to use the
same value from thousands of threads, then the access will have to be serialized
on these GPUs, while the newer ones have caching functionality to help on
such scenarios. The most optimal access is the map access, where all threads
will manipulate their own values, more specifically thread n will access the
nth position of the input or output array.
If the data stored in the memory can be accessed in a sequential order and

it is aligned to a multitude of 128 byte address then the data fetching will be
the most optimal on the devices with Compute Capability 1.x (Figure 1). The
GPU can issue 32, 64 or 128 bytes transactions based on the utilization of the
hardware.
If the data is in a non-sequential order (Figure 2), then additional memory

transactions will be required to process everything. We mention here, by using
non-sequential ordering it is possible the transactions will fetch more data,
than we are really going to use at the time. This can be quite a wasteful



198 R. Forster, Á. Fülöp

Compute capability: 1.0 and 1.1 1.2 and 1.3 2.x and 3.0

Memory transactions: Uncached Cached
1 x 64B at 128 1 x 64B at 128 1 x 128B at 128
1 x 64B at 192 1 x 64B at 192

Table 1: Aligned and sequential memory access

approach.

Compute capability: 1.0 and 1.1 1.2 and 1.3 2.x and 3.0

Memory transactions: Uncached Cached
8 x 32B at 128 1 x 64B at 128 1 x 128B at 128
8 x 32B at 160 1 x 64B at 192
8 x 32B at 192
8 x 32B at 224

Table 2: Aligned and non-sequential memory access

If the data is misaligned (Figure 3), then it will invoke more transactions as
smaller ones will be required to fetch everything. This case can be problematic
even on the cached devices. All tables are representing the data taken from
[12].

Compute capability: 1.0 and 1.1 1.2 and 1.3 2.x and 3.0

Memory transactions: Uncached Cached
7 x 32B at 128 1 x 128B at 128 1 x 128B at 128
8 x 32B at 160 1 x 64B at 192 1 x 128B at 256
8 x 32B at 192 1 x 32B 256
8 x 32B at 224
1 x 32B at 256

Table 3: Misaligned and sequential memory access

Overall it is important to design our data structures to be able to accom-
modate them to the aforementioned restrictions to be able to achieve the
maximum possible memory throughput.



Yang-Mills lattice on CUDA 199

5.1.3 Other architectures and models

Our development and research was conducted on the aforementioned CUDA
platform. Other architectures and programming models are available that
provide high parallel performance. Currently the biggest competition for the
NVIDIA GPUs are the AMD Radeon GPUs. But the biggest competition is
in the discrete GPU market. In the HPC segment the NVIDIA GPUs are the
mainstream solutions [18], when there is any GPU utilization in the super-
computers. For example the fastest GPU cluster based supercomputer, the
TITAN incorporates NVIDIA Tesla K20X GPUs as coprocessors.
On the other hand Intel is developing it’s own coprocessor for the HPC

segment, the Intel Xeon Phi processor. Currently the fastest supercomputer
in the TOP500 is the Tianhe-2 (MilkyWay-2) accelerated with these Xeon Phi
processors, while the previously mentioned TITAN is at the second place [18].
The Linpack performance benchmark shows a 33, 862.7 TFlop/s capability
for the Tianhe-2, while it shows a 17, 590.0 TFlop/s for TITAN. But if we
take a look at the number of the processor cores, the Tianhe-2 uses 3, 120, 000
cores, while the TITAN uses only 560, 640 cores. It is difficult to make a direct
interpolation for the achieved performance in the case if we will double the
cores in the TITAN, so we will take a look at the individual performance of
each computers accelerator core.
The Intel Xeon Phi 3100 series of accelerators have 57 x86 cores and are

capable of 1003 GFlop/s performance in double precision calculations while
drawing 300 Watt of power [15]. On the other hand the NVIDIA Tesla K20X
has 2688 CUDA cores, capable of 1310 GFlop/s performance also in double
precision calculations while drawing only 235 Watt of power [16]. If we take
the total core numbers of the supercomputers, then the Tianhe-2 has 48000

Xeon Phi processors [5], while the TITAN has 18688 Tesla K20X processors
[13]. Theoretically if we double the number of K20X cards, we will have more
performance than the Tianhe-2, while still utilizing less GPU, than how many
MICs they are using. This shows that the Kepler GPU architecture based Tesla
accelerators are more efficient than the Knights Corner MIC architecture based
Xeon Phi accelerators.
Booth architectures support the OpenCL, OpenAAC programming lan-

guages which all are GPU based languages. On the NVIDIA GPUs the CUDA
model is the most important as the GPUs are in connection with the program-
ming model and as they develop the GPUs and provide new functionality, the
same functionality becomes supported in the next CUDA version. This way
they have the freedom to let developers utilize their GPUs how they see it the
most efficient.



200 R. Forster, Á. Fülöp

5.2 Single instruction multiple thread architecture

Our current CPUs are SIMD processors, where SIMD stands for Single In-
struction Multiple Data. This implies that the multicore CPUs can evaluate
a given instruction for multiple data which can achieve even higher amount
of instructions per cycle with the Intel Hyper Threading Technology. In our
case the test machine CPU has two physical cores, that can run up to four
threads simultaneously thanks to the aforementioned technology. So in this
case we will have four instructions evaluated concurrently. On the other hand
the GPUs are SIMT architecture based processors. This stands for Single In-
struction Multiple Thread which is very similar to the SIMD architecture. The
biggest difference is in the maximum number of threads. Theoretically we are
not bound by the maximum number of threads that we can launch, as the
latest Kepler GPUs can initialize billions of threads at the same time. The
key factor is that the performance per thread is quite low, but the GPU can
handle thousands of those cores in a single clock cycle. Of course the actual
number of running threads will be lower, but still bigger then what we can
have on the CPUs. The basic idea behind the SIMT architecture is that we
summon as many threads as many data we have for evaluation. This implies
that for higher utilization we need to provide more data to work on. But even
with maximum thread occupancy it doesn’t directly mean we will achieve the
maximum computational performance.

5.3 Computational architecture

In this subsection we will see what kind of technical details the GPUs have
and how it affects the actual utilization of the given architecture. The actual
number of threads running on the GPU comes through the term of warps. A
warp is a set of 32 threads in a given Streaming Multiprocessor. Based on the
actual architecture and compute capability the maximum number of warps
per SM can differ (Table 4), but the size of a warp is constant 32. This means
that in an optimal solution the maximum number threads running at the same
time is:

#SM ∗#WARP ∗ 32.
This implies that all n threads are running the same instruction at the same
time. But in a not so optimal scenario it is possible that the threads are
diverging from the size of the warp. This means that the execution flow differs
among the different threads, so it will not be possible to evaluate all the 32

threads in the warp, because they are using the same program counter. In



Yang-Mills lattice on CUDA 201

this case the scheduler will have to take into account that there are slower
warps in which the threads are serialized, and this will decrease the overall
performance. This can happen if a thread has to evaluate if statement branches
or long cycles. In the case of cycles the compiler can make some optimization
as it will unroll the loops, but there is no way to predict the flow among the
if statements.

Compute Capability

Technical Specifications 1.0 1.1 1.2 1.3 2.x 3.0 3.5

Maximum dimensionality of
grid of thread blocks

2 3

Maximum x-dimension of a
grid of thread blocks

65535 231 − 1

Maximum y- or z-dimension
of a grid of thread blocks

65535

Maximum dimensionality of
thread block

3

Maximum x- or y-dimension
of a block

512 1024

Maximum z-dimension of a
block

64

Maximum number of threads
per block

512 1024

Warp size 32

Maximum number of resident
blocks per multiprocessor

8 16

Maximum number of resident
warps per multiprocessor

24 32 48 64

Maximum number of resident
threads per multiprocessor

768 1024 1536 2048

Table 4: Compute capability technical specifications (for description see Sec-
tion 5.1.1)



202 R. Forster, Á. Fülöp

6 Parallel Yang-Mills algorithm

In our computational problem we are calculating newer and newer states of all
the links in the system. This is a great example to use the map access pattern
as all threads will have a link to work on. The algorithm was implemented on
the CUDA platform.

6.1 Main idea

In every given timestep a kernel generates the new values for the links. The
kernel call itself is in a cycle that will move until a given step count. The real
difficulty arise from the sanity checks of the system. After a given timestep
the algorithm checks if the system is still valid and such if any further devel-
opments are possible. This will require the actual results on the GPU to be
checked if are still valid. To copy them back to the host side is just a waste of
memory bandwidth and time. To check it on the device requires to have par-
allel algorithms for the subsequent operations. To check the systems validity
we have to summarize the energy values of the links, thus we need to make a
parallel summation. Thankfully the NVIDIA Thrust library already has this
algorithm implemented, so we have used this approach. For this to work we
have to give the values to the algorithm in the form of Thrust defined vectors.
It is possible to cast raw memory pointers to vector containers, so there is
no incompatibility between the Thrust defined vectors and the user defined
global memory allocations. The result will be only one value which will be
much easier to be transferred to the host side for evaluation and this will be
done only once in every check. This isn’t necessarily a good practice, because
to achieve the highest memory throughput we should copy high amount of
data instead of little fragments, but currently we only have to copy just these
summation, so its really just one value per iteration, without implying any
throughput problems.

6.2 Restrictions

The current implementation provides a direct port of the original Yang-Mills
algorithm. As such, it does not provide any GPU specific optimizations which
should further improve the already high amount of performance gain over
the original CPU based version. The calculations are running on the three
dimensional space with varying amount of precision, or varying dense of the
lattice. The more dense it is, the more links it will generate, thus heavily
increasing the inputs and the required calculations. Because this is a direct



Yang-Mills lattice on CUDA 203

port we do not separate the algorithm based on different functionalities, just
applying the same algorithm for all the links in parallel. This implies that for
the actual implementation the biggest restrain the available memory is. In this
sense how dense an actual lattice can be for processing depends on how much
free memory we have on the GPU, as all the links will have to be stored on
the device.

6.3 Implementation

For implementation and testing we have used a GeForce GTX 580 with com-
pute capability 2.0.

GeForce GTX 580

Technical Specifications Compute Capability 2.0

Transistors (Million) 3000

Memory (MB) 1536

SM Count 16

Memory Bandwidth (GB/s) 192.4

GFLOPs 1581.1

TDP (watts) 244

Table 5: GeForce GTX 580 technical specifications

In our case the maximum number of executed threads is 24576 (Table 5).
This means that there will be this amount of instructions which evaluated at
every given clock cycle in parallel. To be really efficient though it is important
to do not introduce diverging threads. In our case the Yang-Mills algorithm
doesn’t provide any instructions that will result in diverging threads. The links
of 3 dimensional lattice are aligned into an array which are distributed into
a 1 dimensional grid. We compute a state of lattice through a grid of CUDA
threads by giving a link to a thread for computation. As a new state is reached
we use the Thrust reduction algorithm to do the required summation on the
new values to check the actual properties while keeping the whole dataset on
the GPU.

6.3.1 Compute unified device architecture based algorithm

Essentially there is no real difference between the original (see Section 4) and
the CUDA based algorithm, the equations (19), (20) are the same after all.



204 R. Forster, Á. Fülöp

But powerful distinction between the two is the indexing of the given links
Ux,i (Section 4.1.1) which are stored in a row ordered array.
The index of an actual thread can be calculated with the next statement,

assuming that we are using a one dimensional grid (Section 5.1.1) with one
dimensional blocks.

int idx = blockDim.x*blockIdx.x+threadIdx.x;

A simple optimization is the including of shared memory (Section 5.1.1).
We are accessing the links many times during an evaluation, so it is a good

optimization strategy to load the links into the shared memory.

__shared__ float s_aux[1000];

__shared__ float s_U[1000];

__shared__ float s_V[1000];

The most compute heavy parts of the algorithm are the subroutines to
upgrade the links and to calculate the complement of the lattice variable.
As an implication of this the GPU based algorithm contains the accelerated
versions of the aforementioned functions.
These functions are CUDA kernels so they are required to be global

functions. We are starting these kernels with 512 threads for each thread block
with as many blocks as much we need to have the same amount of threads as
much links we have.
Naturally this can give us more threads than the number of the available

links, so a condition check is given to do not utilize the unnecessary threads.
This way we can evaluate our algorithm (Section 4.1.1) on all the maximum

allowed threads at the same (Section 6.3), alas on the same amount of links.

6.4 Numerical results

We introduced a method to solve the Yang-Mills equations in time by expres-
sions (19), (20) (see Section 4). The link variables were expressed by quater-
nion representation and due to the SU(2) symmetry three dimensional polar
coordinate system was applied.
We numerically computed the differential equation of motion by real-time

implicit-explicit algorithm (Section 4.1) to choose random initial configura-
tions on any finite lattice SU(2). This process fulfils the constraints of total
energy Etot by Lagrange multiplicators, unitarity and orthogonality of the



Yang-Mills lattice on CUDA 205

SU(2) symmetry conditions and Gauss law. We applied periodic boundary
conditions and the nearest neighbor intersection on finite lattice.
The physical quantities required the high precision calculation and the size of

elementary lattice box expected the smallest value as possible i.e. to achieve the
extrapolation of the thermodynamic limit. An efficient algorithm was achieved
on the GPU by parallelism in Section 6. This process is much more effective
on the three dimensional lattice.
For overall testing the following system was used (Table 6):

CPU GPU OS Compiler
CUDA
version

Intel Core
i5 650

GeForce
GTX 580

Windows 8
Pro

Visual
C++ 2010

5.0

Table 6: The used system’s specification

We compared the runtime of the CPU to the GPU (Figure 6), the GPU
gives substantially better results considering the same lattice size which shows
acceleration of a magnitude of 28 in single precision and 11 in double preci-
sion.

Figure 6: Runtime on the CPU and on the GPU with N = 25, 50, 75, 100

Even if we use single precision values for our calculations, the CPU cannot



206 R. Forster, Á. Fülöp

provide any strong performance compared to the GPU because the latter has
a lot more processing power.
Due to the limited resources of the CPU it is really difficult to provide a

real comparison, thus we provide an extrapolation of the higher dense lattice
computation runtime (Figure 7). By measuring how much time a lattice with
N3 vertices takes to be evaluated, we can see how much time a single link
takes. Taking this into account we calculated the number of links on the three
dimensional lattice and multiplied this number with that single link runtime
as it follows:

const1 = t1/(24N
3
1); extrapolated runtime = const124N

3,

where t1 is the runtime of a lattice with N1 = 25 and 24N3 is the number
of all links in a lattice with N3 vertices. This value was calculated for booth
single and double precision driven CPU and GPU based runtimes.

Figure 7: Extrapolated runtime of the algorithm for large N on the CPU
and extrapolated runtime on the GPU. Measured range: 0 <= N <= 100;
Extrapolated range: 100 < N <= 1000

From (Figure 7) it can be read that the GPU based calculations will remain
faster compared to the CPU implementation even on much denser lattices. The
actual measured range of the lattice size is 0 <= N <= 100 and the further



Yang-Mills lattice on CUDA 207

extrapolated range is 100 < N <= 1000. (Figure 7) shows that the factor 27.68
by which the GPU is faster than the CPU on the actually calculated lattices is
still valid on the extrapolated interval where this factor is 27.69. Naturally the
single precision values should imply a faster runtime and the used hardware
provides a significantly higher single precision peak performance, than what it
gives for the double precision. Still the single precision based implementation
isn’t much faster than it’s double precision counterpart. The reason for that
is that the algorithm at hand cannot utilize the hardware efficiently.
We are mentioned it many times, that the problem at hand is very paral-

lelization. This means that the algorithm that we are using has a very good
sequential part to parallel part ratio which implies the parallelization nature
of the problem. The values on (Figure 8) shows that as we increase the size
of our lattice this ratio starts to grow, but very steadily. This is because the
sequential part is very limited compared to the parallel part which already has
a huge amount of acceleration over the original algorithm, where:
Let tseq/a denote the runtime of the sequential portion of the code and

tpar/a denote the runtime of the parallel portion booth values in seconds.

Figure 8: Ratio of the sequential and parallel runtime in the function of N,
where tseq[sec]/a is the sequential fraction of the runtime and tpar[sec]/a is
the parallel fraction



208 R. Forster, Á. Fülöp

The fraction of the two tseq/tpar is small, because the dominant factor is the
parallel part as it will take more time to be evaluated, than the lesser sequential
part. The parallel routines are handling the massive datasets, updating all
the link variables in the lattice, while the sequential parts are calculating
the Langrange multiplicators which results in the conservation of the total
energy, the unitarity and orthogonality of the SU(2) symmetry condition in
this dynamical system.
The single precision calculations are considerably faster than the double

precision evaluations, so it is an important question if the single precision
numbers are sufficient for our needs or not. The single precision values suffers
a little loss thanks to the half precision, but the two values are still equal up
to the fifth decimal value, above that the deviation of the energy only exists
because of the higher precision of the double values (Figure 9).
Let Ed denote the energy based on the double precision values of energy and

Es denote the energy based on the single precision values, and (Ed −Es)g
2a is

drawn in the function of t/a, where runtime measured in seconds.

Figure 9: The energy difference in the function of the time i.e. (Ed−Es)g
2a vs

t[sec]/a for single precision (Es) and double precision (Es) values on the GPU

The fundamental value of certain physical quantities can be determined
by finite-size scaling. We determined the extrapolation of the energy to the



Yang-Mills lattice on CUDA 209

Figure 10: The thermodynamic limit of the energy (N → ∞)

thermodynamic limit (N → ∞) which is demonstrated on (Figure 10). The
correspondence proved to be almost linear by assuming g2aE ∼ 1

N
scaling with

finite-size.
In this chapter through numerical calculations we have proved that the GPU

is a valuable computing platform even for the Yang-Mills algorithm, providing
faster real-time performance than what the CPU has, allowing us to reach
higher precision without sacrificing too much time.

7 Summary

We studied the time dependent behaviour of Yang-Mills fields which are ex-
pressed by coupled differential equations.
As the Fermi GPU architecture was build up from the ground to be com-

patible with the C++ programming standards it have became simple to port
the existing applications to the GPU. In our case the direct port Yang-Mills
model’s algorithm was capable to achieve at least 11 times performance boost
compared to the original.
Just changing the underlying hardware the algorithms still produced the



210 R. Forster, Á. Fülöp

same result, thus keeping the physical principles valid. Physical constant quan-
tities remains constraint while solving the equation of motion by parallel al-
gorithm, such as the total energy.
The behaviour of the GPU makes it possible to solve the more complicated

systems for example Yang-Mills-Higgs fields. This means more precision can be
achieved on these systems. This is especially important where high precision
computations in thermodynamic limit are mandatory.

References

[1] T. S. Biró, C. Gong, B. Müller, A. Trayanov, Hamiltonian dynamics of Yang-
Mills fields on a lattice, Int. J. of Modern Phys. C 5 (1994) 113–149. ⇒ 185,
186

[2] T. S. Biró, Conserving algorithms for real-time non-Abelian lattice gauge theo-
ries, Int. J. of Modern Phys. C 6 (1995) 327–344. ⇒185, 189, 191

[3] T. S. Biró, A. Fülöp, C. Gong, S. Matinyan, B. Müller, A. Trajanov, Chaotic
dynamics in classical lattice field theories, 165th WE-Heraeus Seminar on The-
ory of Spin Lattices and Lattice Gauge Models 14-19 Oct 1996. Bad Honnef,
Germany Lect. Notes in Physics 494 (1997) 164–176. ⇒186

[4] M. Creutz, Quarks, Gluons and Lattices, Cambridge University Press, Cam-
bridge CB2 1RP, 1983. ⇒186

[5] J. Dongarra, Visit to the National University for Defense Technology Changsha,
China, University of Tennessee ⇒199

[6] A. Fülöp, T. S. Biró, Towards the equation of state of a classical SU(2) lattice
gauge theory, Phys. Rev. C 64 (2001) 064902(5). ⇒185

[7] A. Iványi (ed.), Algorithms of Informatics, Volume 3, AnTonCom Infokommu-
nikációs Kft. 2011, ⇒194

[8] D. B. Kirk, W. W. Hwu, Programming Massively Parallel Processors: A Hands-
on Approach, Morgan Kaufmann Publisher, Burlington, MA, 2012. ⇒185, 196,
197

[9] B. Müller, A. Trayanov, Deterministic chaos on non-Abelian lattice gauge theory,
Phys. Rev. Letters 68, 23 (1992) 3387–3390. ⇒185

[10] I. Montvay, G. Münster, Quantum Fields on a Lattice, Cambridge University
Press, Cambridge CB2 1RP, 1994. ⇒186

[11] J. Sanders, E. Kandrot, CUDA by Example: An Introduction to General-Purpose
GPU Programming, 2010, NVIDIA Corporation, ⇒197

[12] CUDA C Programming Guide, NVIDIA Corp., 2013, http://docs.nvidia.

com/cuda/cuda-c-programming-guide/index.html. ⇒193, 194, 198
[13] TITAN Supercomputer, http://www.olcf.ornl.gov/titan/ ⇒199
[14] Tosaka, CUDA, 2008 http://en.wikipedia.org/wiki/CUDA ⇒194
[15] Intel Xeon Phi 3100 Series Specification, http://www.cpu-world.com/CPUs/

Xeon_Phi/Intel-XeonPhi3120P.html ⇒199



Yang-Mills lattice on CUDA 211

[16] NVIDIA Tesla K20X Specification, http://www.nvidia.com/object/tesla-
servers.html ⇒199

[17] Whitepaper NVIDIA’s Next Generation Compute Architecture: Fermi, NVIDIA
Corp., 2009, http://www.nvidia.com/content/PDF/fermi_white_papers/

NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf ⇒195
[18] Official list of the top 500 supercomputers, http://top500.org ⇒199

Received: July 11, 2013 • Revised: November 25, 2013


