

DOI: 10.2478/ausi-2018-0013

On scores in tournaments

T. A. Naikoo

Department of Mathematics, Islamia College of Science and Commerce, Srinagar, Kashmir, India email: tariqnaikoo@rediffmail.com

Abstract. A tournament is an orientation of a complete simple graph. The score of a vertex in a tournament is the outdegree of the vertex. In this paper, we obtain various results on the scores in tournaments.

1 Introduction

A tournament is an orientation of a complete simple graph. Let T be a tournament with vertex set $\{\nu_1, \nu_2, \ldots, \nu_n\}$. The score of a vertex ν_i is defined as the outdegree of ν_i and is denoted by s_{ν_i} (or simply by s_i). Clearly $0 \le s_i \le n-1$ for all i, $1 \le i \le n$. The sequence $[s_1, s_2, \ldots, s_n]$ in non-decreasing order is called the score sequence of the tournament T. Several results on tournament scores can be seen in [21, 23]. The concept of scores in tournaments was extended to oriented graphs by Avery [1] and many results on oriented graph scores can be found in [19, 21, 22]. Pirzada et al. generalized score structure to other classes of digraphs and details can be seen in [17, 18]. Further score structure has been extended to hypertournaments, a generalization of tournaments [4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 24].

The following result [6] gives necessary and sufficient conditions for a sequence of non-negative integers to be the score sequence of some tournament and this result is also known as Landau's theorem.

Computing Classification System 1998: G.2.2 Mathematics Subject Classification 2010: 05C20

Key words and phrases: Tournament, score, score sequence, Landau's theorem.

Theorem 1 (Landau [6]) A sequence $[s_1, s_2, ..., s_n]$ of non-negative integers in non-decreasing order is a score sequence of some tournament if and only if

$$\sum_{i=1}^{k} s_i \ge \frac{k(k-1)}{2},\tag{1}$$

for $1 \le k \le n$ with equality when k = n.

More work for scores in tournaments can be found in [2, 3, 7, 16].

For any two distinct vertices u and v of a tournament T, we have one of the following possibilities.

- (i) An arc directed from u to v, denoted by u(1-0)v.
- (ii) An arc directed form ν to u, denoted by $u(0-1)\nu$.

2 Main Results

Now, we obtain the following results.

Theorem 2 Let $[s_1, s_2, ..., s_n]$ be the score sequence of a tournament. Then the lowest score of the tournament is zero if $\sum_{i=1}^n s_i^2$ is maximum.

Proof. Let v_1 be the vertex of the tournament with lowest score s_1 . We shall show that $s_1 = 0$.

Suppose on contrary $s_1 > 0$. Then there exists a vertex ν_p with score s_p such that $\nu_1(1-0)\nu_p$. Since $s_p \ge s_1$, therefore there exists another vertex ν_q with score s_q such that $\nu_p(1-0)\nu_q$.

Now, by changing the arcs $\nu_1(1-0)\nu_p$ and $\nu_p(1-0)\nu_q$ to $\nu_1(0-1)\nu_p$ and $\nu_p(0-1)\nu_q$ respectively we get a new score sequence $[t_1,t_2,\ldots,t_n]$ where $t_1=s_1-1,t_q=s_q+1,t_r=s_r$ for all $r,\ 2\leq r\leq n$ with $r\neq q$. Then

$$\begin{split} \sum_{i=1}^{n} t_{i}^{2} &= \sum_{i=2, i \neq q}^{n} t_{i}^{2} + t_{1}^{2} + t_{q}^{2} = \sum_{i=2, i \neq q}^{n} s_{i}^{2} + (s_{1} - 1)^{2} + (s_{q} + 1)^{2} \\ &= \sum_{i=2, i \neq q}^{n} s_{i}^{2} + s_{1}^{2} + 1 - 2s_{1} + s_{q}^{2} + 1 + 2s_{q} = \sum_{i=1}^{n} s_{i}^{2} + 2(s_{q} - s_{1} + 1) \\ &> \sum_{i=1}^{n} s_{i}^{2}, \end{split}$$

since $s_q \ge s_1$. This is a contradiction as $\sum\limits_{i=1}^n s_i^2$ was assumed to be maximum. Hence the result follows. \Box

Theorem 3 Let $[s_1, s_2, \ldots, s_n]$ be the score sequence of a tournament. Then the highest score of the tournament is n-1 if $\sum_{i=1}^n s_i^2$ is maximum.

Proof. Let ν_n be the vertex of the tournament with highest score s_n . We shall show that $s_n = n - 1$. Suppose on contrary $s_n < n - 1$. Then there exists a vertex ν_p with score s_p such that $\nu_p(1-0)\nu_n$. Since $s_n \ge s_p$, therefore there exists another vertex ν_q with score s_q such that $\nu_q(1-0)\nu_p$ and $\nu_q(0-1)\nu_n$.

Now, by changing the arcs $\nu_p(1-0)\nu_n$ and $\nu_q(1-0)\nu_p$ to $\nu_p(0-1)\nu_n$ and $\nu_q(0-1)\nu_n$ respectively we get a new score sequence $[t_1,t_2,\ldots,t_n]$ where $t_q=s_q-1,t_n=s_n+1,t_r=s_r$ for all $r,\ 1\leq r\leq n-1$ with $r\neq q$. Then

$$\begin{split} \sum_{i=1}^n t_i^2 &= \sum_{i=1, i \neq q}^{n-1} t_i^2 + t_q^2 + t_n^2 = \sum_{i=1, i \neq q}^{n-1} s_i^2 + (s_q - 1)^2 + (s_n + 1)^2 \\ &= \sum_{i=1, i \neq q}^{n-1} s_i^2 + s_q^2 + 1 - 2s_q + s_n^2 + 1 + 2s_n = \sum_{i=1}^n s_i^2 + 2(s_n - s_q + 1) \\ &> \sum_{i=1}^n s_i^2 \quad \text{since} \quad s_n \geq s_q, \end{split}$$

which is a contradiction, since $\sum_{i=1}^{n} s_i^2$ was assumed to be maximum. Hence the result follows.

Theorem 4 Let $[s_1, s_2, \dots, s_n]$ be the score sequence of a tournament with vertex set V and let m_i be the average of the scores of the vertices v_j such that $v_i(1-0)v_j$. Then

$$max\{s_j+m_j:\nu_j\in V\}\leq \frac{3n-4}{2}, \qquad \qquad (2)$$

with equality if and only if $s_i = n - 1$ where i = n.

Proof. Let v_i be the vertex of a tournament where $s_i + m_i$ is maximum and let S be the sum of the scores of the vertices v_i such that $v_i(1-0)v_i$. Then

$$\max\{s_j + m_j : v_j \in V\} = s_i + m_i = s_i + \frac{S}{s_i}.$$

Again, let g_i be the average of the scores of the vertices v_k such that $v_k(1-0)v_i$. Then

$$\frac{n(n-1)}{2} = s_i + S + (n - s_i - 1)g_i, \quad \text{(by (1))}$$
or
$$\frac{n}{2} + n - 2 = \frac{s_i + S + (n - s_i - 1)g_i}{n-1} + n - 2,$$
or
$$\frac{3n-4}{2} = \frac{s_i + S + (n - s_i - 1)g_i}{n-1} + n - 2.$$

So, we have to prove that

$$\begin{split} s_i + \frac{S}{s_i} & \leq \frac{s_i + S + (n - s_i - 1)g_i}{n - 1} + n - 2, \\ \text{or } (n - 1) \left(s_i + \frac{S}{s_i} \right) \leq s_i + S + (n - s_i - 1)g_i + (n - 1)(n - 2), \\ \text{or } (n - 1) \left(n - 2 - s_i - \frac{S}{s_i} \right) + s_i + S + (n - s_i - 1)g_i \geq 0, \\ \text{or } (n - 1) \left(n - 2 - \frac{S}{s_i} \right) - (n - 1)s_i + s_i + S + (n - s_i - 1)g_i \geq 0, \\ \text{or } (n - 1) \left(n - 2 - \frac{S}{s_i} \right) - s_i \left(n - 2 - \frac{S}{s_i} \right) + (n - s_i - 1)g_i \geq 0, \\ \text{or } (n - 1 - s_i) \left(n - 2 - \frac{S}{s_i} \right) + (n - s_i - 1)g_i \geq 0, \\ \text{or } (n - s_i - 1) \left(n - 2 + g_i - \frac{S}{s_i} \right) \geq 0. \end{split}$$

If $s_i = n - 1$, then (3) holds. Now, if $s_i \le n - 2$, then there is at least one vertex v_k such that $v_k(1-0)v_i$, so that $g_i \ge 1$. Also $\frac{s}{s_i} \le n-1$. Therefore (3)

This completes the proof of first part.

Now assume that equality holds in (2). Then from (3), we have

$$(n-s_i-1)\left(n-2+g_i-\frac{S}{s_i}\right)=0,$$

which gives (a)
$$s_i = n-1$$
 or (b) $\frac{s}{s_i} - g_i = n-2$.
Case (a). $s_i = n-1$. This is possible only when $i = n$, that is, when $s_n = n-1$.
Case (b). $\frac{S}{s_i} - g_i = n-2$. Since $s_n \ge \frac{S}{s_i}$, therefore

$$s_n \ge n - 2 + g_i. \tag{4}$$

Also $g_i \geq 0$ and $s_n \leq n-1$. Then from (4), we have $0 \leq g_i \leq 1$. If $g_i = 0$, then $s_n = n-1$. Again if $0 < g_i \leq 1$, then there is at least one vertex ν_k such that $\nu_k(1-0)\nu_i$. Therefore $g_i \geq 1$. Hence $g_i = 1$. Thus from (4), we have $s_n \geq n-1$. Since $s_n \leq n-1$, therefore $s_n = n-1$.

Conversely, let $s_n = n - 1$. Then $s_k \le n - 2$ for all $k, 1 \le k < n$. Now

$$\begin{split} s_k + m_k &= s_k + \frac{1}{s_k} \sum_{j=1}^n \left\{ s_j : \nu_k (1 - 0) \nu_j \right\} \\ &\leq s_k + \frac{1}{s_k} \left\{ \frac{s_k (s_k - 1)}{2} + s_k (n - 2 - s_k) \right\} \\ &= s_k + \frac{s_k - 1}{2} + n - 2 - s_k \\ &\leq \frac{n - 2 - 1}{2} + n - 2 = \frac{3n - 7}{2} \end{split}$$

and

$$\begin{split} s_n + m_n &= s_n + \frac{1}{s_n} \sum_{j=1}^n \left\{ s_j : \nu_n (1-0) \nu_j \right\} \\ &= n - 1 + \frac{1}{n-1} \sum_{i=1}^{n-1} s_i \\ &= n - 1 + \frac{1}{n-1} \left\{ \sum_{i=1}^n s_i - s_n \right\} \\ &= n - 1 + \frac{1}{n-1} \left\{ \frac{n(n-1)}{2} - (n-1) \right\} \quad \text{(by (1))} \\ &= \frac{3n-4}{2}. \end{split}$$

Hence, $\max\{s_j+m_j: \nu_j \in V\} = \frac{3n-4}{2}$, completing the proof.

Theorem 5 Let $[s_1, s_2, ..., s_n]$ be the score sequence of a tournament and let m_i be the average of the scores of the vertices v_i such that $v_i(1-0)v_i$. Then

$$s_i + m_i \le \frac{n}{2} + \frac{n-2}{n-1}s_i + (s_n - s_1)\left(1 - \frac{s_i}{n-1}\right),$$
 (5)

holds for each i. Further, the equality holds if and only of $s_i = n-1$ where i = n or the vertex ν_i is such that $\nu_i(1-0)\nu_j$ for the s_n score vertices ν_j and $\nu_i(0-1)\nu_k$ for the s_1 score vertices ν_k .

Proof. Let v_i be the vertex of score s_i in the tournament T. We consider two cases: (a) $s_i = n - 1$ (b) $s_i < n - 1$.

Case (a). $s_i = n - 1$. Then i = n, so that $s_n = n - 1$. Therefore

$$\begin{split} s_n + m_n &= n - 1 + \frac{1}{s_n} \sum_{j=1}^n \left\{ s_j : \nu_n (1 - 0) \nu_j \right\} = n - 1 + \frac{1}{n-1} \sum_{j=1}^{n-1} s_j \\ &= n - 1 + \frac{1}{n-1} \left\{ \sum_{j=1}^n s_j - s_n \right\} \\ &= n - 1 + \frac{1}{n-1} \left\{ \frac{n(n-1)}{2} - (n-1) \right\} \ \ (\mathrm{by} \ (1)) \\ &= \frac{3n-4}{2}. \end{split}$$

Hence (5) holds.

Case (b). $s_i < n-1$. Change the orientation of the arcs $\nu_k(1-0)\nu_i$, if any, to $\nu_i(1-0)\nu_k$. Suppose this new tournament is T_1 and let $\max\{s_j+m_j:\nu_j\in V\}$ occurs at the vertex ν_i and let it be $s_i'+m_i'$.

Now for T_1 , we have

$$\begin{split} s_i' + m_i' &= n - 1 + \frac{1}{s_i'} \left\{ \sum_{j=1}^n s_j' : \nu_i (1 - 0) \nu_j \right\} \\ &= n - 1 + \frac{1}{n-1} \left\{ \sum_{j=1}^n s_j' - s_i' \right\} \\ &= n - 1 + \frac{1}{n-1} \left\{ \frac{n(n-1)}{2} - (n-1) \right\} \text{ (by (1))} \\ &= \frac{3n-4}{2}. \end{split}$$

Let S be the sum of the scores of the vertices ν_j such that $\nu_i(1-0)\nu_j$ in the tournament T. Then $s_i+m_i=s_i+\frac{S}{s_i}$. Now,

$$\begin{split} (s_i' + m_i') - (s_i + m_i) &= n - 1 + \frac{1}{s_i'} \sum_{j=1}^n \left\{ s_j' : \nu_i (1 - 0) \nu_j \right\} - \left(s_i + \frac{S}{s_i} \right) \\ &= n - s_i - 1 + \frac{1}{n-1} \left\{ S + (n - s_i - 1) g_i - (n - s_i - 1) \right\} - \frac{S}{s_i} \\ &= n - s_i - 1 + \frac{1}{n-1} \left\{ S + (n - s_i - 1) (g_i - 1) \right\} - \frac{S}{s_i} \end{split}$$

(where g_i is the average score of the vertices ν_k such that $\nu_k(1-0)\nu_i$ in T), that is,

$$\begin{split} s_i + m_i &= s_i' + m_i' - (n - s_i - 1) - \frac{1}{n - 1} \{S + (n - s_i - 1)(g_i - 1)\} + \frac{S}{s_i} \\ &= \frac{3n - 4}{2} - (n - s_i - 1) - \frac{1}{n - 1} \{S + (n - s_i - 1)(g_i - 1)\} + \frac{S}{s_i} \quad \text{(by (6))} \\ &= \frac{3n - 4}{2} - (n - s_i - 1) - \frac{S}{n - 1} - \frac{1}{n - 1} \{(n - s_i - 1)(g_i - 1)\} + \frac{S}{s_i} \\ &= \frac{3n - 4}{2} - \frac{(n - s_i - 1)(n - 1 + g_i - 1)}{n - 1} + \frac{S}{s_i} - \frac{S}{n - 1} \\ &= \frac{3n - 4}{2} - \left(1 - \frac{s_i}{n - 1}\right)(n - 2 + g_i) + \frac{S}{s_i} \left(1 - \frac{s_i}{n - 1}\right) \\ &= \frac{3n - 4}{2} - \left(1 - \frac{s_i}{n - 1}\right)\left(n - 2 + g_i - \frac{S}{s_i}\right) \\ &= \frac{3n - 4}{2} - \left(1 - \frac{s_i}{n - 1}\right)(n - 2) - \left(1 - \frac{s_i}{n - 1}\right)\left(g_i - \frac{S}{s_i}\right) \\ &= \frac{3n - 4}{2} - \left(n - 2 - \frac{(n - 2)s_i}{n - 1}\right) - \left(1 - \frac{s_i}{n - 1}\right)\left(g_i - \frac{S}{s_i}\right) \\ &= \frac{n - 4}{2} - \left(1 - \frac{s_i}{n - 1}\right)\left(g_i - \frac{S}{s_i}\right). \end{split}$$

Clearly $\frac{S}{s_i} \le s_n$, that is, $\frac{S}{s_i} - s_n \le 0$ and $g_i \ge s_1$, that is $g_i - s_1 \ge 0$. Therefore $g_i - s_1 \ge \frac{S}{s_i} - s_n$, that is, $g_i - \frac{S}{s_i} \ge s_1 - s_n$. Using this in (7), we have

$$s_i+m_i\geq \frac{n}{2}+\frac{n-2}{n-1}s_i-\left(1-\frac{s_i}{n-1}\right)(s_1-s_n),$$

that is, $s_i+m_i\geq \frac{n}{2}+\frac{n-2}{n-1}s_i+(s_n-s_1)\left(1-\frac{s_i}{n-1}\right)$. This completes the proof of first part.

Now assume that equality holds in (5). Then $s_i=n-1$ or $-\left(g_i-\frac{S}{s_i}\right)=s_n-s_1$, that is, $s_i=n-1$ where i=n or $-g_is_i+S=s_ns_i-s_1s_i$. From $-g_is_i+S=s_ns_i-s_1s_i$, we have $\frac{-P}{n-s_i-1}s_i+s_1s_i=s_ns_i-S$, (where P is the sum of the scores of the vertices ν_k such that $\nu_k(1-0)\nu_i$ in T) or $s_1-\frac{P}{n-s_i-1}=\frac{s_ns_i-S}{s_i}$, or $\frac{s_ns_i-S}{s_i}=\frac{(n-s_i-1)s_1-P}{n-s_i-1}$ or $s_1-\frac{P}{n-s_i-1}=\frac{s_ns_i-S}{s_i}$, or $\frac{(n-s_i-1)s_1-P}{n-s_i-1}=\frac{s_ns_i-S}{s_i}\geq 0$, since $\frac{S}{s_i}\leq s_n$, that is, $(n-s_i-1)s_1-P\geq 0$, or $P\leq (n-s_i-1)s_1$. But $P\geq (n-s_i-1)s_1$. Therefore $P=(n-s_i-1)s_1$. This means that all those vertices ν_k with $\nu_k(1-0)\nu_i$ are of score s_1 . Using this fact in

$$\frac{(n-s_i-1)s_1-P}{n-s_i-1} = \frac{s_n s_i - S}{s_i},$$

we have

$$\frac{(n-s_i-1)s_1-(n-s_i-1)s_1}{n-s_i-1} = \frac{s_n s_i - S}{s_i},$$

or $\frac{s_n s_i - S}{s_i} = 0$ or $S = s_n s_i$ or $\frac{S}{s_i} = s_n$. This means that all those vertices v_j with $v_i(1-0)v_j$ are of score s_n .

Conversely, let $s_i = n-1$, where i = n or $v_i(1-0)v_j$ for the s_n score vertices v_j and $v_i(0-1)v_k$ for the s_1 score vertices v_k . For $s_i = n-1$, where i = n, the equality holds in (5) by using case (a). Now, if $v_i(1-0)v_j$ for the s_n score vertices v_j and $v_i(0-1)v_k$ for the s_1 score vertices v_k , then

$$s_i + m_i = s_i + \frac{s_n s_i}{s_i} = s_i + s_n$$

and

$$\begin{split} \frac{n}{2} + \frac{n-2}{n-1} s_i + & (s_n - s_1) \left(1 - \frac{s_i}{n-1} \right) \\ &= \frac{n(n-1)}{2} \frac{1}{n-1} + \frac{n-2}{n-1} s_i + \frac{(s_n - s_1)(n-1-s_i)}{n-1} \\ &= \frac{1}{n-1} \left\{ \sum_{i=1}^n s_i + (n-2) s_i + (s_n - s_1)(n-1-s_i) \right\} \mathrm{by} \ (1) \\ &= \frac{1}{n-1} \left\{ s_i + s_n s_i + s_1(n-s_i-1) \\ &\quad + (n-2) s_i + s_n(n-1-s_i) - s_1(n-1-s_i) \right\} \\ &= \frac{1}{n-1} \left\{ s_i + s_n s_i + n s_i - 2 s_i + n s_n - s_n - s_n s_i \right\} \\ &= \frac{1}{n-1} \left\{ (n-1) s_i + (n-1) s_n \right\} = s_i + s_n. \end{split}$$

Therefore, the equality holds in (5).

Corollary 6 Let $[s_1, s_2, ..., s_n]$ be the score sequence of a tournament and let m_i be the average of the scores of the vertices v_i such that $v_i(1-0)v_i$. Then

$$s_i + m_i \le \frac{n}{2} + \frac{n-2}{n-1}s_n + (s_n - s_1)\left(1 - \frac{s_n}{n-1}\right),$$
 (8)

holds for each i. Further, the equality holds if and only if $s_i = n-1$ where i = n or the vertex ν_i (score is s_n) is such that $\nu_i(1-0)\nu_j$ for the s_n score vertices ν_i and $\nu_i(0-1)\nu_k$ for the s_1 score vertices ν_k .

Proof. Since (5) is true for each i and since $s_i \leq s_n$, therefore we get (8). Using Theorem 5, we conclude that the equality holds if and only if $s_i = n-1$ where i = n or the vertex v_i (score is s_n) is such that $v_i(1-0)v_j$ for the s_n score vertices v_j and $v_i(0-1)v_k$ for the s_1 score vertices v_k .

References

- [1] P. Avery, Score sequences of oriented graphs, J. Graph Theory, 15, 3 (1991) 251-257. $\Rightarrow 257$
- [2] R. A. Brualdi and J. Shen, Landau's inequalities for tournament scores and a short proof of a Theorem on transitive sub-tournaments, *J. Graph Theory*, **38** (2001) 244–254. \Rightarrow 258

- [3] J. R. Griggs and K. B. Reid, Landau's theorem revisited, Australasian J. Combinatorics, **20** (1999) 19–24. $\Rightarrow 258$
- [4] K. K. Kayibi, M. A. Khan and S. Pirzada, Uniform sampling of k-hypertournaments, Linear and Multilinear Algebra, **61**, **1** (2012) 123–138. \Rightarrow 257
- [5] M. A. Khan, S. Pirzada and K. K. Kayibi, Scores, inequalities and regular hypertournaments, J. Math. Ineq. Appl., 15, 2 (2012) 343–351. \Rightarrow 257
- [6] H. G. Landau, On dominance relations and the structure of animal societies, III, the condition for a score structure, *Bull. Math. Biophys.*, **15** (1953) 143–148. \Rightarrow 257, 258
- [7] J. W. Moon, *Topics on Tournaments*, Holt, Rinehart and Winston, New York (1968). $\Rightarrow 258$
- [8] S. Pirzada and G. Zhou, Score sequences in oriented k-hypergraphs, European J. Pure and Applied Mathematics, 1, 3 (2008) 10–20. ⇒257
- [9] S. Pirzada, T. A. Chishti and T. A. Naikoo, Score lists in [h-k]-bipartite hyper-tournaments, Discrete Mathematics and Applications, 19, 3 (2009) 321-328. ⇒
 257
- [10] S. Pirzada and G. Zhou, New proof on k-hypertournament scores, *Acta Univ. Sapientiae*, *Informatica*, **2**, **1** (2010) 5–9. ⇒257
- [11] S. Pirzada, On scores in multipartite hypertournaments, Eurasian Math. J. 2, 1 (2011) 112–119. \Rightarrow 257
- [12] S. Pirzada, On scores in bipartite hypertournaments, Math. Vesnik, **64,4** (2012) 286-296. \Rightarrow 257
- [13] S. Pirzada, G. Zhou and A. Ivanyi, Score lists of multipartite hypertournaments, Acta Univ. Sapien. Informatica, 2, 2 (2010) 184–193. ⇒257
- [14] S. Pirzada, An Introduction to Graph Theory, Universities Press, Hyderabad, India, 2012. $\Rightarrow 257$
- [15] S. Pirzada, T. A. Naikoo and Zhou Guofei, Score lists in tripartite hypertournaments, Graphs and Combinatorics, 23, 4 (2007) 445-454. ⇒ 257
- [16] K. B. Reid, Tournament, scores, kings, generalizations and special topics, Conquessus Numerantium, 115 (1996) 171–211. ⇒ 258
- [17] S. Pirzada and T. A. Naikoo, Inequalities for marks in digraphs, J. Math. Inequalities Appl., 9, 2 (2006) 189–198. \Rightarrow 257
- [18] S. Pirzada and U. Samee, Mark sequences in digraphs, Seminare Lotharingien de Combinatoire, 55 (2006) Art.B55c. ⇒257
- [19] S. Pirzada and T. A. Naikoo, Score sets for oriented graphs, *Applicable Analysis* and *Discrete Mathematics*, **2**, **1** (2008) 107–113. \Rightarrow 257
- [20] S. Pirzada and T. A. Naikoo, Score sets in k-partite tournaments, J. Applied Mathematics and Computing, 22, 1-2 (2006) 237–245. ⇒257
- [21] S. Pirzada, T. A. Naikoo and T. A. Chishti, Score sets in oriented bipartite graphs, Novi Sad J. Mathematics, **36**, **1** (2006) 35–45. \Rightarrow 257
- [22] S. Pirzada, T. A. Naikoo and N. A. Shah, Score sequences in oriented graphs, J. Applied Mathematics and Computing, 23, 1-2 (2007) 257–268. ⇒ 257

- [23] S. Pirzada and T. A. Naikoo, Score sets in tournaments, Vietnam J. Math., **34**, **2** (2006) 157–161. \Rightarrow 257
- [24] Zhou Guofei and S. Pirzada, Degree Sequences in oriented k-hypergraphs, J. Applied Math. and Comput., 27 (2008) 149–158. $\Rightarrow 257$

Received: November 18, 2018 • Revised: December 20, 2018