Acta Univ. Sapientiae, Informatica 10, 2 (2018) 257-267

DOI: 10.2478/ausi-2018-0013

On scores in tournaments

T. A. Naikoo
Department of Mathematics, Islamia College of
Science and Commerce,
Srinagar, Kashmir, India
email: tariqnaikoo@rediffmail.com

Abstract

A tournament is an orientation of a complete simple graph. The score of a vertex in a tournament is the outdegree of the vertex. In this paper, we obtain various results on the scores in tournaments.

1 Introduction

A tournament is an orientation of a complete simple graph. Let T be a tournament with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The score of a vertex v_{i} is defined as the outdegree of v_{i} and is denoted by $s_{v_{i}}$ (or simply by s_{i}). Clearly $0 \leq s_{i} \leq n-1$ for all $\mathfrak{i}, 1 \leq \mathfrak{i} \leq n$. The sequence $\left[s_{1}, s_{2}, \ldots, s_{n}\right]$ in non-decreasing order is called the score sequence of the tournament T. Several results on tournament scores can be seen in [21, 23]. The concept of scores in tournaments was extended to oriented graphs by Avery [1] and many results on oriented graph scores can be found in [19, 21, 22]. Pirzada et al. generalized score structure to other classes of digraphs and details can be seen in [17, 18]. Further score structure has been extended to hypertournaments, a generalization of tournaments $[4,5,8,9,10,11,12,13,14,15,24]$.

The following result [6] gives necessary and sufficient conditions for a sequence of non-negative integers to be the score sequence of some tournament and this result is also known as Landau's theorem.

Computing Classification System 1998: G.2.2

Mathematics Subject Classification 2010: 05C20
Key words and phrases: Tournament, score, score sequence, Landau's theorem.

Theorem 1 (Landau [6]) A sequence $\left[s_{1}, s_{2}, \ldots, s_{n}\right.$] of non-negative integers in non-decreasing order is a score sequence of some tournament if and only if

$$
\begin{equation*}
\sum_{i=1}^{k} s_{i} \geq \frac{k(k-1)}{2} \tag{1}
\end{equation*}
$$

for $1 \leq \mathrm{k} \leq \mathrm{n}$ with equality when $\mathrm{k}=\mathrm{n}$.
More work for scores in tournaments can be found in [2, 3, 7, 16].
For any two distinct vertices u and v of a tournament T, we have one of the following possibilities.
(i) An arc directed from u to v, denoted by $u(1-0) v$.
(ii) An arc directed form v to u, denoted by $u(0-1) v$.

2 Main Results

Now, we obtain the following results.
Theorem 2 Let $\left[s_{1}, s_{2}, \ldots, s_{n}\right]$ be the score sequence of a tournament. Then the lowest score of the tournament is zero if $\sum_{i=1}^{n} s_{i}^{2}$ is maximum.

Proof. Let v_{1} be the vertex of the tournament with lowest score s_{1}. We shall show that $s_{1}=0$.
Suppose on contrary $s_{1}>0$. Then there exists a vertex v_{p} with score s_{p} such that $v_{1}(1-0) v_{p}$. Since $s_{p} \geq s_{1}$, therefore there exists another vertex v_{q} with score s_{q} such that $v_{p}(1-0) v_{q}$.
Now, by changing the arcs $v_{1}(1-0) v_{p}$ and $v_{p}(1-0) v_{q}$ to $v_{1}(0-1) v_{p}$ and $v_{p}(0-1) v_{q}$ respectively we get a new score sequence $\left[t_{1}, t_{2}, \ldots, t_{n}\right]$ where $\mathrm{t}_{1}=\mathrm{s}_{1}-1, \mathrm{t}_{\mathrm{q}}=\mathrm{s}_{\mathrm{q}}+1, \mathrm{t}_{\mathrm{r}}=\mathrm{s}_{\mathrm{r}}$ for all $\mathrm{r}, 2 \leq \mathrm{r} \leq \mathrm{n}$ with $\mathrm{r} \neq \mathrm{q}$. Then

$$
\begin{aligned}
\sum_{i=1}^{n} t_{i}^{2} & =\sum_{i=2, i \neq q}^{n} t_{i}^{2}+t_{1}^{2}+t_{q}^{2}=\sum_{i=2, i \neq q}^{n} s_{i}^{2}+\left(s_{1}-1\right)^{2}+\left(s_{q}+1\right)^{2} \\
& =\sum_{i=2, i \neq q}^{n} s_{i}^{2}+s_{1}^{2}+1-2 s_{1}+s_{q}^{2}+1+2 s_{q}=\sum_{i=1}^{n} s_{i}^{2}+2\left(s_{q}-s_{1}+1\right) \\
& >\sum_{i=1}^{n} s_{i}^{2}
\end{aligned}
$$

since $s_{q} \geq s_{1}$. This is a contradiction as $\sum_{i=1}^{n} s_{i}^{2}$ was assumed to be maximum. Hence the result follows.

Theorem 3 Let $\left[s_{1}, s_{2}, \ldots, s_{n}\right]$ be the score sequence of a tournament. Then the highest score of the tournament is $\mathfrak{n}-1$ if $\sum_{\mathfrak{i}=1}^{\mathfrak{n}} s_{\mathfrak{i}}^{2}$ is maximum.

Proof. Let v_{n} be the vertex of the tournament with highest score s_{n}. We shall show that $s_{n}=n-1$. Suppose on contrary $s_{n}<n-1$. Then there exits a vertex v_{p} with score s_{p} such that $v_{p}(1-0) v_{n}$. Since $s_{n} \geq s_{p}$, therefore there exists another vertex v_{q} with score s_{q} such that $v_{q}(1-0) v_{p}$ and $v_{q}(0-1) v_{n}$.

Now, by changing the $\operatorname{arcs} v_{p}(1-0) v_{n}$ and $v_{q}(1-0) v_{p}$ to $v_{p}(0-1) v_{n}$ and $v_{q}(0-1) v_{n}$ respectively we get a new score sequence $\left[t_{1}, t_{2}, \ldots, t_{n}\right]$ where $\mathrm{t}_{\mathrm{q}}=\mathrm{s}_{\mathrm{q}}-1, \mathrm{t}_{\mathrm{n}}=\mathrm{s}_{\mathrm{n}}+1, \mathrm{t}_{\mathrm{r}}=\mathrm{s}_{\mathrm{r}}$ for all $\mathrm{r}, 1 \leq \mathrm{r} \leq \mathrm{n}-1$ with $\mathrm{r} \neq \mathrm{q}$. Then

$$
\begin{aligned}
\sum_{i=1}^{n} t_{i}^{2} & =\sum_{i=1, i \neq q}^{n-1} t_{i}^{2}+t_{q}^{2}+t_{n}^{2}=\sum_{i=1, i \neq q}^{n-1} s_{i}^{2}+\left(s_{q}-1\right)^{2}+\left(s_{n}+1\right)^{2} \\
& =\sum_{i=1, i \neq q}^{n-1} s_{i}^{2}+s_{q}^{2}+1-2 s_{q}+s_{n}^{2}+1+2 s_{n}=\sum_{i=1}^{n} s_{i}^{2}+2\left(s_{n}-s_{q}+1\right) \\
& >\sum_{i=1}^{n} s_{i}^{2} \text { since } s_{n} \geq s_{q}
\end{aligned}
$$

which is a contradiction, since $\sum_{i=1}^{n} s_{i}^{2}$ was assumed to be maximum. Hence the result follows.

Theorem 4 Let $\left[s_{1}, s_{2}, \cdots, s_{n}\right]$ be the score sequence of a tournament with vertex set V and let $\mathrm{m}_{\mathfrak{i}}$ be the average of the scores of the vertices v_{j} such that $v_{i}(1-0) v_{j}$. Then

$$
\begin{equation*}
\max \left\{s_{j}+m_{j}: v_{j} \in \mathrm{~V}\right\} \leq \frac{3 n-4}{2} \tag{2}
\end{equation*}
$$

with equality if and only if $\mathrm{s}_{\mathrm{i}}=\mathrm{n}-1$ where $\mathrm{i}=\mathrm{n}$.
Proof. Let v_{i} be the vertex of a tournament where $s_{i}+\mathfrak{m}_{i}$ is maximum and let S be the sum of the scores of the vertices v_{j} such that $v_{i}(1-0) v_{j}$. Then

$$
\max \left\{s_{j}+m_{j}: v_{j} \in V\right\}=s_{i}+m_{i}=s_{i}+\frac{S}{s_{i}}
$$

Again, let g_{i} be the average of the scores of the vertices v_{k} such that $v_{k}(1-0) v_{i}$. Then

$$
\begin{aligned}
\frac{n(n-1)}{2} & =s_{i}+S+\left(n-s_{i}-1\right) g_{i}, \quad(\text { by }(1)) \\
\text { or } \frac{n}{2}+n-2 & =\frac{s_{i}+S+\left(n-s_{i}-1\right) g_{i}}{n-1}+n-2, \\
\text { or } \frac{3 n-4}{2} & =\frac{s_{i}+S+\left(n-s_{i}-1\right) g_{i}}{n-1}+n-2 .
\end{aligned}
$$

So, we have to prove that

$$
\begin{array}{r}
\qquad s_{i}+\frac{S}{s_{i}} \leq \frac{s_{i}+S+\left(n-s_{i}-1\right) g_{i}}{n-1}+n-2, \\
\text { or }(n-1)\left(s_{i}+\frac{S}{s_{i}}\right) \leq s_{i}+S+\left(n-s_{i}-1\right) g_{i}+(n-1)(n-2), \\
\text { or }(n-1)\left(n-2-s_{i}-\frac{S}{s_{i}}\right)+s_{i}+S+\left(n-s_{i}-1\right) g_{i} \geq 0, \\
\text { or }(n-1)\left(n-2-\frac{S}{s_{i}}\right)-(n-1) s_{i}+s_{i}+S+\left(n-s_{i}-1\right) g_{i} \geq 0, \\
\text { or }(n-1)\left(n-2-\frac{S}{s_{i}}\right)-s_{i}\left(n-2-\frac{S}{s_{i}}\right)+\left(n-s_{i}-1\right) g_{i} \geq 0, \\
\text { or }\left(n-1-s_{i}\right)\left(n-2-\frac{S}{s_{i}}\right)+\left(n-s_{i}-1\right) g_{i} \geq 0 \\
\text { or }\left(n-s_{i}-1\right)\left(n-2+g_{i}-\frac{S}{s_{i}}\right) \geq 0 \tag{3}
\end{array}
$$

If $s_{i}=n-1$, then (3) holds. Now, if $s_{i} \leq n-2$, then there is at least one vertex v_{k} such that $v_{k}(1-0) \nu_{i}$, so that $g_{i} \geq 1$. Also $\frac{s}{s_{i}} \leq n-1$. Therefore (3) holds.
This completes the proof of first part.
Now assume that equality holds in (2). Then from (3), we have

$$
\left(n-s_{i}-1\right)\left(n-2+g_{i}-\frac{S}{s_{i}}\right)=0
$$

which gives (a) $s_{i}=n-1$ or (b) $\frac{s}{s_{i}}-g_{i}=n-2$.
Case (a). $s_{i}=n-1$. This is possible only when $i=n$, that is, when $s_{n}=n-1$.
Case (b). $\frac{S}{s_{i}}-g_{i}=n-2$. Since $s_{n} \geq \frac{S}{s_{i}}$, therefore

$$
\begin{equation*}
s_{n} \geq n-2+g_{i} \tag{4}
\end{equation*}
$$

Also $g_{i} \geq 0$ and $s_{n} \leq n-1$. Then from (4), we have $0 \leq g_{i} \leq 1$. If $g_{i}=0$, then $s_{n}=n-1$. Again if $0<g_{i} \leq 1$, then there is at least one vertex v_{k} such that $v_{k}(1-0) v_{i}$. Therefore $g_{i} \geq 1$. Hence $g_{i}=1$. Thus from (4), we have $s_{n} \geq n-1$. Since $s_{n} \leq n-1$, therefore $s_{n}=n-1$.

Conversely, let $s_{n}=n-1$. Then $s_{k} \leq n-2$ for all $k, 1 \leq k<n$. Now

$$
\begin{aligned}
s_{k}+m_{k} & =s_{k}+\frac{1}{s_{k}} \sum_{j=1}^{n}\left\{s_{j}: v_{k}(1-0) v_{j}\right\} \\
& \leq s_{k}+\frac{1}{s_{k}}\left\{\frac{s_{k}\left(s_{k}-1\right)}{2}+s_{k}\left(n-2-s_{k}\right)\right\} \\
& =s_{k}+\frac{s_{k}-1}{2}+n-2-s_{k} \\
& \leq \frac{n-2-1}{2}+n-2=\frac{3 n-7}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
s_{n}+m_{n} & =s_{n}+\frac{1}{s_{n}} \sum_{j=1}^{n}\left\{s_{j}: v_{n}(1-0) v_{j}\right\} \\
& =n-1+\frac{1}{n-1} \sum_{i=1}^{n-1} s_{i} \\
& =n-1+\frac{1}{n-1}\left\{\sum_{i=1}^{n} s_{i}-s_{n}\right\} \\
& =n-1+\frac{1}{n-1}\left\{\frac{n(n-1)}{2}-(n-1)\right\} \quad(\text { by }(1)) \\
& =\frac{3 n-4}{2} .
\end{aligned}
$$

Hence, $\max \left\{s_{j}+m_{j}: v_{j} \in V\right\}=\frac{3 n-4}{2}$, completing the proof.
Theorem 5 Let $\left[s_{1}, s_{2}, \ldots, s_{n}\right]$ be the score sequence of a tournament and let $\mathfrak{m}_{\mathfrak{i}}$ be the average of the scores of the vertices v_{j} such that $v_{i}(1-0) v_{j}$. Then

$$
\begin{equation*}
s_{i}+m_{i} \leq \frac{n}{2}+\frac{n-2}{n-1} s_{i}+\left(s_{n}-s_{1}\right)\left(1-\frac{s_{i}}{n-1}\right) \tag{5}
\end{equation*}
$$

holds for each i. Further, the equality holds if and only of $\mathrm{s}_{\mathrm{i}}=\mathrm{n}-1$ where $\mathfrak{i}=\mathrm{n}$ or the vertex v_{i} is such that $v_{\mathrm{i}}(1-0) v_{\mathrm{j}}$ for the s_{n} score vertices v_{j} and $v_{i}(0-1) v_{k}$ for the s_{1} score vertices v_{k}.

Proof. Let v_{i} be the vertex of score s_{i} in the tournament T. We consider two cases: (a) $s_{i}=n-1$ (b) $s_{i}<n-1$.
Case (a). $s_{i}=n-1$. Then $i=n$, so that $s_{n}=n-1$. Therefore

$$
\begin{aligned}
s_{n}+m_{n} & =n-1+\frac{1}{s_{n}} \sum_{j=1}^{n}\left\{s_{j}: v_{n}(1-0) v_{j}\right\}=n-1+\frac{1}{n-1} \sum_{j=1}^{n-1} s_{j} \\
& =n-1+\frac{1}{n-1}\left\{\sum_{j=1}^{n} s_{j}-s_{n}\right\} \\
& =n-1+\frac{1}{n-1}\left\{\frac{n(n-1)}{2}-(n-1)\right\}(\text { by }(1)) \\
& =\frac{3 n-4}{2}
\end{aligned}
$$

Hence (5) holds.
Case (b). $s_{i}<n-1$. Change the orientation of the arcs $v_{k}(1-0) v_{i}$, if any, to $v_{i}(1-0) v_{k}$. Suppose this new tournament is T_{1} and let $\max \left\{s_{j}+m_{j}: v_{j} \in V\right\}$ occurs at the vertex v_{i} and let it be $s_{i}^{\prime}+m_{i}^{\prime}$.
Now for T_{1}, we have

$$
\begin{align*}
s_{i}^{\prime}+m_{i}^{\prime} & =n-1+\frac{1}{s_{i}^{\prime}}\left\{\sum_{j=1}^{n} s_{j}^{\prime}: v_{i}(1-0) v_{j}\right\} \\
& =n-1+\frac{1}{n-1}\left\{\sum_{j=1}^{n} s_{j}^{\prime}-s_{i}^{\prime}\right\} \\
& =n-1+\frac{1}{n-1}\left\{\frac{n(n-1)}{2}-(n-1)\right\} \quad(\text { by }(1)) \\
& =\frac{3 n-4}{2} \tag{6}
\end{align*}
$$

Let S be the sum of the scores of the vertices v_{j} such that $v_{i}(1-0) v_{j}$ in the tournament T. Then $s_{i}+m_{i}=s_{i}+\frac{S}{s_{i}}$. Now,

$$
\begin{aligned}
\left(s_{i}^{\prime}+m_{i}^{\prime}\right)-\left(s_{i}+m_{i}\right) & =n-1+\frac{1}{s_{i}^{\prime}} \sum_{j=1}^{n}\left\{s_{j}^{\prime}: v_{i}(1-0) v_{j}\right\}-\left(s_{i}+\frac{S}{s_{i}}\right) \\
& =n-s_{i}-1+\frac{1}{n-1}\left\{S+\left(n-s_{i}-1\right) g_{i}-\left(n-s_{i}-1\right)\right\}-\frac{S}{s_{i}} \\
& =n-s_{i}-1+\frac{1}{n-1}\left\{S+\left(n-s_{i}-1\right)\left(g_{i}-1\right)\right\}-\frac{S}{s_{i}},
\end{aligned}
$$

(where g_{i} is the average score of the vertices v_{k} such that $v_{k}(1-0) v_{i}$ in T), that is,

$$
\begin{align*}
s_{i}+m_{i} & =s_{i}^{\prime}+m_{i}^{\prime}-\left(n-s_{i}-1\right)-\frac{1}{n-1}\left\{S+\left(n-s_{i}-1\right)\left(g_{i}-1\right)\right\}+\frac{S}{s_{i}} \\
& =\frac{3 n-4}{2}-\left(n-s_{i}-1\right)-\frac{1}{n-1}\left\{S+\left(n-s_{i}-1\right)\left(g_{i}-1\right)\right\}+\frac{S}{s_{i}} \quad(\text { by }(6)) \\
& =\frac{3 n-4}{2}-\left(n-s_{i}-1\right)-\frac{S}{n-1}-\frac{1}{n-1}\left\{\left(n-s_{i}-1\right)\left(g_{i}-1\right)\right\}+\frac{S}{s_{i}} \\
& =\frac{3 n-4}{2}-\frac{\left(n-s_{i}-1\right)\left(n-1+g_{i}-1\right)}{n-1}+\frac{S}{s_{i}}-\frac{S}{n-1} \\
& =\frac{3 n-4}{2}-\left(1-\frac{s_{i}}{n-1}\right)\left(n-2+g_{i}\right)+\frac{S}{s_{i}}\left(1-\frac{s_{i}}{n-1}\right) \\
& =\frac{3 n-4}{2}-\left(1-\frac{s_{i}}{n-1}\right)\left(n-2+g_{i}-\frac{S}{s_{i}}\right) \\
& =\frac{3 n-4}{2}-\left(1-\frac{s_{i}}{n-1}\right)(n-2)-\left(1-\frac{s_{i}}{n-1}\right)\left(g_{i}-\frac{S}{s_{i}}\right) \\
& =\frac{3 n-4}{2}-\left(n-2-\frac{(n-2) s_{i}}{n-1}\right)-\left(1-\frac{s_{i}}{n-1}\right)\left(g_{i}-\frac{S}{s_{i}}\right) \\
& =\frac{n}{2}+\frac{n-2}{n-1} s_{i}-\left(1-\frac{s_{i}}{n-1}\right)\left(g_{i}-\frac{S}{s_{i}}\right) . \tag{7}
\end{align*}
$$

Clearly $\frac{S}{s_{i}} \leq s_{n}$, that is, $\frac{S}{s_{i}}-s_{n} \leq 0$ and $g_{i} \geq s_{1}$, that is $g_{i}-s_{1} \geq 0$. Therefore $g_{i}-s_{1} \geq \frac{S}{s_{i}}-s_{n}$, that is, $g_{i}-\frac{S}{s_{i}} \geq s_{1}-s_{n}$. Using this in (7), we have

$$
s_{i}+m_{i} \geq \frac{n}{2}+\frac{n-2}{n-1} s_{i}-\left(1-\frac{s_{i}}{n-1}\right)\left(s_{1}-s_{n}\right),
$$

that is, $s_{i}+m_{i} \geq \frac{n}{2}+\frac{n-2}{n-1} s_{i}+\left(s_{n}-s_{1}\right)\left(1-\frac{s_{i}}{n-1}\right)$. This completes the proof of first part.
Now assume that equality holds in (5). Then $s_{i}=n-1$ or $-\left(g_{i}-\frac{S}{s_{i}}\right)=$ $s_{n}-s_{1}$, that is, $s_{i}=n-1$ where $i=n$ or $-g_{i} s_{i}+S=s_{n} s_{i}-s_{1} s_{i}$. From $-g_{i} s_{i}+$ $S=s_{n} s_{i}-s_{1} s_{i}$, we have $\frac{-P}{n-s_{i}-1} s_{i}+s_{1} s_{i}=s_{n} s_{i}-S$, (where P is the sum of the scores of the vertices v_{k} such that $v_{k}(1-0) v_{i}$ in $\left.T\right)$ or $s_{1}-\frac{P}{n-s_{i}-1}=$ $\frac{s_{n} s_{i}-S}{s_{i}}$, or $\frac{s_{n} s_{i}-S}{s_{i}}=\frac{\left(n-s_{i}-1\right) s_{1}-P}{n-s_{i}-1}$ or $s_{1}-\frac{P}{n-s_{i}-1}=\frac{s_{n} s_{i}-S}{s_{i}}$, or $\frac{\left(n-s_{i}-1\right) s_{1}-P}{n-s_{i}-1}=\frac{s_{n} s_{i}-S}{s_{i}} \geq 0$, since $\frac{S}{s_{i}} \leq s_{n}$, that is, $\left(n-s_{i}-1\right) s_{1}-P \geq 0$, or $P \leq\left(n-s_{i}-1\right) s_{1}$. But $P \geq\left(n-s_{i}-1\right) s_{1}$. Therefore $P=\left(n-s_{i}-1\right) s_{1}$. This means that all those vertices v_{k} with $v_{k}(1-0) v_{i}$ are of score s_{1}. Using this fact in

$$
\frac{\left(n-s_{i}-1\right) s_{1}-P}{n-s_{i}-1}=\frac{s_{n} s_{i}-S}{s_{i}}
$$

we have

$$
\frac{\left(n-s_{i}-1\right) s_{1}-\left(n-s_{i}-1\right) s_{1}}{n-s_{i}-1}=\frac{s_{n} s_{i}-S}{s_{i}},
$$

or $\frac{s_{n} s_{i}-S}{s_{i}}=0$ or $S=s_{n} s_{i}$ or $\frac{S}{s_{i}}=s_{n}$. This means that all those vertices v_{j} with $v_{i}(1-0) v_{j}$ are of score s_{n}.

Conversely, let $s_{i}=n-1$, where $\mathfrak{i}=n$ or $v_{i}(1-0) v_{j}$ for the s_{n} score vertices v_{j} and $v_{i}(0-1) v_{k}$ for the s_{1} score vertices v_{k}. For $s_{i}=n-1$, where $i=n$, the equality holds in (5) by using case (a). Now, if $v_{i}(1-0) v_{j}$ for the s_{n} score vertices v_{j} and $v_{i}(0-1) v_{k}$ for the s_{1} score vertices v_{k}, then

$$
s_{i}+m_{i}=s_{i}+\frac{s_{n} s_{i}}{s_{i}}=s_{i}+s_{n}
$$

and

$$
\begin{aligned}
\frac{n}{2}+\frac{n-2}{n-1} s_{i}+ & \left(s_{n}-s_{1}\right)\left(1-\frac{s_{i}}{n-1}\right) \\
& =\frac{n(n-1)}{2} \frac{1}{n-1}+\frac{n-2}{n-1} s_{i}+\frac{\left(s_{n}-s_{1}\right)\left(n-1-s_{i}\right)}{n-1} \\
& =\frac{1}{n-1}\left\{\sum_{i=1}^{n} s_{i}+(n-2) s_{i}+\left(s_{n}-s_{1}\right)\left(n-1-s_{i}\right)\right\} \text { by (1) } \\
= & \frac{1}{n-1}\left\{s_{i}+s_{n} s_{i}+s_{1}\left(n-s_{i}-1\right)\right. \\
& \left.+(n-2) s_{i}+s_{n}\left(n-1-s_{i}\right)-s_{1}\left(n-1-s_{i}\right)\right\} \\
& =\frac{1}{n-1}\left\{s_{i}+s_{n} s_{i}+n s_{i}-2 s_{i}+n s_{n}-s_{n}-s_{n} s_{i}\right\} \\
& =\frac{1}{n-1}\left\{(n-1) s_{i}+(n-1) s_{n}\right\}=s_{i}+s_{n} .
\end{aligned}
$$

Therefore, the equality holds in (5).
Corollary 6 Let $\left[s_{1}, s_{2}, \ldots, s_{n}\right]$ be the score sequence of a tournament and let m_{i} be the average of the scores of the vertices v_{j} such that $v_{\mathfrak{i}}(1-0) v_{j}$. Then

$$
\begin{equation*}
s_{i}+m_{i} \leq \frac{n}{2}+\frac{n-2}{n-1} s_{n}+\left(s_{n}-s_{1}\right)\left(1-\frac{s_{n}}{n-1}\right) \tag{8}
\end{equation*}
$$

holds for each i. Further, the equality holds if and only if $\mathrm{s}_{\mathrm{i}}=\mathrm{n}-1$ where $\mathfrak{i}=n$ or the vertex $v_{i}\left(\right.$ score is $\left.s_{n}\right)$ is such that $v_{i}(1-0) v_{j}$ for the s_{n} score vertices v_{j} and $v_{i}(0-1) v_{k}$ for the s_{1} score vertices v_{k}.

Proof. Since (5) is true for each \mathfrak{i} and since $s_{i} \leq s_{n}$, therefore we get (8). Using Theorem 5, we conclude that the equality holds if and only if $s_{i}=n-1$ where $\mathfrak{i}=n$ or the vertex $v_{i}\left(\right.$ score is $\left.s_{n}\right)$ is such that $v_{i}(1-0) v_{j}$ for the s_{n} score vertices v_{j} and $v_{i}(0-1) v_{k}$ for the s_{1} score vertices v_{k}.

References

[1] P. Avery, Score sequences of oriented graphs, J. Graph Theory, 15, 3 (1991) $251-257 . \Rightarrow 257$
[2] R. A. Brualdi and J. Shen, Landau's inequalities for tournament scores and a short proof of a Theorem on transitive sub-tournaments, J. Graph Theory, 38 (2001) 244-254. $\Rightarrow 258$
[3] J. R. Griggs and K. B. Reid, Landau's theorem revisited, Australasian J. Combinatorics, 20 (1999) 19-24. $\Rightarrow 258$
[4] K. K. Kayibi, M. A. Khan and S. Pirzada, Uniform sampling of khypertournaments, Linear and Multilinear Algebra, 61, 1 (2012) 123-138. \Rightarrow 257
[5] M. A. Khan, S. Pirzada and K. K. Kayibi, Scores, inequalities and regular hypertournaments, J. Math. Ineq. Appl., 15, 2 (2012) 343-351. $\Rightarrow 257$
[6] H. G. Landau, On dominance relations and the structure of animal societies, III, the condition for a score structure, Bull. Math. Biophys., 15 (1953) 143-148. \Rightarrow 257, 258
[7] J. W. Moon, Topics on Tournaments, Holt, Rinehart and Winston, New York (1968). $\Rightarrow 258$
[8] S. Pirzada and G. Zhou, Score sequences in oriented k-hypergraphs, European J. Pure and Applied Mathematics, 1, 3 (2008) 10-20. $\Rightarrow 257$
[9] S. Pirzada, T. A. Chishti and T. A. Naikoo, Score lists in [h-k]-bipartite hypertournaments, Discrete Mathematics and Applications, 19, 3 (2009) 321-328. \Rightarrow 257
[10] S. Pirzada and G. Zhou, New proof on k-hypertournament scores, Acta Univ. Sapientiae, Informatica, 2, 1 (2010) 5-9. $\Rightarrow 257$
[11] S. Pirzada, On scores in multipartite hypertournaments, Eurasian Math. J. 2, 1 (2011) 112-119. $\Rightarrow 257$
[12] S. Pirzada, On scores in bipartite hypertournaments, Math. Vesnik, 64,4 (2012) 286-296. $\Rightarrow 257$
[13] S. Pirzada, G. Zhou and A. Ivanyi, Score lists of multipartite hypertournaments, Acta Univ. Sapien. Informatica, 2, 2 (2010) 184-193. $\Rightarrow 257$
[14] S. Pirzada, An Introduction to Graph Theory, Universities Press, Hyderabad, India, 2012. $\Rightarrow 257$
[15] S. Pirzada, T. A. Naikoo and Zhou Guofei, Score lists in tripartite hypertournaments, Graphs and Combinatorics, 23, 4 (2007) 445-454. $\Rightarrow 257$
[16] K. B. Reid, Tournament, scores, kings, generalizations and special topics, Congressus Numerantium, 115 (1996) 171-211. $\Rightarrow 258$
[17] S. Pirzada and T. A. Naikoo, Inequalities for marks in digraphs, J. Math. Inequalities Appl., 9, 2 (2006) 189-198. $\Rightarrow 257$
[18] S. Pirzada and U. Samee, Mark sequences in digraphs, Seminare Lotharingien de Combinatoire, 55 (2006) Art.B55c. $\Rightarrow 257$
[19] S. Pirzada and T. A. Naikoo, Score sets for oriented graphs, Applicable Analysis and Discrete Mathematics, 2, 1 (2008) 107-113. $\Rightarrow 257$
[20] S. Pirzada and T. A. Naikoo, Score sets in k-partite tournaments, J. Applied Mathematics and Computing, 22, 1-2 (2006) 237-245. $\Rightarrow 257$
[21] S. Pirzada, T. A. Naikoo and T. A. Chishti, Score sets in oriented bipartite graphs, Novi Sad J. Mathematics, 36, 1 (2006) 35-45. $\Rightarrow 257$
[22] S. Pirzada, T. A. Naikoo and N. A. Shah, Score sequences in oriented graphs, J. Applied Mathematics and Computing, 23, 1-2 (2007) 257-268. $\Rightarrow 257$
[23] S. Pirzada and T. A. Naikoo, Score sets in tournaments, Vietnam J. Math., 34, 2 (2006) 157-161. $\Rightarrow 257$
[24] Zhou Guofei and S. Pirzada, Degree Sequences in oriented k-hypergraphs, J. Applied Math. and Comput., 27 (2008) 149-158. $\Rightarrow 257$

Received: November 18, 2018 • Revised: December 20, 2018

