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Abstract. A tournament is an orientation of a complete simple graph.
The score of a vertex in a tournament is the outdegree of the vertex. In
this paper, we obtain various results on the scores in tournaments.

1 Introduction

A tournament is an orientation of a complete simple graph. Let T be a tourna-
ment with vertex set {vi,vy,...,vn}. The score of a vertex v; is defined as the
outdegree of v; and is denoted by sy, (or simply by s;). Clearly 0 < s; < n—1 for
all i, T <1i < n. The sequence [s1,$,...,Ss] in non-decreasing order is called
the score sequence of the tournament T. Several results on tournament scores
can be seen in [21, 23]. The concept of scores in tournaments was extended to
oriented graphs by Avery [1] and many results on oriented graph scores can
be found in [19, 21, 22]. Pirzada et al. generalized score structure to other
classes of digraphs and details can be seen in [17, 18]. Further score struc-
ture has been extended to hypertournaments, a generalization of tournaments
[4, 5, 8,9, 10, 11, 12, 13, 14, 15, 24].

The following result [6] gives necessary and sufficient conditions for a se-
quence of non-negative integers to be the score sequence of some tournament
and this result is also known as Landau’s theorem.
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Theorem 1 (Landau [6]) A sequence [s1,82,...,Sn] of non-negative inte-
gers in non-decreasing order is a score sequence of some tournament if and

only if
—1
> s> KD 1)

for 1 <k <n with equality when k = n.

More work for scores in tournaments can be found in [2, 3, 7, 16].
For any two distinct vertices u and v of a tournament T, we have one of the
following possibilities.
(i) An arc directed from u to v, denoted by u(1 —0)v.
(ii) An arc directed form v to u, denoted by u(0— 1)v.

2 Main Results

Now, we obtain the following results.

Theorem 2 Let [s1,S7,...,5n] be the score sequence of a tournament. Then

n
the lowest score of the tournament is zero if > _ 512 s mazimum.

i=1

Proof. Let v; be the vertex of the tournament with lowest score s;. We shall
show that s; = 0.

Suppose on contrary s; > 0. Then there exists a vertex v, with score s, such
that v1(1 —0)vp. Since s, > s7, therefore there exists another vertex vq with
score sq such that v, (1 —0)vq.

Now, by changing the arcs vi(1 — 0)v, and vy (1T — 0)vq to v1(0 — 1)v, and
vp(0 — 1)vq respectively we get a new score sequence [ty,ts,...,tq] where
t1=s1—1tg=sq+ 1ty =s; forallr, 2 <1 <n with r # q. Then

n n
D= ) HHti+to= ) stH(si—1V +(sq+ 1)
i=1 i=2,i#q i=2,i#q

n n
= ) sits 1 =21+ si+T1425q=) si+2sq—s1+1)
i=2,i#q i=1

n
>)_sh
i=1
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n

since sq > s7. This is a contradiction as }_ 512 was assumed to be maximum.
i=1

Hence the result follows. O

Theorem 3 Let [s1,S2,...,8n] be the score sequence of a tournament. Then

n
the highest score of the tournament is n—1 if ) si2 s mazrimum.

i=1

Proof. Let v, be the vertex of the tournament with highest score s;,. We shall
show that s; = n — 1. Suppose on contrary s, < n — 1. Then there exits a
vertex vy with score s, such that v,(1 —0)v,. Since sn > s, therefore there
exists another vertex vq with score sq such that vq(1 —0)v, and vq(0 — T)v,.
Now, by changing the arcs vp(1 —0)vy, and vg(1 —0)vp to vp(0 — 1)v, and
vq(O — 1)vn respectively we get a new score sequence [ti,t2,...,tq] where
tg=sq—NLhith=sn+ 1ty =s; forallr, 1 <r <n—1with r # q. Then

n n—1 n—1
Y=Y td+t2+thi= Y sta(sq— 1)+ (snt1)?
i=1 i=1,i%q i=1,i%q
n—1 n
= ) sitsqtl-2sq+sa+1+2m=) si+2sn—s5q+1)
i=1,izq i=1
n

> Z siz since sp > Sq,

i=1

n

which is a contradiction, since )_ 512 was assumed to be maximum. Hence the
i=1

result follows. O

Theorem 4 Let [s1,82,--- ,Sn] be the score sequence of a tournament with
vertex set V and let my be the average of the scores of the vertices vj such that
Vi(1 —0)vj. Then

4
max{sj +my:iv; € Vi< 3112 s (2)

with equality if and only if sy =n— 1 where i =n.

Proof. Let v; be the vertex of a tournament where s; + m; is maximum and
let S be the sum of the scores of the vertices vj such that vi(1 —0)vj. Then

max{s; +mj:v; € Vi =s;i +my =s; + —.
i
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Again, let g; be the average of the scores of the vertices vy such that v (1—0)v;.
Then

nn—1
%:51+S+(n—81—1)91, (by (1>)
or Tymop=SFSTMTs e,
2 n—1
or 3n—4:Si+5+(n_si_1)91+n_2_
2 n—1

So, we have to prove that

Si-l-éé si+S+Mm—si—1)gi
Si n—1

or (=) (s 5 ) S sS4 s = g+ (=T —2)

Si

+n—2

or (n—1) <n—2—si—s> +si+S+(n—si—1)g; >0,

1

Si

or (n—1) (n—2—5> —Mm—=1)si+si+S+(n—s;—1)gi >0,

or (n—1) <n—2—s> — s <n—2—s> +(n—si—1)gi >0,

Si

or (n—1—s;) (n—2—> +(n—s—1)gi >0,

or (nsi1)<n2+gis>20. (3)

1

If s = n—1, then (3) holds. Now, if s; < n — 2, then there is at least one
vertex v such that vi (1 —0)vi, so that g; > 1. Also g < n— 1. Therefore (3)
holds.

This completes the proof of first part.
Now assume that equality holds in (2). Then from (3), we have

S
Mm—si—1) <n—2—|—gi—> =0,
Si
which gives (a) si =n—1 or (b) sé —gi=n—2.
Case (a). s; = n—1. This is possible only when i = n, that is, when s, = n—1.

Case (b). 5 T gi=n— 2. Since sp > g, therefore
1 1

Sn >N —2+ gi. (4)
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Also gi > 0 and s, < n— 1. Then from (4), we have 0 < g; < 1. If g; = 0,
then sy = n — 1. Again if 0 < g; < 1, then there is at least one vertex vy
such that vi (1 —0)vi. Therefore g; > 1. Hence g; = 1. Thus from (4), we have
sn > n— 1. Since s, < n — 1, therefore s, =n—1.

Conversely, let s, =n — 1. Then sy <n —2 for all k, 1 <k <n. Now

1 n
= — it vi(1T—=0)v
Sy + My = s + S ]-_21{8] Vi ( Jvi}

gsk+]{sk(sk_”+sk(n—2—sk)}

Sk 2
—1
:sk—i—SkT—i—n—Z—sk
< n—2-—1 2= n—7
- 2 -2
and
.] n
Sp My = Sy + o ;{Sj :vn (1 —0)v;}
]:
n—1
=n-—1 + ﬁ Z Si
i=1
.] n
:TL—] +ﬁ {;Si—sn}
1=
1 —1
e e LR 1] W)
_3n—4
==
n—4 .
Hence, max{s; +m; :vj € V} = —5 completing the proof. O
Theorem 5 Let [s1,582,...,5n] be the score sequence of a tournament and let
my be the average of the scores of the vertices v; such that vi(1 —0)vj. Then
n n-—2 Si
Si+mi§2+n_]si+(3n—31)(1_n_1]>> (5)

holds for each i. Further, the equality holds if and only of s; = n — 1 where
i=mn or the vertex vi is such that vi(1 —0)vj for the sy score vertices vj and
vi(0 — 1)y for the s1 score vertices vy.
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Proof. Let vi be the vertex of score s; in the tournament T. We consider two
cases: (a) si=n—1(b) sy <n—1.
Case (a). si =n — 1. Then i = n, so that s, =n — 1. Therefore

1 n 1 n—1
sn+mn:n—1—|—5njzl{sj:vn(1—0)vj}:n—1+n_1 jZ]sj

_Sn

1 n
j=1
(n—1

s
=n—1+ ] mn
- n—1 2

)—(n—n} (by (1))

n—4
5

Hence (5) holds.

Case (b). s; < n—1. Change the orientation of the arcs vi(1—0)vi, if any, to
vi(1 — 0)vk. Suppose this new tournament is Ty and let max{s; +m; :v; € V}
occurs at the vertex v; and let it be s{ + m{.

Now for Ty, we have




On scores in tournaments 263

Let S be the sum of the scores of the vertices v; such that vi(1 —0)v; in the

S
tournament T. Then s; + m; = s; + —. Now,
Si

1

1 o S
(si+mi)—(si+m) =n—1 +?Z{s§:vi(1—0)vj}— (si—i—s_)
ij:]

1 S
=n—si— 1+ ——{S+ (n—si—1)gi—(n—s;i —1)}— —
n—1 Si
1 S
=n—si—14+——{S+Mn—si—1)(gs—1)}— —
n—1 Si,
(where g; is the average score of the vertices v such that vi (1 —0)v; in T),
that is,

1 S
sitmi=si+m —(n—si—1)———{S+n—s;—1)(gi — 1)} + —
n—1 Si
In—4 1 S
=— *(n*Si*])*ﬁ{s+(n*3i*])(gi*1)}+;(bY(6>)
in—4 S 1 S
= —(n—si—”—ﬁ—ﬁ(n—si—1)(91—1)}+;
1
-4 Mm—si—T)n—-T1+g—-1) S S
2 n—1 si n—1
n—4

Si S Si
1— —24g)+—(1—-
2 n—])(n +91)+si< n—1>

<
1) (o)

( .

<

n—4
2
n—4

2
2
n n-2 Si S
=2 o <1 n_1)<91 s) ")

S S
Clearly - < 8n, that is, — —sn < 0 and g; > s1, that is g —s7 > 0. Therefore
i

1

S
gi — S1 > — — Sq, that is, g; — - > s1 — sp. Using this in (7), we have

Sl 1

n n-—2 Si
sitmi> o+ ——si—(1— (s1—sn),
2 n—1 n—1
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_2 )
that is, s; + my > % + %Si + (sn — 1) <1 _ S 1) . This completes the

proof of first part.

S

Now assume that equality holds in (5). Then sy =n —1 or — <g;L — > =
Si

Sn—S1, that is, s; = n—1 where i = n or —g;s;i+S = s s;—s18i. From —gisi+

S = sn8;{ — s18i, we have Si+ 8181 = snsi — S, (where P is the sum of

n—s;—1
the scores of the vertices vy such that vi (1 —0)v; in T) or s; — ﬁ =
s —
SnSi— S SnSi— S (n—si—1)sy—P P SnSi— S
, OT = or s — = , OT
Si Si n—s;—1 n—s;—1 Si

—s;i—1)s;—P i—S S
(n —si — T)si — SnSi > 0, since — < sy, that is, (n—s;—1)s;—P > 0,
n—s;—1 Si Si
or P< (n—s;—1)s;. But P > (n—s; — 1)s7. Therefore P = (n — s; — 1)s;.
This means that all those vertices v with vi(1 — 0)v; are of score s;. Using

this fact in

(m—si—1)sy—P  spsi—S

n—si—1 s
we have
Mm—si—1)s;—(n—si—1)s7  spsi—S
n—s;—1 P
r STLS;;S =0or S =sus;or si = sn. This means that all those vertices v;
i i

with vi(1 — 0)vj are of score s;.

Conversely, let s; = n—1, where i = n or v;(1—0)v; for the s, score vertices
vj and v;i(0 — T)vy for the sy score vertices vi. For s; = n — 1, where i = n,
the equality holds in (5) by using case (a). Now, if vi(1 —0)v; for the s, score
vertices vj and v;i(0 — 1)vy for the sy score vertices vy, then

Si+Mmy =S+ S = Si+ Sn
i

and
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2 n-—1
nn-—1) 1
2 n—1

) .
st sn—s1) (1 - )
n
n
n

n—1 —
1
= n_1{si+snsi+s1(n—si—1)
+(n—2)si+sn(n—l—si)—s1(n—1—si)}
1
b {si+ snsi +ns; —28; +Nsp — S — SnSi )
1
=— (m—1)si+(n—1)sn} = si+ sn.
Therefore, the equality holds in (5). O

Corollary 6 Let [s1,S2,...,n] be the score sequence of a tournament and let
my be the average of the scores of the vertices vj such that vi(1 —0)vj. Then

n n-—2 s

si+mi§2+n_]5n+(5n_51)<]_nj]>) (8)
holds for each i. Further, the equality holds if and only if s; = n — 1 where
i = n or the vertex vi(score is sy) is such that vi(1 — 0)v; for the sy score
vertices v; and vi(0 — 1)vy for the s score vertices vy.

Proof. Since (5) is true for each i and since s; < syp, therefore we get (8).
Using Theorem 5, we conclude that the equality holds if and only if s; =n—1
where 1 = 1 or the vertex vi(score is sn) is such that vi(1 — 0)v; for the s,
score vertices v; and vi(0 — 1)vy for the s; score vertices vy. O
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