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Abstract. A tournament is an orientation of a complete simple graph.
The score of a vertex in a tournament is the outdegree of the vertex. In
this paper, we obtain various results on the scores in tournaments.

1 Introduction

A tournament is an orientation of a complete simple graph. Let T be a tourna-
ment with vertex set {v1, v2, . . . , vn} . The score of a vertex vi is defined as the
outdegree of vi and is denoted by svi(or simply by si). Clearly 0 ≤ si ≤ n−1 for
all i, 1 ≤ i ≤ n. The sequence [s1, s2, . . . , sn] in non-decreasing order is called
the score sequence of the tournament T. Several results on tournament scores
can be seen in [21, 23]. The concept of scores in tournaments was extended to
oriented graphs by Avery [1] and many results on oriented graph scores can
be found in [19, 21, 22]. Pirzada et al. generalized score structure to other
classes of digraphs and details can be seen in [17, 18]. Further score struc-
ture has been extended to hypertournaments, a generalization of tournaments
[4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 24].

The following result [6] gives necessary and sufficient conditions for a se-
quence of non-negative integers to be the score sequence of some tournament
and this result is also known as Landau’s theorem.
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Theorem 1 (Landau [6]) A sequence [s1, s2, . . . , sn] of non-negative inte-
gers in non-decreasing order is a score sequence of some tournament if and
only if

k∑
i=1

si ≥
k(k− 1)

2
, (1)

for 1 ≤ k ≤ n with equality when k = n.

More work for scores in tournaments can be found in [2, 3, 7, 16].
For any two distinct vertices u and v of a tournament T, we have one of the

following possibilities.
(i) An arc directed from u to v, denoted by u(1− 0)v.
(ii) An arc directed form v to u, denoted by u(0− 1)v.

2 Main Results

Now, we obtain the following results.

Theorem 2 Let [s1, s2, . . . , sn] be the score sequence of a tournament. Then

the lowest score of the tournament is zero if
n∑
i=1

s2i is maximum.

Proof. Let v1 be the vertex of the tournament with lowest score s1. We shall
show that s1 = 0.

Suppose on contrary s1 > 0. Then there exists a vertex vp with score sp such
that v1(1 − 0)vp. Since sp ≥ s1, therefore there exists another vertex vq with
score sq such that vp(1− 0)vq.
Now, by changing the arcs v1(1 − 0)vp and vp(1 − 0)vq to v1(0 − 1)vp and
vp(0 − 1)vq respectively we get a new score sequence [t1, t2, . . . , tn] where
t1 = s1 − 1, tq = sq + 1, tr = sr for all r, 2 ≤ r ≤ n with r 6= q. Then

n∑
i=1

t2i =

n∑
i=2,i 6=q

t2i + t21 + t2q =

n∑
i=2,i 6=q

s2i + (s1 − 1)2 + (sq + 1)2

=

n∑
i=2,i 6=q

s2i + s21 + 1− 2s1 + s2q + 1+ 2sq =

n∑
i=1

s2i + 2(sq − s1 + 1)

>

n∑
i=1

s2i ,
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since sq ≥ s1. This is a contradiction as
n∑
i=1

s2i was assumed to be maximum.

Hence the result follows. �

Theorem 3 Let [s1, s2, . . . , sn] be the score sequence of a tournament. Then

the highest score of the tournament is n− 1 if
n∑
i=1

s2i is maximum.

Proof. Let vn be the vertex of the tournament with highest score sn. We shall
show that sn = n − 1. Suppose on contrary sn < n − 1. Then there exits a
vertex vp with score sp such that vp(1 − 0)vn. Since sn ≥ sp, therefore there
exists another vertex vq with score sq such that vq(1− 0)vp and vq(0− 1)vn.

Now, by changing the arcs vp(1 − 0)vn and vq(1 − 0)vp to vp(0 − 1)vn and
vq(0 − 1)vn respectively we get a new score sequence [t1, t2, . . . , tn] where
tq = sq − 1, tn = sn + 1, tr = sr for all r, 1 ≤ r ≤ n− 1 with r 6= q. Then

n∑
i=1

t2i =

n−1∑
i=1,i 6=q

t2i + t2q + t2n =

n−1∑
i=1,i 6=q

s2i + (sq − 1)2 + (sn + 1)2

=

n−1∑
i=1,i 6=q

s2i + s2q + 1− 2sq + s2n + 1+ 2sn =

n∑
i=1

s2i + 2(sn − sq + 1)

>

n∑
i=1

s2i since sn ≥ sq,

which is a contradiction, since
n∑
i=1

s2i was assumed to be maximum. Hence the

result follows. �

Theorem 4 Let [s1, s2, · · · , sn] be the score sequence of a tournament with
vertex set V and let mi be the average of the scores of the vertices vj such that
vi(1− 0)vj. Then

max {sj +mj : vj ∈ V} ≤ 3n− 4

2
, (2)

with equality if and only if si = n− 1 where i = n.

Proof. Let vi be the vertex of a tournament where si +mi is maximum and
let S be the sum of the scores of the vertices vj such that vi(1− 0)vj. Then

max {sj +mj : vj ∈ V} = si +mi = si +
S

si
.
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Again, let gi be the average of the scores of the vertices vk such that vk(1−0)vi.
Then

n(n− 1)

2
= si + S+ (n− si − 1)gi, (by (1))

or
n

2
+ n− 2 =

si + S+ (n− si − 1)gi
n− 1

+ n− 2,

or
3n− 4

2
=

si + S+ (n− si − 1)gi
n− 1

+ n− 2.

So, we have to prove that

si +
S

si
≤ si + S+ (n− si − 1)gi

n− 1
+ n− 2,

or (n− 1)

(
si +

S

si

)
≤ si + S+ (n− si − 1)gi + (n− 1)(n− 2),

or (n− 1)

(
n− 2− si −

S

si

)
+ si + S+ (n− si − 1)gi ≥ 0,

or (n− 1)

(
n− 2−

S

si

)
− (n− 1)si + si + S+ (n− si − 1)gi ≥ 0,

or (n− 1)

(
n− 2−

S

si

)
− si

(
n− 2−

S

si

)
+ (n− si − 1)gi ≥ 0,

or (n− 1− si)

(
n− 2−

S

si

)
+ (n− si − 1)gi ≥ 0,

or (n− si − 1)

(
n− 2+ gi −

S

si

)
≥ 0. (3)

If si = n − 1, then (3) holds. Now, if si ≤ n − 2, then there is at least one
vertex vk such that vk(1− 0)vi, so that gi ≥ 1. Also S

si
≤ n− 1. Therefore (3)

holds.
This completes the proof of first part.
Now assume that equality holds in (2). Then from (3), we have

(n− si − 1)

(
n− 2+ gi −

S

si

)
= 0,

which gives (a) si = n− 1 or (b) S
si
− gi = n− 2.

Case (a). si = n−1. This is possible only when i = n, that is, when sn = n−1.

Case (b).
S

si
− gi = n− 2. Since sn ≥

S

si
, therefore

sn ≥ n− 2+ gi. (4)
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Also gi ≥ 0 and sn ≤ n − 1. Then from (4), we have 0 ≤ gi ≤ 1. If gi = 0,

then sn = n − 1. Again if 0 < gi ≤ 1, then there is at least one vertex vk
such that vk(1− 0)vi. Therefore gi ≥ 1. Hence gi = 1. Thus from (4), we have
sn ≥ n− 1. Since sn ≤ n− 1, therefore sn = n− 1.

Conversely, let sn = n− 1. Then sk ≤ n− 2 for all k, 1 ≤ k < n. Now

sk +mk = sk +
1

sk

n∑
j=1

{sj : vk(1− 0)vj}

≤ sk +
1

sk

{
sk(sk − 1)

2
+ sk(n− 2− sk)

}
= sk +

sk − 1

2
+ n− 2− sk

≤ n− 2− 1

2
+ n− 2 =

3n− 7

2

and

sn +mn = sn +
1

sn

n∑
j=1

{sj : vn(1− 0)vj}

= n− 1+
1

n− 1

n−1∑
i=1

si

= n− 1+
1

n− 1

{
n∑
i=1

si − sn

}

= n− 1+
1

n− 1

{
n(n− 1)

2
− (n− 1)

}
(by (1))

=
3n− 4

2
.

Hence, max {sj +mj : vj ∈ V} =
3n− 4

2
, completing the proof. �

Theorem 5 Let [s1, s2, . . . , sn] be the score sequence of a tournament and let
mi be the average of the scores of the vertices vj such that vi(1− 0)vj. Then

si +mi ≤
n

2
+

n− 2

n− 1
si + (sn − s1)

(
1−

si
n− 1

)
, (5)

holds for each i. Further, the equality holds if and only of si = n − 1 where
i = n or the vertex vi is such that vi(1 − 0)vj for the sn score vertices vj and
vi(0− 1)vk for the s1 score vertices vk.
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Proof. Let vi be the vertex of score si in the tournament T. We consider two
cases: (a) si = n− 1 (b) si < n− 1.

Case (a). si = n− 1. Then i = n, so that sn = n− 1. Therefore

sn +mn = n− 1+
1

sn

n∑
j=1

{sj : vn(1− 0)vj} = n− 1+
1

n− 1

n−1∑
j=1

sj

= n− 1+
1

n− 1


n∑
j=1

sj − sn


= n− 1+

1

n− 1

{
n(n− 1)

2
− (n− 1)

}
(by (1))

=
3n− 4

2
.

Hence (5) holds.
Case (b). si < n−1. Change the orientation of the arcs vk(1−0)vi, if any, to
vi(1− 0)vk. Suppose this new tournament is T1 and let max {sj +mj : vj ∈ V}

occurs at the vertex vi and let it be s′i +m′
i.

Now for T1, we have

s′i +m′
i = n− 1+

1

s′i


n∑
j=1

s′j : vi(1− 0)vj


= n− 1+

1

n− 1


n∑
j=1

s′j − s′i


= n− 1+

1

n− 1

{
n(n− 1)

2
− (n− 1)

}
(by (1))

=
3n− 4

2
. (6)
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Let S be the sum of the scores of the vertices vj such that vi(1 − 0)vj in the

tournament T. Then si +mi = si +
S

si
. Now,

(s′i +m′
i) − (si +mi) = n− 1+

1

s′i

n∑
j=1

{
s′j : vi(1− 0)vj

}
−

(
si +

S

si

)
=n− si− 1+

1

n− 1
{S+ (n− si− 1)gi − (n− si − 1)}−

S

si

= n− si − 1+
1

n− 1
{S+ (n− si − 1)(gi − 1)}−

S

si,

(where gi is the average score of the vertices vk such that vk(1 − 0)vi in T),
that is,

si +mi = s′i +m′
i − (n− si − 1) −

1

n− 1
{S+ (n− si − 1)(gi − 1)}+

S

si

=
3n− 4

2
− (n− si − 1) −

1

n− 1
{S+ (n− si − 1)(gi − 1)}+

S

si
(by (6))

=
3n− 4

2
− (n− si − 1) −

S

n− 1
−

1

n− 1
{(n− si − 1)(gi − 1)}+

S

si

=
3n− 4

2
−

(n− si − 1)(n− 1+ gi − 1)

n− 1
+

S

si
−

S

n− 1

=
3n− 4

2
−

(
1−

si
n− 1

)
(n− 2+ gi) +

S

si

(
1−

si
n− 1

)
=

3n− 4

2
−

(
1−

si
n− 1

)(
n− 2+ gi −

S

si

)
=

3n− 4

2
−

(
1−

si
n− 1

)
(n− 2) −

(
1−

si
n− 1

)(
gi −

S

si

)
=

3n− 4

2
−

(
n− 2−

(n− 2)si
n− 1

)
−

(
1−

si
n− 1

)(
gi −

S

si

)
=

n

2
+

n− 2

n− 1
si −

(
1−

si
n− 1

)(
gi −

S

si

)
. (7)

Clearly
S

si
≤ sn, that is,

S

si
−sn ≤ 0 and gi ≥ s1, that is gi−s1 ≥ 0. Therefore

gi − s1 ≥
S

si
− sn, that is, gi −

S

si
≥ s1 − sn. Using this in (7), we have

si +mi ≥
n

2
+

n− 2

n− 1
si −

(
1−

si
n− 1

)
(s1 − sn),
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that is, si +mi ≥
n

2
+

n− 2

n− 1
si + (sn − s1)

(
1−

si
n− 1

)
. This completes the

proof of first part.

Now assume that equality holds in (5). Then si = n − 1 or −

(
gi −

S

si

)
=

sn−s1, that is, si = n−1 where i = n or −gisi+S = snsi−s1si. From −gisi+

S = snsi − s1si, we have
−P

n− si − 1
si + s1si = snsi − S, (where P is the sum of

the scores of the vertices vk such that vk(1 − 0)vi in T) or s1 −
P

n− si − 1
=

snsi − S

si
, or

snsi − S

si
=

(n− si − 1)s1 − P

n− si − 1
or s1 −

P

n− si − 1
=

snsi − S

si
, or

(n− si − 1)s1 − P

n− si − 1
=

snsi − S

si
≥ 0, since

S

si
≤ sn, that is, (n−si−1)s1−P ≥ 0,

or P ≤ (n − si − 1)s1. But P ≥ (n − si − 1)s1. Therefore P = (n − si − 1)s1.
This means that all those vertices vk with vk(1 − 0)vi are of score s1. Using
this fact in

(n− si − 1)s1 − P

n− si − 1
=

snsi − S

si
,

we have

(n− si − 1)s1 − (n− si − 1)s1
n− si − 1

=
snsi − S

si
,

or
snsi − S

si
= 0 or S = snsi or

S

si
= sn. This means that all those vertices vj

with vi(1− 0)vj are of score sn.

Conversely, let si = n−1, where i = n or vi(1−0)vj for the sn score vertices
vj and vi(0 − 1)vk for the s1 score vertices vk. For si = n − 1, where i = n,
the equality holds in (5) by using case (a). Now, if vi(1− 0)vj for the sn score
vertices vj and vi(0− 1)vk for the s1 score vertices vk, then

si +mi = si +
snsi
si

= si + sn

and
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n

2
+

n− 2

n− 1
si+(sn − s1)

(
1−

si
n− 1

)
=

n(n− 1)

2

1

n− 1
+

n− 2

n− 1
si +

(sn − s1)(n− 1− si)

n− 1

=
1

n− 1

{
n∑
i=1

si + (n− 2)si + (sn − s1)(n− 1− si)

}
by (1)

=
1

n− 1

{
si + snsi + s1(n− si − 1)

+ (n− 2)si + sn(n− 1− si) − s1(n− 1− si)
}

=
1

n− 1

{
si + snsi + nsi − 2si + nsn − sn − snsi

}
=

1

n− 1

{
(n− 1)si + (n− 1)sn

}
= si + sn.

Therefore, the equality holds in (5). �

Corollary 6 Let [s1, s2, . . . , sn] be the score sequence of a tournament and let
mi be the average of the scores of the vertices vj such that vi(1− 0)vj. Then

si +mi ≤
n

2
+

n− 2

n− 1
sn + (sn − s1)

(
1−

sn

n− 1

)
, (8)

holds for each i. Further, the equality holds if and only if si = n − 1 where
i = n or the vertex vi(score is sn) is such that vi(1 − 0)vj for the sn score
vertices vj and vi(0− 1)vk for the s1 score vertices vk.

Proof. Since (5) is true for each i and since si ≤ sn, therefore we get (8).
Using Theorem 5, we conclude that the equality holds if and only if si = n−1

where i = n or the vertex vi(score is sn) is such that vi(1 − 0)vj for the sn
score vertices vj and vi(0− 1)vk for the s1 score vertices vk. �
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