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Abstract. In this paper we introduce the s-monotone index selection
rules for the well-known criss-cross method for solving the linear comple-
mentarity problem (LCP). Most LCP solution methods require a priori
information about the properties of the input matrix. One of the most
general matrix properties often required for finiteness of the pivot algo-
rithms (or polynomial complexity of interior point algorithms) is suffi-
ciency. However, there is no known polynomial time method for checking
the sufficiency of a matrix (classification of column sufficiency of a matrix
is co-NP-complete).

Following the ideas of Fukuda, Namiki and Tamura, using Existen-
tially Polynomial (EP)-type theorems, a simple extension of the criss-
cross algorithm is introduced for LCPs with general matrices. Computa-
tional results obtained using the extended version of the criss-cross algo-
rithm for bi-matrix games and for the Arrow-Debreu market equilibrium
problem with different market size is presented.

Computing Classification System 1998: G.1.6.
Mathematics Subject Classification 2010: 49M35, 90C20
Key words and phrases: linear complementarity problem, sufficient matrix, criss-cross
algorithm, alternative and EP theorems, bi-matrix games, Arrow-Debreu market equilibrium
problems

103

DOI: 10.2478/ausi-2014-0007



104 Zs. Csizmadia, T. Illés, A. Nagy

1 Introduction

Let us consider the linear complementarity problem (LCP) in the standard
form: find vectors u,v ∈ Rn, such that

−Mu + v = q, u v = 0, u, v ≥ 0 (P − LCP)

where M ∈ Rn×n, q ∈ Rn and uv = (u1v1, . . . , unvn) ∈ Rn.
The linear complementarity problem is one of the most studied areas of

mathematical programming. A large number of practical applications and the
wide range of unsolved—both theoretical and algorithmic—problems make it
an attractive field of research.

There are several different pivot algorithms to solve LCP problems with
different matrices. The criss-cross algorithm is one of those which were devel-
oped independently—for different optimization problems—by Chang [4], Ter-
laky [23] and Wang [29]. Since then, the criss-cross method has become a class
of algorithms that differs in the index selection rule.

Akkeleş, Balogh and Illés [1] developed their criss-cross algorithm for LCP
problems with bisymmetric matrices. They used the LIFO (last-in-first-out)
and the MOSV (most-often-selected-variable) pivot rules. These index selec-
tion rules are flexible in the sense that they offer a choice of alternative pivots in
certain situations, while still preserving finiteness. These index selection rules
have been generalized for the linear programming problem in [9]. It is an inter-
esting question which is the widest class of matrices for which the criss-cross
algorithm with the above mentioned index selection rules can be extended,
preserving finiteness.

The class of sufficient matrices was introduced by Cottle, Pang and Venka-
teswaran [6]. Sufficient matrices can be interpreted as generalizations of P and
PSD matrices. Väliaho [27] showed that the class of sufficient matrices is the
same as the class of P∗ matrices, introduced in [20] for interior point methods
of LCP problems. It was proved by den Hertog, Roos and Terlaky [14], that the
sufficient matrices are exactly those matrices for which the criss-cross algorithm
with the minimal index pivot selection rule solves the LCP problem with any
right-hand side vector.

There is no known efficient algorithm to decide whether a matrix is sufficient
or not, and Tseng [24] has shown that the classification of column sufficiency of
a matrix is co-NP-complete. (Väliaho [26] developed a non-polynomial, induc-
tive method to check sufficiency). Most algorithms developed for LCP problems
have the practically unattractive property that they need the a priori infor-
mation that the matrix is sufficient or possesses some other good properties.
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Fukuda, Namiki and Tamura [12] gave the first such algorithm—based on the
alternative theorem for LCP of Fukuda and Terlaky [13], a generalization of
the fundamental result of Farkas [10, 11]—used in the form of Existentially
Polynomial (EP) theorems—that did not require a priori information on the
sufficiency of the matrix. If the algorithm cannot proceed or would begin to
cycle, it provides a polynomial size certificate that the input matrix is not
sufficient.

For more than a decade, it was an open question whether EP theorems for
linear complementarity problems could be proved using interior point algo-
rithms or not. The first result in this direction has been published by Illés, M.
Nagy and Terlaky [16]. Their EP theorem is different from that of Fukuda,
Namiki and Tamura [12]: (i) there exist a solution for the dual LCP problem,
(ii) there exist a solution for the feasibility problem part of the primal LCP,
(iii) the matrix is not row sufficient. The polynomial size certificates for each of
these statement is provided using a polynomial time interior point algorithm for
linear feasibility problems. This result however is weaker than that of Fukuda,
Namiki and Tamura since statement (ii) does not guarantee solvability of the
primal LCP problem.

The following paper of Illés, M. Nagy and Terlaky [17] related to EP theorems
contain a generalization of the affine scaling and predictor-corrector interior
point algorithms to solve LCPs with general matrices in EP-sense, namely, the
generalized interior point algorithms either solve the problem with rational
a coefficient matrix in polynomial time or give a polynomial size certificate
that the matrix does not belong to the set of P∗(κ) matrices, with arbitrary
large, but apriori fixed, rational, positive κ. This EP theorem differs both from
the EP theorem published by Fukuda et al. [12] and from that of Illés et al.
[17], because it contains only two statements. The reason for this is due to
the fact that the embedding technique [22] of linear programming can not be
generalized for LCPs with sufficient matrices. Therefore, one option is to deal
with LCPs that have initial, strictly positive feasible solution. In this case, the
dual LCP could not have solution, therefore the related EP theorems only need
to consider two cases.

In their third paper, Illés, M. Nagy and Terlaky [18] use the embedding
technique introduced by Kojima et al. [20] and the related results about the
solvability of the primal LCP to solve the embedded problem with a generalized
path-following interior point algorithm. This allows them to prove almost the
same EP theorem as Fukuda et al. [12]. There are two differences between the
Fukuda-Namiki-Tamura and the Illés-Nagy-Terlaky EP theorems: (i) the later
provides a decision between the options in polynomial time (ii) while, instead
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of the whole class of sufficient matrices, the algorithm works only for a given
subset of sufficient matrices, i.e. for any P∗(κ) matrix, with apriori fixed κ > 0.
Property (i) is an improvement compared to the EP theorem of Fukuda et
al., however (ii) states that the improvement works only for a given subset of
sufficient matrices instead of the whole class.

The criss-cross method using the LIFO or MOSV index selection rules have
been generalized for sufficient matrices to the form of EP-theorems in [8].

This paper introduces a new variant of the criss-cross type algorithm that
combines the flexibility of the s-monotone index selection rules with the prac-
ticability of EP-theorems: the criss-cross algorithm using s-monotone index
selection rules is modified in such a way that in case of an arbitrary matrix M

and right-hand side q, it either solves the LCP problem, or provides a polyno-
mial size certificate that the matrix M is not sufficient. This property improves
the value of the algorithm significantly making it applicable to a wide range
of LCP problems, without requiring a priori information on the properties of
the matrix. Indeed, the improved freedom of the s-monotone pivot position se-
lection compared to the traditional minimal index rule gives the possibility to
avoid numerically instable pivots, further extending the practical applicability.

The finiteness proofs using s-monotone index selection rules also proves the
finiteness of these rules for the criss-cross method for the linear and convex
quadratic problems in a more general context, as the Karush-Khun-Tucker
conditions of the linear and quadratic problems yield a linear complementarity
problem with bisymmetric matrices which are known to be sufficient (when
the quadratic problem is convex) making this paper a natural extension of [9].

Throughout this paper, matrices are denoted by italic capital letters, vectors
by bold, scalars by normal letters and index sets by capital calligraphic letters.
Columns of a matrix are indexed as a subscript while rows are indexed by
superscripts. M denotes the original problem matrix, q the right hand side.
Without loss of generality we may assume that rank(M) = n. The (ordered)
set of all indices is I := {1, 2, . . . , n, 1̄, 2̄, . . . , n̄}∪{q} which includes the index of
the right hand side, and so |I | = 2n+ 1. To denote the complementarity pairs,
let ᾱ = α for all α ∈ I \ {q}, so the complementary index pair of ᾱ is α. For a
given basis B, we denote the nonbasic part of M by N; the corresponding set of
indices for the basis and nonbasic part are denoted by IB and IN, respectively.
The corresponding short pivot tableau for B is denoted by T := B−1N, while the
transformed right hand side is denoted by q := B−1q. Individual coefficients of
the short pivot tableau will be denoted by m̄ij; please note that the definition
of coefficients tij will be formally provided in Section 4.1.1. The complementary
variable pairs (ul, vl) will usually be referred to as variable pairs. When it is
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advantageous, the element-wise Hadamard product will be emphasized by "·".
A vector of an appropriate size consisting of all ones will be denoted by 1.

The structure of the paper is as follows: following the introduction, the first
two sections present the theoretical background used by the algorithms: Section
2 introduces the concept of sufficient matrices and their relevant algorithmi-
cally important properties, while Section 3 summarizes the s − monotone

index selection rules. Section 4 presents new variants of the generalized criss-
cross algorithm for LCP using s-monotone index selection rules, while Section
5 extends it to the EP-theorem case. Section 6 present computational experi-
ments solving small scale bimatrix games and Arrow-Debreu market equilib-
rium problems. The paper is closed by a summary.

2 Linear complementarity problems and sufficient
matrices

For most solution methods for LCPs, the solvability of the linear complemen-
tarity problems and the efficiency of algorithms depend on the properties of
matrix M. For pivot methods, one of the most general classes of interest is the
sufficient matrices, which are generalizations of positive semidefinite matrices.

Definition 1 [6] The matrixM ∈ IRn×n is called column sufficient if no vector
x ∈ Rn exists, for which{

xi (Mx)i ≤ 0 for all indices i ∈ {1, . . . , n}

xj (Mx)j < 0 for at least one index j ∈ {1, . . . , n}
(1)

and we call it row sufficient if its transpose is column sufficient. A matrix M
is called sufficient if it is both column and row sufficient at the same time.

It can be shown that column sufficient matrices are exactly those, for which
the solution set of linear complementarity problems is convex [6], in fact a
polyhedron; den Hertog, Roos and Terlaky [14] proved that sufficient matrices
are exactly those, for which the criss-cross algorithm with the minimal index
pivot rule can solve linear complementarity problems for any right-hand side
vector q, in a finite number of iterations.

The algorithms presented in this paper will use the concept of strictly sign
reversing and strictly sign preserving vectors:

Definition 2 [12] We call a vector x ∈ R2n strictly sign reversing if

xixī ≤ 0 for all indices i = 1, . . . , n

xixī < 0 for at least one index i ∈ {1, . . . , n} .
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We call a vector x ∈ R2n strictly sign preserving if

xixī ≥ 0 for all indices i = 1, . . . , n

xixī > 0 for at least one index i ∈ {1, . . . , n} .

A vector of x ∈ R related to an LCP problem is called strictly sign preserving
or strictly sign reversing, if the vector (x,Mx) ∈ R2n is strictly sign preserving
or strictly sign reversing respectively.

To simplify the definition of the next lemma, let us introduce the subspaces

V :=
{
(u,v) ∈ R2n | −Mu+ v = 0

}
and

V⊥ :=
{
(x,y) ∈ R2n | x+MTy = 0

}
,

where u,v,x and y are all vectors of length n. V and V⊥ are orthogonal
complementary subspaces [12] of R2n.

Lemma 3 [12] A matrix M ∈ Rn×n is sufficient if and only if no strictly sign
reversing vector exists in V and no strictly sign preserving vector exists in V⊥.

A basis B of the linear system −Mu+ v = q is called complementary, if for
each index i ∈ I exactly one of the columns corresponding to variables vi and
ui is in the basis. A short pivot tableau [19] is called complementary, if the cor-
responding basis is complementary. The next lemma shows the sign structure
of short complementary pivot tableaux of LCPs with sufficient matrices, which
is the main property of these matrices that the algorithms presented later will
rely on.

Lemma 4 [6] Let M be a sufficient matrix, B a complementary basis and
M̄ = [m̄ij | i ∈ JB, j ∈ JN] the corresponding short pivot tableau. Then

(a) m̄īi ≥ 0 for all i ∈ JB; furthermore

(b) for all i ∈ JB, if m̄īi = 0 then m̄īj = m̄j̄i = 0 or m̄īj · m̄j̄i < 0 for all
j ∈ JB, j �= i.

The proof of the previous lemma is constructive, so if the given structure
of the matrix is violated, we can easily obtain the certificate from tableau M̄,
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that M is not sufficient. The coding size of this certificate is bounded by a
polynomial of the input length of matrix M [12, 8]

By the permutation of M ∈ Rn×n, we mean the matrix PTMP, where P is a
permutation matrix.

Lemma 5 [14] Let M ∈ Rn×n be a row (column) sufficient matrix. Then

1. any permutation of matrix M is row (column) sufficient,

2. the product DMD is row (column) sufficient, where D ∈ Rn×n
+ is a posi-

tive diagonal matrix,

3. every principal submatrix of M is row (column) sufficient.

A sufficient matrix M̄ is also sufficient after any number of arbitrary principal
pivots. The class of sufficient matrices is closed under principal block pivot
operations [26], and as a consequence their properties are preserved during the
criss-cross type algorithms, as the exchange pivot operations carried out by the
criss-cross algorithms are equivalent to a block pivot operation of size 2× 2.

The matrix of Example 6 will be used in all examples of the paper.

Example 6 As an example of a non-sufficient matrix, consider

M =

⎛
⎜⎜⎜⎜⎝

1 −1 −1 0 −1

−1 2 0 0 −1

1 −2 −1 −2 0

−4 −1 −1 2 4

−1 0 2 0 1

⎞
⎟⎟⎟⎟⎠ .

This matrix is neither column, nor row sufficient. In this example, the operator
· denotes the Hadamard, element-wise product. Consider the column vector

xT =
(
0 0 1 0 0

)

then

x · (Mx) =

⎛
⎜⎜⎜⎜⎝

0

0

1

0

0

⎞
⎟⎟⎟⎟⎠ ·

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

1 −1 −1 0 −1

−1 2 0 0 −1

1 −2 −1 −2 0

−4 −1 −1 2 4

−1 0 2 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0

0

1

0

0

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ =
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=

⎛
⎜⎜⎜⎜⎝

0

0

1

0

0

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎝

−1

0

−1

−1

2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0

0

−1

0

0

⎞
⎟⎟⎟⎟⎠

a strictly sign reversing vector. Similarly, for row vector

y =
(
0 0 1 1 0

)
we have

(yM) ·y =
(
−3 −3 −2 0 4

) · ( 0 0 1 1 0
)
=

(
0 0 −2 0 0

)
making y a proof that M is not sufficient according to Definition 1.

The decision problem, whether an arbitrary linear complementarity problem
has a solution or not, is in NP, and not always in co-NP [5], although for the
class of sufficient matrices it belongs to co-NP, and can be stated using the
dual of the LCP (1) problem:

(x,y) ∈ V(M,q)⊥ :=

{
(x,y) |

x+MTy = 0, qTy = −1

xy = 0, x, y ≥ 0

}
(D− LCP)

Using the definition of the dual, the alternative theorem of LCP problems is
as follows.

Theorem 7 [13] For a sufficient matrix M ∈ Rn×n and a vector q ∈ Rn,
exactly one of the following statements holds:

(1) the (P-LCP) problem has a feasible complementary solution (u,v),

(2) the (D-LCP) problem has a feasible complementary solution (x,y).

As a consequence, it is well-characterized when the (P−LCP) problem has no
feasible complementary solution if the matrix M is sufficient and rational, as
a polynomial size certificate can be given, namely the solution of the problem
(D− LCP).

The alternative theorem for LCP of Fukuda and Terlaky is an interesting
generalization of Farkas-lemma [10, 11]. Due to the fact, that primal and dual
LCPs are more complicated problems, to show that exactly one of the al-
ternative statements holds it is necessary to have information on the matrix
property. Therefore, Fukuda and Terlaky’s result, comparing to that of Farkas’
needs an extra assumption, that the matrix M is sufficient.
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3 The s-monotone index selection rule

The concept of s-monotone index selection rules have been introduced in [9],
presented here for the LCP case. We say a variable moves during a pivot, if it
either leaves, or enters the basis.

Definition 8 (Possible pivot sequence) A sequence of index pairs

S = {Sk = (ik, ok) : ik, ok ∈ N for some consecutive k ∈ N},

is called a possible pivot sequence, if

(i) 2n = max{max
k∈N

ik, max
k∈N

ok},

(ii) there exists a (P-LCP) in standard form with 2n variables and the
rank(M) = n, and

(iii) (possibly infinite) pivot sequence, where the moving variable pairs of
(P-LCP) correspond to the index pairs of S.

The index pairs of a possible pivot sequence are thus only required to comply
with the basic and nonbasic status. It is now easy to show that

Proposition 9 If a possible pivot sequence is not finite then there exists a
(sub)set of indices, I∗, that occurs infinitely many times in S.

The concept of pivot index preference describes how to select pivot positions
when the primary algorithm offers flexibility:

Definition 10 (Pivot index preference) A sequence of vectors sk ∈ N2n is
called a pivot index preference of an index selection rule, if in iteration j, in
case of ambiguity according to a pivot selection rule, the index selection rule
selects an index with highest value in sj among the candidates.

The concept of s-monotone index selection rule [9] aims to formalize a com-
mon monotonicity property of several index selection rules.

Definition 11 (s-monotone index selection rule) Let n ∈ N be given. An
index selection rule is called s-monotone, if

1. there exists a pivot index preference sk ∈ N2n, for which
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(a) the values in the vector sj−1 after iteration j may only change for ij
and oj, where ij and oj are the indices involved in the pivot opera-
tion,

(b) the values may not decrease.

2. For any infinite possible pivot sequence S and for any iteration j there
exists iteration r ≥ j such that

(a) the index with minimal value in sr among I∗ ∩ IBr is unique (let it
be l), where IBr is the set of basic indices, in iteration r,

(b) in iteration t > r when index l ∈ I∗ occurs again in S for the first
time, the indices of I∗ that occurred in S strictly between Sr and St
have a value in st higher than the index l.

To apply the s-monotone index selection rules for linear complementarity
problems, a small extension is necessary comparing to that one for linear pro-
gramming [9].

Definition 12 An s-monotone pivot rule applied to an LCP problem is sym-
metric, if s(i) = s(̄i) always holds for any i ∈ I.

The criss-cross algorithms presented in this paper will apply the s-monotone
rules in a symmetric way. As examples for s-monotone rules, below is the
definition of an s vector for the minimal index, the last-in-first-out and most
often selected rules.

• Minimal index/Bland: The variables with the smallest index is selected.
Initialize s consisting of constant entries

si = n− i, i ∈ I

where n is the number of the problem columns in the problem.

• Last-In-First-Out (LIFO): The most recently moved variable is selected.

Initialize s equal to 0. For a pivot at (k, l) in the rth iteration update s
as

s
′
i =

{
r if i ∈ {k, l}

si otherwise



Finite index selection rules for LCP criss-cross algorithm 113

• Most-Often-Selected-Variable (MOSV): Select the variable that has been
selected the largest amount of times before.

Initialize s equal to 0. For a pivot at (k, l) in the rth iteration update s
as

s
′
i =

{
si + 1 if i ∈ {k, l}

si otherwise

4 The criss-cross method

This section presents the criss-cross algorithm for linear complementarity prob-
lems using s-monotone index selection rules.

The criss-cross algorithms for LCP problems need a starting complementary
solution, for which u = 0 and v = q is a possible selection using the assumption
that rank(M) = n. Starting from the initial complementarity solution, the
criss-cross method performs a sequence of so called diagonal and exchange
pivots.

If in any complementary basis during the algorithm vj is a basic variable
and the value of variable vj is infeasible and m̄jj < 0, then the algorithm, may
perform a diagonal pivot where variable uj enters the basis while variable vj
leaves it.

If m̄jj = 0 and the algorithm select vj to leave the bases, then it pivots
on such an index k for which m̄jk < 0. The solution obtained after a pivot
like this is not complementary any more, so to restore the complementarity
of the solution the algorithm pivots on the position (k, j) as well. According
to Lemma 4, in case of sufficient matrices m̄kj > 0 will hold in this situation.
These two pivots together are called an exchange pivot.

uj

...
vj . . . − . . . −

...

Diagonal pivot

uk uj
...

vk +
...

vj . . . − . . . 0 . . . −
...

Exchange pivot

Figure 1: Diagonal and exchange pivot
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During an exchange pivot, variables uj and uk enter the basis, while vj and
vk leave it. We say that uj and vj are chosen actively, while uk and vk are
chosen passively. Thus, the terms passively and actively refer to the order in
which the indices are selected, irrespective of the variable types (i.e. the same
rule applies to an exchange pivot involving different combinations like (vj, uk)
exchanged with (uj, vk)). The two types of pivot operations are presented in
Figure 1.

When using s-monotone index selection rules, the role of the s-vector is to
maintain a history about the movements of the variables. In the LCP case, these
updates are generalized as follows: in case of an exchange pivot, the vector s of
the s-monotone pivot rule is updated to the passively selected pair of variables
first, and only then for the actively selected pair, thus the symmetry of vector
s (i.e. the value of any variable pair (ui, vi) in s is the same after each pivot)
is also maintained. This way, from the s vector’s point of view, an exchange
pivot is considered as two pivots. This rule will play an important role in the
finiteness proofs.

Note, that Lemma 5 ensures that the sufficiency of the matrix is preserved
during the algorithm. Moreover, both the diagonal and the exchange pivot
operations preserve complementarity as well.

The pseudo-code and flow chart of the criss-cross type algorithm using s-
monotone index selection rules is presented in Figure 2 and Figure 3.

The sufficiency of matrix M ensures that (Lemma 4) the sign of the chosen
pivot elements will be as desired in the case of exchange pivot. The algorithm
terminates only if there is no solution or if it has found the solution, so it is
sufficient to prove that it is finite. As the number of possible bases is finite, we
have to show that the criss-cross type algorithm with s-monotone pivot rule
does not cycle.

4.1 Almost terminal tableaux of the criss-cross method

To prove finiteness of the algorithm, we assume the contrary, i.e. that it cycles.
The results of this section are a generalization of the proof presented in [8] to
the s-monotone case.

Let us assume that an example exists for which the algorithm is not finite.
The number of bases is finite, at most

(
2n
n

)
, so the algorithm makes an infi-

nite number of iterations only if cycling occurs. Let us consider a minimal size
cycling example. In such an example, because of minimality—and the mono-
tonicity of s—every variable moves during the cycle.

Let us consider the situation described by the second criterion of s-monoto-
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Criss-cross type algorithm with symmetric s-monotone pivot rule

Input: problem (1), where M is sufficient, T := −M, q̄ := q, r := 1. Initialize s.
Begin

J := {i ∈ I : q̄i < 0} .

While (J �= ∅) do
Jmax := {j ∈ J | s(j) ≥ s(α), for all α ∈ J } , let k ∈ Jmax arbitrary.
If (m̄kk < 0) then

Diagonal pivot on m̄kk, update vector s for variable pair (uk, vk).
Let r := r+ 1.

Else
K := {i ∈ I : m̄ki < 0}.
If (K = ∅) then Stop: The LCP problem has no feasible solution.
Else

Kmax = {β ∈ K | s(β) ≥ s(α), for all α ∈ K} .

Let l ∈ Kmax arbitrary.
Exchange pivot on m̄kl and m̄lk.
Update vector s for variable pair (ul, vl) as in iteration r+ 1,
then for variable pair (uk, vk) as in iteration r+ 2.
Let r := r+ 2.

Endif
Endif

Endwhile
Stop: A feasible complementary solution has been computed.

End

Figure 2: The criss-cross type algorithm

nicity and with variable ul outside the bases. Consider basis B ′ where variable
ul enters the bases for the first time after this situation occurred. Since ul

and vl have the smallest value according to vector s and the symmetry of the
rule, vl is the only infeasible variable in basis B ′. The short pivot tableaux
(presented in Figures 4 and 5) for this case are as follows:

1. The algorithm chooses ul to enter the basis.

The diagonal element m̄ll < 0, so a diagonal pivot is possible [Figure
4, tableau (a)]: ul enters the basis, while vl leaves it. The vector s is
modified symmetrically for variable pair (ul, vl).

2. The algorithm chooses variable ul to enter the basis, but m̄ll = 0, so an
exchange pivot is necessary [Figure 4, tableau (b)]. Variables ul and uj

enter the basis, while variables vl and vj leave it. The vector s is modified
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0 ...      ...

?

feasible

solution

no

no

l

k̄

no solution

yes

yes no

exchange
pivot possible

k

k− −

−

− k

k̄

l̄

START

STOP

yes

feasible?

diagonal
pivot possible?

STOP

complementary
tableau

⊕

⊕

∗

∗

⊕⊕

......complementary

Figure 3: Flow chart of the algorithm

symmetrically (i.e. the complementary variable pairs always have the
same value in s), first for variable pair (uj, vj) and then for variable pair
(ul, vl) as if in the next iteration.

The column of q is the same as in tableau (a). In this case, it is not important
whether uj or vj is in the basis. We consider the case when vj is in the basis.
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ul

(a) ⊕
⊕
...
...
⊕
⊕

vl − −

uj ul

(b) ⊕
vj + ⊕

...

...
⊕
⊕

vl − 0 −

Figure 4: Variable ul is actively selected to enter the bases

3. The algorithm chooses a variable uj to enter the basis, but m̄jj = 0, so
an exchange pivot is necessary and the algorithm chooses the variable ul

as well (passively) [Figure 5, tableau (c)].

ul uj

(c) �
...
�

vl +
�
...
�

vj ⊕ · · · ⊕ − ⊕ · · · ⊕ 0 −

Figure 5: Variable ul is passively selected in a a second pivot position in an
exchange pivot to enter the basis

According to the situation when ul enters the basis, the row of vj only
in the columns of ul and q may contain negative elements, and because
m̄jj = 0 –using Lemma 4– we also know the sign structure of the column
of uj. In this case, it is once again not important whether uj or vj is
in the basis. We consider the case when vj is in the basis. The vector
s is modified symmetrically first for variable pair (ul, vl) and then for
variable pair (uj, vj) as if in the next iteration.

For the purpose of the EP-theorem considered in the next section, we note
that in Cases 1. and 2. only the properties of the pivot rule has been used when
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filling out the sign structures, while the sufficiency of the matrix has been used
in the third case for the column of uj.

Now consider basis B ′′, when ul leaves the basis for the first time after
basis B ′. The pivot tableau for this iteration can have three different struc-
tures (as presented in Figures 6 and 7), according to the second criterion of
s-monotonicity.

A. According to the pivot rule, the algorithm chooses variable ul to leave
the basis, m̄ll < 0, so a diagonal pivot takes place [Figure 6, tableau (A)].

vl
(A) ⊕

...
⊕
−
...
−

ul − −

vk vl
(B)

uk +

ul − 0 −

Figure 6: Variable ul is actively selected to leave the bases

B. The pivot rule chooses variable ul to leave the basis, but m̄ll = 0, so an
exchange pivot is needed: vk (or uk) enters the basis, while uk (or vk)
leaves it [Figure 6, tableau (B)].

C. The algorithm chooses variable uk (or vk), but m̄kk = 0, so an exchange
pivot takes place and vl enters the basis, while uk leaves it [Figure 7,
tableau (C)].

We show that none of the tableaux (a) − (c) can be followed by one of the
tableaux (A)−(C) if matrix M is sufficient. For the purposes of the next section
that further extends the algorithm for the EP-theorem case, it is important to
make note which parts of the proofs are based on the sufficiency of the input
matrix, and which on the properties of s-monotonicity.

4.1.1 Auxiliary lemmas

We will use the following fundamental result of pivot tableaux called the ortho-
gonality theorem that describes an orthogonal property between different pivot
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vl vk
(C)

ul +

uk − 0 −

Figure 7: Variable ul is passively selected in a second pivot position in an
exchange pivot to leave the basis

tableaux of the set of vectors. Denote the row vector

(
t(i)

)
k
=

⎧⎨
⎩

tik, if k ∈ JN ∪ {b}

1, if k = i

0, otherwise

and the columns vector

(tj)k =

⎧⎨
⎩

tkj, if k ∈ JB

−1, if k = j

0, otherwise.

Theorem 13 [19] For any matrix A ∈ IRm×n and with arbitrary bases B ′ and
B ′′, the vectors t ′(i) and t ′′j belonging to basic tableaux TB ′ and TB ′′ respectively,
are orthogonal.

First, consider the cases that do not use the sufficiency of matrix M. We
begin by showing that tableau (c) cannot be followed by tableaux (A) or (B).

Lemma 14 Let us denote the tableau of case (c) by TB ′ and the tableau of A
(or B) by TB ′′ . Consider the vectors t ′ (̄j) and t ′′q , read from the row of the basic
variable vj in tableau TB ′ , and from the column of q in TB ′′ . Then

(t ′ (̄j))T t ′′q > 0.

Proof. Let K ′′ := { i ∈ IB ′′ | q̄ ′′
i < 0 }. Using the second criterion of s-monotone

pivot rules, variables referring to these indices (with the possible exception of
index j̄ and l) have not moved since B ′, or else their s value would have to be
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larger than of ul, thus the algorithm would have chosen one from K ′′ instead of
ul, so K ′′ ⊆ IB ′ ∩IB ′′ . This indicates that t ′̄

ji
= 0 for all indices i ∈ K ′′ \

{
j̄, l

}
,

thus ∑
i∈J ′′\{̄j,l}

t ′̄
ji
t ′′iq = 0. (2)

Since at the exchange pivot made on B ′, the s value was first updated for
variable pair (ul, vl) and only in the next pivot for (uj, vj), we also know from
s-monotonicity that t ′′jq and t ′′

j̄q
are nonnegative (one is outside the basis, and

since they have moved since B ′, their s value is bigger than of ul).
Furthermore, it can be read from tableau (c) that t ′̄

jj
= 0, t ′̄

j̄j
= 1, t ′̄

j̄l
= 0,

t ′̄
jl
< 0 and t ′̄

jq
< 0 so

t ′̄
j̄j
t ′′
j̄q
+ t ′̄

jj
t ′′jq + t ′̄

j̄l
t ′′
l̄q
+ t̄jl t

′′
lq + t ′̄

jq
t ′′qq ≥ t ′̄

jl
t ′′lq − t ′̄

jq
> 0, (3)

because t ′′qq = −1 by definition, and t ′′lq < 0 according to the pivot rule of the
algorithm (tableaux (A) and (B)).

If h /∈ K ′′ ∪ {
j, j̄, l, l̄, q

}
, we know again from the tableaux that t ′̄

jh
≥ 0 and

by the definition of K ′′ it holds that t ′′hq ≥ 0, so

∑
h �∈K ′′∪{j,̄j,l,̄l,q}

t ′̄
jh

t ′′hq ≥ 0. (4)

The result follows as we sum up inequalities (2)–(4). �
From tableau (c) we considered the structure of the row for variable vj,

while from tableaux (A) and (B) the structure of the column of q. In none of
these cases did we use the sufficiency of the matrix, and the proofs used only
the combinatorial nature of the s-monotone pivot rules. Thus tableaux (c) and
(A) (or (B)) are exclusive because of the orthogonality theorem and the lemma
above, regardless of the sufficiency of the matrix.

We now prove that tableaux (a) and (b) cannot be followed by tableau (C).

Lemma 15 Let us denote tableau (a) (or (b)) by TB ′ and tableau (C) by TB ′′ .
Consider the vectors t ′q and t ′′(k) belonging to the column of q in tableau MB ′ ,
and to the row of uk in tableau MB ′′ . Then

(t ′′(k))T t ′q > 0.

Proof. Like in the previous lemma, K ′′
k := {i ∈ IN ′′ | t ′′ki < 0} ⊂ IN ′ holds

because of the second criterion of s-monotonicity, so t ′iq = 0 for every i ∈
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K ′′
k \ {l}, thus ∑

i∈K ′′
k \{l}

t ′′ki t
′
iq = 0. (5)

Furthermore, for an index h /∈ K ′′
l ∪ {̄j, j, l̄, l, q}, t ′′kh ≥ 0 and t ′hq ≥ 0, therefore

∑
j �∈K ′′

l ∪{̄j,j,̄l,l,q}
t ′′kj t

′
jq ≥ 0. (6)

From tableaux TB ′ and TB ′′ it can be read that
t ′qq = −1, t ′′kk = 1, t ′′

kk̄
= t ′′kl = t ′lq = 0 and t ′′

kl̄
< 0, t ′′kq < 0, t ′̄

lq
< 0, t ′̄

kq
≥ 0

and t ′kq ≥ 0 so

t ′′
kk̄

t ′̄
kq

+t ′′kk t
′
kq+t ′′

kl̄
t ′̄
lq
+t ′′kl t

′
lq+t ′′kq t

′
qq = t ′kq+t ′′

kl̄
t ′̄
lq
−t ′′kq ≥ t ′′

kl̄
t ′̄
lq
−t ′′kq > 0.

The result follows as we sum up inequalities (5) − (7).
�

We can now consider tableaux where the sufficiency of the matrix plays an
important role.

In the following, we show that tableaux (a) (or (b)) cannot be followed by
tableaux (A) or (B).

Lemma 16 Let the complementary solutions (u ′,v ′) and (u ′′,v ′′), belonging
to tableaux (a) (or (b)) and (A) (or (B)) be given. Then the Hadamard product

(u ′ − u ′′) · M (u ′ − u ′′) � 0,

i.e. (u ′ − u ′′) is a strictly sign reversing vector with respect to M.

Proof. We prove all four cases simultaneously.

(u ′ − u ′′) · M (u ′ − u ′′) = (u ′ − u ′′) · (q+Mu ′ − q−Mu ′′)
= (u ′ − u ′′) · (v ′ − v ′′)
= u ′ · v ′ − u ′ · v ′′ − u ′′ · v ′ + u ′′ · v ′′

= −u ′ · v ′′ − u ′′ · v ′,

where the last equation holds because of the complementarity of the given
solutions.

Let K ′′ := { i ∈ IB ′′ | q̄ ′′
i < 0 }. As before, according to s-monotonicity,

variables indexed by K ′′ have not moved since bases B ′, or else the algorithm
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would have chosen one from them, thus for all i ∈ K ′′\ {l}, the value of u ′
i (or

v ′′
i ) and u ′′

i (or v ′
i) is zero:

u ′
i v

′′
i + u ′′

i v ′
i = 0. (7)

From tableau (a) (or (b)), and tableau (A) (or (B)), it can be read that u ′
l =

0, v ′l < 0 and u ′′
l < 0, v ′′

l = 0 so,

u ′
l v

′′
l + u ′′

l v ′
l > 0. (8)

Furthermore, for any h /∈ K ′′ it holds that u ′
h, v

′
h, u

′′
h, v

′′
h ≥ 0, thus

u ′
h v ′′

h + u ′′
h v ′

h ≥ 0. (9)

To summarize, the vector (u ′ − u ′′) is such that (u ′ − u ′′) · M (u ′ − u ′′) � 0.
�

Note, that the proof is constructive because the vector u ′ − u ′′ proving the
lack of sufficiency of our matrix can easily be obtained from the bases B ′ and
B ′′.

In the last auxiliary lemma, we consider the case when tableau (c) would be
followed by tableau (C).

Lemma 17 Let us denote tableau (c) by TB ′ , and tableau (C) by TB ′′ . Consider
the vectors t ′j and t

′′(k) belonging to the column of uj in tableau TB ′ and to the
row of uk in tableau TB ′′ . Then

(t ′′(k))T t ′j < 0.

Proof. Let K ′′
k = {i ∈ IN ′′ : t ′′ki < 0}\ {j}. Using the second criterion of s-

monotone pivot rules again, the variables of the indices K ′′
k have not moved

since B ′, so (IN ′′ \ K ′′
k ) ⊂ IB ′ and K ′′

k ⊂ IN ′ , thus t ′ij = 0 if i ∈ K ′′
k . Based on

these observations, we have ∑
i∈K ′′

k∪{q}
t ′′ki t

′
ij = 0. (10)

Furthermore, if h /∈ K ′′
k ∪ {

q, l, l̄, j, j̄, k, k̄
}

then t ′hj ≤ 0 according to tableau
(c). By the definition of K ′′

k , t
′′
kh ≥ 0, so∑

h �∈K ′′
k∪{q,l,̄l,j,̄j,k,k̄}

t ′′kh t
′
hj ≤ 0, (11)
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From tableaux TB ′ and TB ′′ , taking the definition of vector t into consideration,
it follows that

t ′lj = t ′′
kk̄

= t ′̄
jj
= t ′qj = t ′′kl = 0, t ′′kk = 1, t ′jj = −1 and t′kj ≤ 0, t ′′

kl̄
< 0, t ′̄

lj
> 0

so

t ′′kq t
′
qj + t ′′kl t

′
lj + t ′′

kl̄
t ′̄
lj
+ t ′′kj t

′
jj + t ′′

k̄j
t ′̄
jj
+ t ′′kk t

′
kj + t ′′

kk̄
t ′̄
kj
< −t ′′kj. (12)

By the definition of the algorithm, at the exchange pivot in tableau c, the
first variable pair for which the update of the s vector is applied is (ul, vl), and
only after for (uj, vj). Hence variable (uj, vj) is already considered to be moved
since B ′, thus by the second criterion of s-monotone pivot rules their s value
is bigger than of index l. This is only possible if t ′′kj ≥ 0 either because out of
bases, or because of its associated s value.

The result follows as we sum up inequalities (10) − (12).
�

4.2 Finiteness of the criss-cross method

In this section, we prove the finiteness of the criss-cross algorithm.

Theorem 18 The criss-cross type algorithm with s-monotone pivot rule is
finite for the linear complementarity problem with sufficient matrices.

Proof. Let us assume the contrary, that the algorithm is not finite. Because a
linear complementarity problem has finitely many different bases, the algorithm
can have an infinite number of iterations only if it is cycling. Then we have a
cycling example. Let us choose from the cycling examples one with a minimal
size. Then, every variable moves during the cycle. Taking the auxiliary lemmas
into consideration, after variable ul enters the basis after basis B ′, it cannot
leave it again:

If it enters in case (a) or (b) and leaves the basis in case (A) or (B), Lemma
16. contradicts the sufficiency of matrix M.

If it enters in case (c) and leaves the basis in case (A) or (B), Lemma 14.
contradicts the orthogonality theorem.

If it enters in case (c) and leaves the basis in case (C), Lemma 17. contradicts
the orthogonality theorem.

If it enters in case (a) or (b) and leaves the basis in case (C), Lemma 15.
contradicts the orthogonality theorem.
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All possible cases lead to a contradiction, therefore the algorithm is finite. �

Figure 8 shows the cases in which the sufficiency of matrix T has been used
in the proof of finiteness of the criss-cross type algorithm.

(a) (b) (c)
(A) ∗ ∗
(B) ∗ ∗
(C) ∗

Figure 8: The cases when sufficiency of the pivot matrix is used

5 EP theorems and the linear complementarity
problem

This section generalizes the algorithm in the sense of EP theorems. As moti-
vation, Example 19 demonstrates that the criss-cross algorithm may solve a
LCP problem even if the matrix is not sufficient.

Example 19 To demonstrate the criss-cross method, consider the linear com-
plementarity problem with the matrix presented in Example 6 with the corre-
sponding short pivot tableau where the identity matrix corresponding to v serves
as an initial complementary basis.
Solving the problem with the cross-cross method, pivoting first on diagonal

elements (u1, v1) and (u2, v2):

u1 u2 u3 u4 u5

v1 -1 1 1 0 1 -1
v2 1 -2 0 0 1 -2
v3 -1 2 1 2 0 16
v4 4 1 1 -2 -4 6
v5 1 0 -2 0 -1 4

Tableau 1.

v1 u2 u3 u4 u5

u1 -1 -1 -1 0 -1 1
v2 1 -1 1 0 2 -3
v3 -1 1 0 2 -1 17
v4 4 5 5 -2 0 2
v5 1 1 -1 0 0 3

Tableau 2.

then (u4, v4):
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v1 v2 u3 u4 u5

u1 -2 -1 -2 0 -3 4
u2 -1 -1 -1 0 -2 3
v3 0 1 1 2 1 14
v4 9 5 10 -2 10 -13
v5 2 1 0 0 2 0

Tableau 3.
v1 u2 u3 v4 u5

u1 -2 -1 -2 0 -3 4
u2 -1 -1 -1 0 -2 3
v3 9 6 11 1 11 1
u4 -4.5 -2.5 -5 -0.5 -5 6.5
v5 2 1 0 0 2 0

Tableau 4.

arriving at the solution u1 = 4, u2 = 3, v3 = 1, u4 = 6.5 and all other variables
zero. The method has found a feasible complementary solution for a problem
with non-sufficient matrix.

Example 19 compensated for an obvious matrix coefficient making the matrix
non-sufficient (diagonal entry for (u3, v3)) with a large right hand side value.
As example 20 shows, this is not necessary.

Example 20 Consider the same M matrix as in Example 19, but with a dif-
ferent right hand side.

u1 u2 u3 u4 u5

v1 -1 1 1 0 1 -1
v2 1 -2 0 0 1 2
v3 -1 2 1 2 0 -1
v4 4 1 1 -2 -4 5
v5 1 0 -2 0 -1 1

Tableau 1.

v1 u2 u3 u4 u5

u1 -1 -1 -1 0 -1 1
v2 1 -1 1 0 2 1
v3 -1 1 0 2 -1 0
v4 4 5 5 -2 0 1
v5 1 1 -1 0 0 0

Tableau 2.

Pivoting on (u1, v1) arrives at a feasible complementary solution, even though
the row of diagonal with the incorrect sign in respect to sufficiency stared out
to be infeasible.

An EP theorem is usually a collection of several alternative possible state-
ments, from which one always holds, and if any statement holds, then a polyno-
mial size (in the length of the input data) certificate for it must exist. It may



126 Zs. Csizmadia, T. Illés, A. Nagy

also be viewed as a general framework for making provable and practically
applicable theories.

The general form of an EP (Existentially Polynomial time) theorem is as
follows [3]:

[∀x : F1(x) or F2(x) or . . . or Fk(x)]

where Fi(x) is a statement of the form

Fi(x) = [∃yi for which ‖yi‖ ≤ ‖x‖ni and fi(x,yi)] .

where each ni is a positive integer.
The extended algorithm makes use of the following two theorems.

Theorem 21 [12] Let the matrix M ∈ IRn×n be not sufficient. In this case, a
certificate exists that M is not sufficient, the coding size of which is polynomi-
ally bounded by the input length of matrix M .

Theorem 22 [12]. For any matrix M ∈ Qn×n and vector q ∈ Qn, at least
one of the following statements holds:

(1) problem (P-LCP) has a complementary, feasible solution (u,v) the en-
coding size of which is polynomially bounded by the input length of matrix
M and vector q.

(2) problem (D-LCP) has a complementary, feasible solution (x,y) the en-
coding size of which is polynomially bounded by the input length of matrix
M and vector q.

(3) matrix M is not sufficient, and there is a certificate the encoding size of
which is polynomially bounded by the input length of matrix M.

Note that cases (1) and (2) are exclusive, while case (3) can hold alone or
together with either case (1) or (2). It is a naturally arising condition that the
entries of the matrix should be rational numbers.

We modify the extended criss-cross algorithm so that it either solves problem
(P−LCP) or its dual, or proves the lack of sufficiency of the input matrix, giving
a polynomial size certificate.

Lemma 4 ensures that the pivot operations can always be done if our matrix
is sufficient, and if it is not, it provides the required certificate that matrix M

is not sufficient.
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The criss-cross type algorithm with s-monotone index selection rules in
the form of EP-theorems

Input: T = −M, q̄ = q, r = 1, Initialize Q and s.
Begin

While ((J := {i ∈ I | q̄i < 0}) �= ∅) do
Jmax := {β ∈ J | s(β) ≥ s(α), for all α ∈ J }.
Let k ∈ Jmax be arbitrary.
Check −u ′ · v ′′ − u ′′ · v ′′ with the help of Q(k).
If (−u ′ · v ′′ − u ′′ · v ′′ � 0) then

Stop: M is not sufficient, certificate: u ′ − u ′′.
Endif
If (tkk < 0) then

Diagonal pivot on tkk, update s.
Q(k) = [JB, t̄q], r := r+ 1.

ElseIf (tkk > 0)
Stop: M is not sufficient, create certificate.

Else /* tkk = 0 */
K := {α ∈ I | t̄kα < 0}

If (K = ∅) then
Stop: DLCP solution.

Else
Kmax = {β ∈ K | s(β) ≥ s(α), for all α ∈ K}.
Let l ∈ Kmax be arbitrary.
If ((tk, tk) or (tl,tl) sign structure is violated) then

Stop: M is not sufficient, create certificate.
Endif
Exchange pivot on tkl and tlk, update s first for (uk, vk),
then for (ul, vl) as in a next iteration.
Q(k) = [JB, t̄q], Q(l) = [∅,0], r := r+ 2.

Endif
Endif

EndWhile
Stop: we have a complementary feasible solution.

End

Figure 9: The criss-cross type algorithm with s-monotone index selection rules
in the form of EP-theorems
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As Example 23 shows, in the lack of sufficiency the criss-cross method may
cycle.

Example 23 Consider the same M matrix as in Example 19 and Example 20
but with a another different right hand side.
The criss-cross algorithm first pivots on (u1, v1). In the second tableau, an

exchange pivot is necessary, pivoting on (u3, v5) and then (u5, v3) leading to
Tableau 4.

u1 u2 u3 u4 u5

v1 -1 1 1 0 1 -1
v2 1 -2 0 0 1 2
v3 -1 2 1 2 0 0
v4 4 1 1 -2 -4 10
v5 1 0 -2 0 -1 0

Tableau 1.

v1 u2 u3 u4 u5

u1 -1 -1 -1 0 -1 1
v2 1 -1 1 0 2 1
v3 -1 1 0 2 -1 1
v4 4 5 5 -2 0 6
v5 1 1 -1 0 0 -1

Tableau 2.

On Tableau 4, another exchange picot takes place, (v3, u5) and then (v5, u3)
resulting in Tableau 6.

v1 u2 v5 u4 u5

u1 -2 -2 -1 0 -1 2
v2 2 0 1 0 2 0
v3 -1 1 0 2 -1 1
v4 9 10 5 -2 0 1
u3 -1 -1 -1 0 0 1

Tableau 3.

v1 u2 v5 u4 v3
u1 -1 -3 -1 -2 -1 1
v2 0 2 1 4 2 2
u5 1 -1 0 -2 -1 -1
v4 9 10 5 -2 0 1
u3 -1 -1 -1 0 0 1

Tableau 4.

v1 u2 v5 u4 u5

u1 -2 -2 -1 0 -1 2
v2 2 0 1 0 2 0
v3 -1 1 0 2 -1 1
v4 9 10 5 -2 0 1
u3 -1 -1 -1 0 0 1

Tableau 5.

v1 u2 u3 u4 u5

u1 -1 -1 -1 0 -1 1
v2 1 -1 1 0 2 1
v3 -1 1 0 2 -1 1
v4 4 5 5 -2 0 6
v5 1 1 -1 0 0 -1

Tableau 6.

Tableau 6 coincides with Tableau 2: the pivot choices have been unique as the
negative right hand side values were unique: the algorithm cycles.
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We now need to analyse the proofs of finiteness of the original algorithm.
Avoiding cycling: Note, that minimality of the cycling example is not ne-

cessary in the proof of finiteness of the original algorithm. Every proof remains
valid for any cycling example, since those variables that do not move during a
cycle do not change their basis status, thus have a zero value in the orthogo-
nality theorem.

Consider an arbitrary cycling example. Let the index set of the variables
involved in the cycling be R, and consider an iteration, when cycling has already
begun. Let the basis B ′ such that satisfies the second criterion of s-monotonicity
with variable xl.

In this case the structure of tableaux MB′ and MB′′ restricted to indices R

and vector q is exactly like in case (a) − (c) and (A) − (C). Between these
two tableaux, a variable whose index is not in R has not moved. Thus, in
the product of the vectors analysed in Lemmas 14, 15 and 17, for the indices
not in R and not q exactly one of the corresponding variables is in basis, so
the contribution to the product for these indices is always zero. For the same
reason, in the product of −u ′ · v ′′ − u ′′ · v ′ in Lemma 16, the entries for the
indices not in R are each zero. This proves that the proofs are valid for an
arbitrary cycling example.

Handling the lack of sufficiency: Sufficiency has only been used in Lem-
mas 16 and 17. This latter one used the sign property of sufficient matrices,
based on Lemma 4. Therefore, if the algorithm checks that the required sign
property is fulfilled during every exchange pivot (cases (c) and (C) refer to
such pivots), tableau (c) cannot be followed by tableau (C), because of the
orthogonality theorem. If the required sign structure is violated, the certificate
that matrix M is not sufficient is provided by the same lemma.

There remain the cases of tableaux (a)-(b) and (A)-(B). Lemma 16 handled
this case. The proof of the lemma is based on the product

− u ′ · v ′′ − u ′′ · v ′ (13)

referring to such subsequent tableaux MB ′ and MB ′′ , where the same variable
moves during both pivot operations, and in both cases this variable was chosen
actively (that is, not as the second variable of an exchange pivot). Note, that
we do not need the whole tableau here, the only information we use is the
column of q (the actual complementary solution) and the set of indices in the
basis. If vector (13) is strictly sign reversing, then as in the note after Lemma
16, the evidence that matrix M is not sufficient is the vector u ′ − u ′′.

Let us introduce a list Q(p) (p = 1, . . . , n). Two vectors of dimension n

belongs to every entry of this list. At the beginning,
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Q(p) :=

[
[1, . . . , n]
[0, . . . , 0]

]
p = 1, . . . , n.

When variable ul or vl leaves the basis during a diagonal pivot or such an
exchange pivot where this variable is active (variable selected first), we modify
the value of Q(l) in such a way, that we write the indices of variables in basis
to the first vector before the actual pivot operation, while we write the values
of variables in basis before the pivot operation to the second vector:

Q(l) :=

[
[ indices of variables in basis ]
[ values of variables in basis]

]
.

If variable ul or vl enters the basis passively (as the second variable of an
exchange pivot), we modify the value of Q(l) as:

Q(l) :=

[
[1, . . . , n]
[0, . . . , 0]

]
.

An operation Q(j) = [{I}, {h}] means that to the entry of j in the list Q, we
write list I to the place of basic indices, while the values of the vector h in the
place of q.

Before the algorithm performs a pivot operation, it checks if the actively
selected variable that enters the basis was chosen actively previously or not
when it left the basis. If yes, with the help of list Q, it checks vector (13)
and only after this does it modify list Q. Because the complementary pairs
of variables move together during the pivot operations, it is not necessary to
provide space for both of them in list Q.

Note, that because the definition of the initial values of Q and the modifica-
tion of Q during a passive exchange pivot, it suffices to check the product (13)
during any pivot. If tableau (a) (or (b)) is followed by tableau (A) (or (B)),
the product will always be zero.

It would not be necessary to fill out list Q every time. With a slight mod-
ification of the algorithm, we would be able to save storage space as well. In
the worst case, the storage space required by list Q would be the storage space
required to store n2 integer and n2 rational numbers.

We have to investigate the case when (P−LCP) has no solution. This occurs
when K = ∅. The structure of the pivot tableau is shown in Figure 11. Consider
the vector

(x ′,y ′) = t(k) |JN∪JB .
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Figure 10: Flow chart of the modified criss-cross algorithm

Using the orthogonality theorem, we get that this vector is orthogonal to
every row of [−MT | −I], in other words MTx ′ + y ′ = 0. Applying the ortho-
gonality theorem to the column of the right-hand side vector q (in the starting
basis), we have

(x ′,y ′)Ttq |JN∪JB= (x ′,y ′)T (q,0) = x ′Tq = qk.

So the vector (x,y) = (x ′,y ′)/(−qk) is a solution to the problem (D−LCP),
because nonnegativity and complementary follow from the structure of the
pivot tableau.

Based on the discussion above, we showed that the modified criss-cross al-
gorithm can be started from any complementarity basic solution of a general
linear complementarity problem without apriori information on the matrix
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property and using s-monotone index rule, in a finite number of iteration the
algorithm stops with one of the EP theorem cases, stated in Theorem 22.

Next example shows that the modified criss-cross algorithm (see on Figure
9 and it’s flowchart on Figure 10) identifies the lack of sufficiency for matrix
M.

+ + + +... ...0 k

q̄(ū, v̄)

−M I

1(x̄, ȳ) −
(x, y)i =

⎧⎨
⎩

−tki/q̄k if i ∈ IN
−1/q̄k if i = k

0 otherwise.

Figure 11: The dual solution when no primal solution exists

Example 24 As an example, consider the problem presented in Example 23
again. The extended algorithm would stop on Tableau 3: the sign of the second
pivot position of the exchange pivot violates the expected sign structure.

6 Computational experiences

In this section we provide some numerical experience using the proposed algo-
rithm for solving general LCP problems arising from Arrow-Debreu exchange
matrix problems and bimatrix games. The experiments have been carried out
in Matlab, using the built in QR decomposition and update for the basis. To
maximize the chance of success, in positions when the selected s-monotone
rule (MOSV) offered flexibility of pivot selection, a random position has been
selected from among the eligible choices.

The results presented here emphasize the applicability of the new variant
of the criss-cross method together with the flexibility of the s-monotone index
selection rules. For a comprehensive numerical study concentrating on the s-
monotone index selection rules see [15].

6.1 A market equilibrium problem

Consider the exchange market equilibrium problem as described by Walras
[28]. There are m traders (players) and n goods on the market, where each
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good type j has a price pj ≥ 0. Each trader i is assumed to have an initial
endowment of commodities
wi = (wi1, . . . , win) ∈ Rn⊕. The traders will sell their product on the market
and use their income to buy a bundle of goods xi = (xi1, . . . , xin) ∈ Rn⊕.
A trader i has a utility function ui, which describes his preferences for the
different bundle of commodities and a budget constraint pTxi ≤ pTwi. Finally,
each trader i maximizes his individual utility function subject to his budget
constraint.

Each trader optimizes his own utility function ui with these side constraints:

max ui(xi)
pTxi ≤ pTwi

xi ≥ 0,

where the vector of prices p is an equilibrium for the exchange economy;
if there is a bundle of goods xi(p) (so a maximizer of the utility function ui

subject to the budget constraint) for all traders i, such that

m∑
i=1

xij(p) ≤
m∑
i=1

wij for all goods j.

The exchange market equilibrium problem pursues prices where the demand∑
i xij(p) does not exceed the supply

∑
i wij for any good j.

Arrow and Debreu [2] proved that under mild conditions, for concave utility
functions, the exchange markets equilibrium exists. Using the Leontief utility
function

ui(xi) = min
j

{
xij

aij
: aij > 0

}
,

where A = (aij) ∈ Rn×n
⊕ is the Leontief coefficient matrix, Ye [25] has shown

that the solution of the Arrow-Debreu competitive market equilibrium problem
with Leontief’s utility function is equivalent to the following linear complemen-
tarity problem:

AT u+ v = e, u ≥ 0, v ≥ 0, uv = 0 and u �= 0

where the matrix A has non-negative entries.
It is easy to see that this problem will almost always have a non-sufficient

matrix, and as such is a demanding problem class for the generalized criss-cross
algorithm.

The computational experiences have been carried out using a 100 problems,
ranging
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n ∈ {10, 20, 40, 60, 80, 100, 200, 300, 400, 500} taking 10 random instances for
each value of n. For this problem the trivial basis corresponding to the columns
of v is not valid, as it is a feasible solution to the problem, but u �= 0 does not
hold.

To address this problem, a structural crash heuristic has been used, based
on the following heuristics. Start from the empty selection B = ∅. For any set
of vectors, define it’s support as supp(B) = {j : ∃i : ai ∈ B, aj,i �= 0}. In each
iteration of the crash heuristics for all i ∈ 1 . . . n, if there is such an index j for
which aji �= 0 and i /∈ supp(B), then add ai to B, else, add the corresponding
identity vector ei to the B. It is easy to see, that this procedure will yield a
complementary basis, and unless A = 0 it will contain at least one columns
corresponding to u. When the selection of the column from A was not unique,
the algorithm has selected randomly. Each experiment was repeated 10 times,
yielding a total of 1000 test runs.

n Successful solves Mean iterations Maximum iterations
10 762 0.619 12
20 318 1.432 12
40 26 1.445 9
60 13 1.479 10
80 2 1.396 9
100 0 1.295 10
200 0 1.213 9

Table 1: Numerical experiments on random market equilibrium problems

The number of successful solves diminished very quickly with size, also the
algorithm terminates after a very small iteration count, with declaring the
matrix not sufficient in most cases. There has been no successful solves for
n ≥ 100 suggesting that most of the successful solves for smaller sizes strongly
depend on luck associated with the crash heuristics applied.

6.2 A bimatrix game

In this problem, two companies are considering entering n markets. Entering
a market has both fixed, and variable costs, and there are fixed transport
charges. The problem of finding optimal profit strategies can be formulated as
a bimatrix game [21]. Consider a bimatrix game defined by A and B.
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Theorem 25 The Karush-Khun-Tucker conditions of the bimatrix game can
equivalently be formulated as

xT (A+ B)y − α− β → max

x,y ≥ 0

1Tmx = 1

1Tny = 1

Ay ≤ α1m

BTx ≤ β1n

where the zero valued solutions are the Nash-equilibria.

This Karush-Khun-Tucker conditions for this quadratic programming prob-
lem can be stated as

(
Q PT

−P O

)(
u
t

)
+

(
s
v

)
=

(
c
b

)

u t = 0

s v = 0

u, t, s,v ≥ 0

where

Q =

(
O −A − B

(−A − B)T O

)
u =

(
x
y

)
∈ Rm+n

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

BT O 0 0 −1 1

O A −1 1 0 0

1T 0 0 0 0 0

−1T 0 0 0 0 0

0 1T 0 0 0 0

0 −1T 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

t =

⎛
⎜⎜⎝

α+

α−

β+

β−

⎞
⎟⎟⎠ ∈ R4.

As A and B can be chosen arbitrary, it is easy to see that the resulting LCP
will not necessarily be sufficient.

Experiments have been carried out for payoff matrices with n = m =
2, 3, . . . , 7, with each experiment using random values for A and B and repeated
1000 times. As a trivial initial complementary bases, the identity columns cor-
responding to variables (s,v) have been selected.
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Payoff matrix Local solution Close to zero Local solution Close to zero
size (obj > 0.001) (obj < 0.001) (obj > 0.01) (obj < 0.01)
2x2 563 437 516 484
3x3 768 232 684 316
4x4 908 92 801 199
5x5 931 69 827 173
6x6 960 40 855 145
7x7 973 27 871 129

Table 2: Numerical experiments on random bimatrix games

Although the number of successful solves where the objective of the original
quadratic problem is zero diminishes, the algorithm managed to find solution
in a reasonable portion of the problems. Computational results are summa-
rized on Table 2, where the optimal objective function value, due to numerical
computational errors, claimed to be optimal in the interval [0, ε). In case of
column two of the Table 2, ε = 0.001, while in column three ε = 0.01. This
shows that the computational precision may influence which problem will be
declared as solved problem.

7 Summary

We have presented a variant of a generalized criss-cross type algorithm for
linear complementarity problems with sufficient matrices, using s-monotone
pivot rules. For better practical applicability, we have modified the generalized
algorithm so that the a priori information on the sufficiency of the matrix
is not necessary. In case of lack of sufficiency, if the algorithm cannot ensure
finiteness, then it terminates and provides a polynomial size certificate that the
matrix is not sufficient. We have achieved our goals using the duality theorem of
linear complementarity problems [13] and with its EP theorem form [12]. With
the use of flexible s-monotone pivot rules, the algorithm provides significant
freedom in choosing the pivot position (usually during the first part of the
algorithm), making it possible to avoid some numerically instable pivots.

Some supporting evidence for the applicability of the proposed algorithm
has been presented by solving general linear complementarity problems aris-
ing from bimatrix games and the Arrow-Debreu market equilibrium problem,
where the algorithm has proved to be applicable in (rather) small dimensions.



Finite index selection rules for LCP criss-cross algorithm 137

Acknowledgements

This research has been supported by the TÁMOP-4.2.2./B-10/1-2010-0009,
Hungarian National Office of Research and Technology with the financial sup-
port of the European Union from the European Social Fund.

Tibor Illés acknowledges the research support obtained from Strathclyde
University, Glasgow under the John Anderson Research Leadership Program.

Parts of this paper has been included in the Ph.D. thesis of Zsolt Csizmadia
[7].

References

[1] A. A. Akkeleş, L. Balogh, T. Illés, New variants of the criss-cross method for
linearly constrained convex quadratic programming, Eur. J. Oper. Res., 157, 1
(2004) 74–86. ⇒104

[2] K. J. Arrow, G. Debreu, Existence of an equilibrium for competitive economy,
Econometrica, 22 (1954) 265–290. ⇒133

[3] K. Cameron, J. Edmonds, Existentially polytime theorems, in: Polyhedral combi-
natorics, (eds. W. Cook, P.D. Seymour) DIMACS Ser. Discrete Math. Theoret.
Comput. Sci., American Mathematical Society, Providence, RI, 1990, pp. 83–100.⇒126

[4] Y. Y. Chang, Least index resolution of degeneracy in linear complementarity prob-
lems, Technical Report 79-14, Department of Operations Research, Stanford Uni-
versity, Stanford, Calfornia, USA, 1979. ⇒104

[5] S. J. Chung, NP-completeness of the linear complementarity problem, J. Optimiz.
Theory Appl., 60, 3 (1989) 393–399. ⇒110

[6] R. W. Cottle, J. S. Pang, V. Venkateswaran, Sufficient matrices and the linear
complementarity problem, Linear Algebra Appl., 114/115 (1989) 231–249. ⇒
104, 107, 108

[7] Zs. Csizmadia, New pivot based methods in linear optimization, and an application
in petroleum industry, PhD Thesis, Eötvös Loránd University of Sciences, 2007.⇒137

[8] Zs. Csizmadia, T. Illés, New criss-cross type algorithms for linear complementarity
problems with sufficient matrices, Optim. Methods Softw., 21, 2 (2006) 247–266.⇒106, 109, 114

[9] Zs. Csizmadia, T. Illés, A. Nagy, The s-monotone index selection rules for pivot
algorithms of linear programming, European J. Oper. Res., 221, 3 (2012) 491–500.⇒104, 106, 111, 112

[10] Gy. Farkas, A Fourier-féle mechanikai elv alkalmazásai (the applications of the
mechanical principle of fourier), Mathematikai és Természettudományi Értesítő,
12 (1894) 457–472. ⇒105, 110



138 Zs. Csizmadia, T. Illés, A. Nagy

[11] Gy. Farkas, Theorie der einfachen ungleichungen, J. Reine Angew. Math., 124
(1901) 1–27. ⇒105, 110

[12] K. Fukuda, M. Namiki, A. Tamura, EP theorems and linear complementarity
problems, Discrete Appl. Math., 84, 1-3 (1998) 107–119. ⇒ 105, 107, 108, 109,
126, 136

[13] K. Fukuda T. Terlaky, Linear complementarity and oriented matroids, J. Oper.
Res. Soc. Japan, 35, 1 (1992) 45–61. ⇒105, 110, 136

[14] D. den Hertog, C. Roos, T. Terlaky, The linear complementarity problem, suf-
ficient matrices, and the criss-cross method, Linear Algebra Appl., 187, 1 (1993)
1–14. ⇒104, 107, 109

[15] T. Illés, A. Nagy, Computational aspects of simplex and MBU-simplex algo-
rithms using different anti-cycling pivot rules, Department of Operations Re-
search, Eötvös Loránd University of Sciences, Operations Research Report, 2012-
02 (2012) submitted for publication. ⇒132

[16] T. Illés, M. Nagy, T. Terlaky, EP theorem for dual linear complementarity prob-
lems, J. Optim. Theory Appl., 140, 2 (2009) 233–238. ⇒105

[17] T. Illés, M. Nagy, T. Terlaky, Polynomial interior point algorithms for general
linear complementarity problems, Algorithmic Oper. Res.h, 5, 1 (2010) 1–12. ⇒
105

[18] T. Illés, M. Nagy, T. Terlaky, A polynomial path-following interior point algo-
rithm for general linear complementarity problems, J. Global Optim., 47, 3 (2010)
329–342. ⇒105

[19] E. Klafszky, T. Terlaky, The role of pivoting in proving some fundamental the-
orems of linear algebra, Linear Algebra Appl., 151 (1991) 97–118. ⇒108, 119

[20] M. Kojima, N. Megiddo, T. Noma, A. Yoshise, A Unified Approach to Interior
Point Algorithms for Linear Complementarity Problems, Lecture Notes in Com-
puter Science 538, Springer-Verlag, Berlin, 1991. ⇒104, 105

[21] C.E. Lemke, J.T. Howson, Jr., Equilibrium points of bimatrix games, Journal
Soc. Indust. Appl. Math., 12 (1964) 413–423. ⇒134

[22] C. Roos, T. Terlaky, J.-Ph. Vial, Theory and Algorithms for Linear Optimization:
An Interior Point Approach, Wiley-Interscience Series in Discrete Mathematics
and Optimization, John Wiley & Sons, New York, USA, 1997. Second edition:
Interior PointMethods for Linear Optimization, Springer, New York, 2006. ⇒
105

[23] T. Terlaky, A convergent criss-cross method, Optimization, 16, 5 (1985) 683–690.⇒104
[24] P. Tseng, Co-NP-completeness of some matrix classification problems,Math. Pro-

gram., Series A:88 (2000) 183–192. ⇒104
[25] Y. Ye, A Path to the Arrow-Debreu Competitive Market Equilibrium, Math.

Program., 111, 1-2 (2008) 315–348. ⇒133
[26] H. Väliaho, Criteria for sufficient matrices, Linear Algebra Appl., 233 (1996)

109–129. ⇒104, 109
[27] H. Väliaho, P∗-matrices are just sufficient, Linear Algebra Appl., 239 (1996)

103–108. ⇒104



Finite index selection rules for LCP criss-cross algorithm 139

[28] L. Walras, Elements of Pure Economics, or the Theory of Social Wealth, (1874)
(1899, 4th ed.; 1926, rev. ed., 1954, Engl. Transl.) ⇒132

[29] Z.M. Wang, A finite conformal-elimination free algorithm over oriented matroid
programming, Chin. Ann. Math. Ser. B , 8, 1 (1987) 120–125. ⇒104

Received: February 19, 2013 • Revised: April 10, 2013


