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Abstract. We consider the concept of statistical complexity to write the
quasiperiodical damped systems applying the snapshot attractors. This
allows us to understand the behaviour of these dynamical systems by the
probability distribution of the time series making a difference between
the regular, random and structural complexity on finite measurements.
We interpreted the statistical complexity on snapshot attractor and de-
termined it on the quasiperiodical forced pendulum.

1 Introduction

There is no universal definition of complexity in natural sciences. In the last
two decades several complexity measures have been introduced, which contain
various aspects of complex systems. We mention some ones as algorithmic com-
plexity (Kolmogorov) [17], amount of information about the optimal predict
the future corresponding to the expected past (Crutchfield, Young) [8], (Bof-
fetta, Cencini, Falconi, Vulpiani) [6], complexity of finite sequence (Lempel,
Ziv) [22].
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An important contribution to this issue due to P. Grassberger [13], he stu-
died the pattern-generation by the dynamics of a system and introduced the
effective entropy considering the mixture of order and disorder, regularity and
randomness, because the most complex situation is neither the one with high-
est Shannon information S (random structure) nor the one with lowest S
(ordered structures).

We negotiate the statistical complexity in this article, which allows a de-
scription of a finite measured series to consider more complicated dynamical
structures which was published in the article [23] (1995). It was widely used
in the chaotic regim [9], biology [32], symbolic sequences [1], pseudorandom
bit generator [12], earthquake [24], the number system [11].

The entropy appoints the direction of flow. The complexity determines the
inner structure of the dynamical system. The statistical approaches are easier
to implement than solving equations of motion and they offer the only way of
dealing with otherwise intractable problems.

We study the complexity of the quasiperiodic driven dynamical systems con-
sidering the snapshot attractor [30] on the set of points, which are determined
by the Poencaré section. This object corresponds to a given time moment,
which contains the points of the trajectories ensemble. These orbits were ini-
tialized in the past and the time dependent behaviour was determined by the
same equation of motion.

We determined the numerical approximation of the aperiodic driven pen-
dulum, which reflects the behaviour of complexity on the snapshot attractor.
This system shows on-off intermittency [20] near to the axis (L=0), due to
the fluctuation of the maximal Lyapunov exponent. The maximal Lyapunov
exponent linearly intersects the axis, therefore it can be seen, that the system
has scaling behaviour [19].

The structure of the article contains the next parts: In the Section 2 we
introduce the idea of complexity accordingly the measure of entropy and dis-
equilibrium. We discuss the statistical complexity is extended to generalized
complexity considering the Tsallis, Wooters, Rényi entropy and the Kullbac-
Shannon, Kullbac-Tsallis, Kulback-Rényi divergency. We explained the quasi
periodical motion by snapshot attractor, which disposes the on-off intermit-
tency between chaotic and nonchaotic condition and this system provides the
scaling behaviour in the Section 3. A numerical approximation of the aperiodic
forced system is illustrated by the quasiperiodic driven pendulum comparing
the complexity and the dissipation rate, which due to the on-off intermittency
(Section 4).
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2 Complexity

We investigate the statistical complexity, which is based on the effective en-
tropy by P. Grassberger [13] and the main idea is published by R. López-Ruiz,
H.L. Manchini, X. Calbet (LMC) [23, 25, 3, 7].

The expanded definition of the statistical complexity so called generalized
statistical complexity measures were introduced by M.T. Martin, A. Plastino,
O.A. Rosso (2006) [26], which apply various kinds of entropy and disequilib-
rium measure [18].

We use the notation of a measured sequence by the article [10]. The time
series of the ensemble is denoted by y1,j, . . . , yn,j, where yi,j means the measure-
ment of the quantity y at time ti = t0+ i∆t, the time interval ∆t > 0 ∈ R and
j (1 ≤ j ≤ m) assigned a number of the trajectory in the ensemble. The unit of
the time interval ∆t equals to a constant in this description. The x(n) indicates
the trajectory of length n in Rd, which means a time series of the measure-

ment. The kth point of the orbit of length n in the manifold is written by x
(n)
k,j ,

where (k = 1, . . . , n), and j means the number of trajectory (j = 1, . . . ,m)

in the manifold. We will research the sequent of x
(n)
1,j , x

(n)
2,j , . . . , x

(n)
n,j as a time

series over the jth trajectory. Let us choose this time development quantity
of the ensemble at a given moment i = t ′, then we determine the probability

distribution of the x
(n)
t ′,j(j = 1, . . . ,m) over the points of the trajectories of the

manifold.
We rephrase this notation by the symbolic dynamics, because the concept of

complexity is much more universal idea than this question. We distinguish M
different value of the measurements. The points of the trajectories of length

n x
(n)
i,j (1 ≤ i ≤ n) (1 ≤ j ≤ m) are noted by the symbol oi,j, which is

chosen from the set {1, . . . ,M}. Then the jth path of length n in the ensemble

corresponds to O
(n)
j = (o1,j, o2,j, . . . , on,j). A series O

(n)
j (1 ≤ j ≤ m) occurs

with probability P(O
(n)
j ) along a sequent of length N (n ≤ N).

2.1 Statistical complexity

The statistical complexity is well applicable concept characterizing finite mea-
surement sequences with its probability distribution. This allows a statistical
approximation of the measured quantities. We apply the basic article [23] to
introduce this idea.

We suppose that there areN various symbol series of length n (o1,j, . . . , oN,j)
(j = 1, . . . ,m) in the ensemble, then these series dispose the set of discrete
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probability distribution P ≡ {p1,j, . . . , pN,j}, where pi,j := P(oi,j) (
∑N
i=1 pi,j = 1)

(1 ≤ j ≤ m) and pi,j > 0 for all i.
The statistical complexity measures contains two compositions: (i) entropy
H and (ii) disequilibrium D i.e. distances in probability-space. It is introduced
by the information theory, where the Shannon entropy assigns the gain of
the information storage and the disequilibrium features the distance from uni-
form distribution. So the LMC measure gives a simultaneous quantification of
randomness and correlation structures in the systems.

2.1.1 Measure of entropy and disequilibrium

Information measure Information measure I[P] i.e. the uncertainty can
be described by the probability distribution P = {pj, j = 1, . . . ,N}, with N

the number of possible states of the system (
∑N
j=1 pj = 1). In the information

theory we define the quantity of disorder H for a given probability distribution
P corresponding to the information measure I[P] in the next term:

S[P] = I[P]/Imax[Pe], (1)

where 0 ≤ H ≤ 1, Imax means the maximal value of I, and Pe is the uniform
probability distribution. Let us consider the Shannon-Kinchin paradigm then I
can be defined as a term of entropies. The statistical complexity was introduced
by the Shannon entropy [33], therefore we will investigate this form in a finite
system:

S = −

N∑
i=1

pi log pi. (2)

This quantity approximately equals to zero S ∼ 0, if the symbol sequence

O
(n)
jc

has a high probability (pc ∼ 1) and other O
(n)
j has very small probability

(pc ∼ 0). In the range of entropy the maximal values Smax corresponds to
the uniform probability distribution pe = {1/N, 1/N, . . . , 1/N}, which means

the the equal probability symbol sequence O
(n)
je

, which leads to the maximum
value of information. The normalized quantity H derives from H = S/Smax,
than 0 ≤ H ≤ 1, where Smax = logN.

Disequilibrium measure We introduce the function of disequilibrium D
on the probability distribution {pj : j = 1 . . . ,N}. The LMC uses some distance
D of a given P compared to the uniform distribution Pe in the states of the
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system [23]. Therefore we investigate the disequilibrium by a distance-form:

Q[P] = Q0 · D[P, Pe], (3)

where Q0 is a normalization constant (0 ≤ Q0 ≤ 1), which equals to the
inverse of the maximum possible value of the distance D[P, Pe]. The maximum
distance is obtained, when one of the components of P i.e. pl equals to one
and the remaining elements equal to zero. The disequilibrium Q differs from
zero, if there exist preferred states among the accessible ones, i.e. this quantity
features the systems’ architecture.

In the original definition of the statistical complexity the Euclidean norm
(RN) have been used i.e. the quadratic distances from the probability distri-

bution of each symbol sequences P(O
(n)
j ) (1 ≤ j ≤ m) to the equal probability

P(O
(n)
je

). This choice for the distance D is written:

D[P, Pe] =
N∑
i=1

(pi − pe)
2 , where pe =

1

N
. (4)

In the range of this quantity becomes maximum, when the disequilibrium

achieves prevalent symbol sequences O
(n)
jc

with pc ∼ 1 and Dc → 1 for N is
growing. Otherwise the disequilibrium equals to zero approximately D ∼ 0 for
pi ∼ 1/N. The value of the D changes between these extrema corresponding to
advanced probability distribution. The normalized factor equals to Q0 = N

N−1 .

2.1.2 Measure of statistical complexity

The whole complexity concept includes the functional product of disorder H
and disequilibrium D, which based on the various probability distribution cor-
responding to sequent of the advanced quantity. This shows the transition
between the information stored in the system and its disequilibrium. The sta-
tistical complexity C is introduced by the published article of LMC [23]:

C = H · D = −

(
N∑
i=1

pi log pi

)(
N∑
i=1

(
pi −

1

N

)2)
. (5)

The value C ∈ R+. The normalized C can be described as follows C = H · D =
(H/ logN)(D · (N/(N − 1))). The range of complexity measure is finite and
limiting between Cmin and Cmax, but H is not necessarily a unique function.
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We applied finite system, therefore the statistical complexity disposes the

scaling behaviour. A new set of symbol sequences O
(n)
j turns out at each scale

of measurement, which provides an advanced probability distribution P(O
(n)
j )

so the value of complexity becomes different.
Three basic cases are distinguished of the statistical complexity: (a) this is

monotonous increasing in the function of entropy (b) it corresponds to a convex
function, which contains a maximal Cmax at the probability distribution pe and
the minimum Cmin appears, where the H = 0 i.e. total order and H = 1 and
third kind is (c) the monotonous decreasing with increasing entropy [26].

There are two extremist situations of complexity C depending on entropy
H. On the one hand each set of series assigned to each set of symbol sequence

O
(n)
j , which has the same probability distribution. All of them contribute to

the information stored in equal measure as the ideal gas [21]. On the other
hand, if we study an object, which features some symmetries properties and
distance, then this system can be written by minimal information as mineral
or symmetry in quantum mechanics.

2.1.3 Generalized statistical complexity

Generalized entropy We expend the concept of classical statistical com-
plexity to different measures of the entropy and disequilibrium. Tsallis in-
troduced a generalisation of the Shannon-Boltzmann-Gibbs entropic measure
[35]:

S(T)q [P] =
1

(q− 1)

N∑
j=1

[pj − (pj)
q] , (6)

where q real number. Rényi suggested a definition of entropy for discrete
probability distribution in 1950s years [28]:

S(R)q [P] =
1

(1− q)
ln


N∑
j=1

(pj)
q

 . (7)

Then the generalized entropy S(κ)q denotes κ = S, T, R Shannon,Tsallis and
Rényi entropy.

H(κ)
q [P] = S(κ)q [P]/S(κ)max, (8)

where S(κ)max means the maximum value of the information measure, which cor-
responds the uniform probability distribution. The maximal value of Shannon
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and Rényi entropy correspond to S(S)max = S(R)max = lnN and Tsallis entropy

involves S(T)max =
1−N1−q

q−1 for q ∈ (0, 1) ∪ (1,∞).

Generalized disequilibrium The Euclidean distances was investigated in
the LMC. We introduce the generalized disequilibrium D. The Wootters dis-
tance was applied for two probability distributions [36], which can be used in
the quantum mechanic:

DW [P1, p2] = cos−1


N∑
j=1

(p
(1)
j )1/2(p

(2)
j )1/2

 . (9)

Consider two divergence-classes, which were published by Basseville [4]. The
first class contains the divergence which is defined by the relative entropies.
The second class consists of the divergence, which was introduced as the dif-
ference of the entropies. The Kullbac-Shannon expression following

DKS [P, Pe] = K(S)[P|Pe] = S(S)1 [Pe] − S(S)1 [P]. (10)

The Kullback-Tsallis entropy is introduced:

DKT
q
[P, Pe] = K(T)

q [P|Pe] = N
q−1(S(T)q [Pe] − S(T)q [P]). (11)

The Kulback-Rényi etropy following

DKR
q
[P, Pe] = K(R)

q [P|Pe] = (S(R)q [Pe] − S(R)q [P]). (12)

Then the generalized disequilibrium denoted by this form:

Q(ν)
q [P] = Q(ν)

0 Dν[P, Pe], (13)

where ν = E,W,K, Kq and Q(ν)
0 normalization constant (0 ≤ Q(ν)

q ≤ 1), and
these are:

Q(E)
0 = N

N−1 , Q
(W)
0 = 1/ cos−1

{(
1
N

)1/2}
,

QKR
q

0 = 1
lnN QKT

q

0 = q−1
N(q−1)−1

.

Generalized statistical complexity This quantity is defined following

C(K)ν,q[P] = Q(ν)
q [P] · H(K)

q [P], (14)
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where K = S, R, T for fixed q and the index ν = E,W,Kq means the disequilib-
rium with appropriated distance measures. This term (14) is a family of the
statistical complexity corresponding to functional product form C = H·Q. We
notice that the entropic difference S[P1] − S[P2] does not specify the informa-
tion gain or divergence, because this quantity is not necessary positive definit.
This lead to the Jensen divergence.

Shinner, Davidson and Landsberg (SDL) published a term for the statistical
complexity [34], this term is expressed for ν = K,Kq:

C(κ)Kq
[P] = (1−H(κ)

q [P]) · H(κ)
q [P]. (15)

We get the LMC statistical complexity at κ = S, q = 1 so CLMC = C(S)K,1.

2.2 Time evolution

In statistical physics we study the isolated systems, which are characterized
by initial, arbitrary and discrete probability distribution. The uniform distri-
bution Pe develops during the evolution towards equilibrium. Then we can
research the time evolution of the LMC i.e. C versus time t graph. Thanks to
the second law of thermodynamics the entropy grows monotonically with time
(dH/dt ≥ 0) in isolated system. Therefore H behaves as an arrow of time, so
we can study the figure of C versus H as the time evolution of the LMC, thus
the normalised entropy-axis can be substituted by the time-axis. This picture
H × C can be utilized to research the changes in the dynamics of a system,
which derives from the modulated parameters.

3 Driven system

In both experimental and theoretical physics, periodically excited nonlinear
systems play important role. A typical case of these systems is described by
this equation:

d2Θ

dt2
+ ν

dΘ

dt
+ sinΘ = f(t), (16)

where the damped forcing f(t) is periodic in time, for example:

f(t) = K+ V cos(ωt). (17)

Such equations are used in many cases of physical research, as forced damped
pendulum, the Stewart-McCumber model of the current-driven Josephson
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junction [2] and simple phenomenological model of sliding charge-density waves
[5]. The nonlinear dynamical model can be characterized by strange attrac-
tor, period doubling cascades, crises, intermittency, fractal basin boundaries
etc. These equations are intensively used in low dimensional chaotic dynamics
research.

Periodic excitation is extended to examine aperiodic cases, when f(t) is
quasiperiodic for example:

f(t) = K+ V [cos(ω1t) + cos(ω2t)], (18)

where ω1 and ω2 are the incommensurate frequencies. It appears in the
transition from quasiperiodic to chaos inside an electronic Josphson-junction
simulator driven by two independent sources [5]. It is applied on the experi-
ments inside an electron-hole plasma in germanium excited by two frequencies
quasiperiodic external perturbations they observed stable three frequencies
mode locking, and chaos [14, 15].

These are presented with quasiperiodic systems by two incommensurate fre-
quencies. We consider the following quasiperiodically forced damped pendulum
[29]:

d2Θ

dt2
+ ν

dΘ

dt
+ sinΘ = K+ V [cos(ω1t) + cos(ω2t)], (19)

where Θ is an angle of pendulum with the vertical axis, ν is the dissipation
rate, K is a constant, V is the forcing amplitude and ω1 and ω2 are the
incommensurate frequencies. Let us investigate new variables, t → νt and
φ = Θ+ π

2 . Then the equation (19) becomes:

1

p

d2φ

dt2
+
dφ

dt
− cosφ = K+ V [cos(ω1t) + cos(ω2t)], (20)

where p = ν2 is a new parameter, and ω1 and ω2 are rescaled as follows:
ω1 → ω1ν and ω2 → ω2ν. In the expressions of the dynamical variables
φ,v ≡ dφ

dt and z ≡ ω2t, then we have

dφ
dt = v,
dv
dt = p

{
K+ V

[
cos
(
ω1
ω2
z
)
+ cos z

]
+ cosφ− v

}
,

dz
dt = ω2.

 (21)

The equation (21) contains rich dynamical behaviour [31]. This system shows
a special behaviour in some range of parameter space. Therefore we apply the
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snapshot attractor, because this structure reflects the properties of a dynam-
ical systems at a given moment.

The dynamic of the quasiperiodic damped pendulum is characterised by the
sign of maximal Lyapunov exponent which changes near to the axis (L=0),
because this system has finite fluctuation. The Lyapunov exponent becomes to
negative, then the system contracts on the nonchaotic side(L ≤ 0). Otherside
the Lypunov exponent turns into positive, then the expansion characterizes
the dynamical behaviour on the chaotic side (L ≥ 0). Therefore the collec-
tive properties of the orbits can be studied near to the transition. This is
a special behaviour of this model which is called on-off intermittency of the
snapshot attractor. The trajectories spend stretches of time expanding (lead-
ing to nonzero-size snapshot attractor), yet there are also long time during the
trajectories experience contraction, resulting extremely small-size of snapshot
attractor. Then the time dependent size of snapshot attractor can be written
by the dispersion rate [16]:

S(t) =

(
1

N

N∑
i=1

{
[φi(t)− < φ(t) >]

2 + [vi(t)− < v(t) >]
2
})1/2

, (22)

where N is the number of points on the snapshot attractor, [φ(t), v(t)] defines
the geometric center of these points at a given time: < φ(t) >= 1

N

∑N
i=1φi(t)

and < v(t) >= 1
N

∑N
i=1 vi(t).

The time averaged size of the snapshot attractor on the chaotic side near
to the transition is defined as < S(t) >= limT→∞ ∫T0 S(t)dt which obeys the
following scaling relation:

< S(t) >∼ L ∼ |p− pc|, (23)

where pc means the p ≥ pc (L ≤ 0) and p ≤ pc (L ≥ 0). This scaling behaviour
of the transition to chaos was published in quasiperiodically driven dynamical
systems [19] i.e. a route of chaos was investigated, where the largest Lyapunov
exponent passes through zero linearly near the transition to chaos. Because
the orbits burst out to separate from each others during the expansion time
intervals [27], and the trajectories merge all together during the contraction
time interval therefore the size of the chaotic snapshot attractor changes widely
in time near to the transition in an intermittent fashion. The average size
of the snapshot attractor scales linearly with a parameter similarly as the
average interval between the bursts also scales linearly with parameter during
transition (23).
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4 Numerical approximation

In this Section we consider the statistical complexity of the quasiperiodic
driven systems, which is represented by the aperiodic forced pendulum (19).
We calculated the Poencaré section (z = 0) of the time dependent model
(21), which contains a snapshot attractor (Figure 1) at the parameter values
V = 0.55, p = 0.6, K = 0.8 ω1 = (

√
5−1)/2, ω2 = 1.0. The initial values of the

orbits are chosen by uniform distribution in a small volume << 10−6 in the
phase space. We show the predictability of the intermittency between chaotic
and nonchaotic regions.

Statistical complexity We determined the statistical complexity of this
system which was introduced by the quantity of information theory, where the
entropy and the disequilibrium depend on the probability distribution (Section
2.1.2). The snapshot attractor is written by the ensemble of trajectories instead
of the long orbit N ′. Therefore we redefine the probability distribution of the
manifold at a time instant t ′.

The ensemble of the snapshot attractor contains the x
(n)
1,j , x

(n)
2,j , . . . , x

(n)
n,j points

of the trajectories of length n (1 ≤ j ≤ m). Therefore the x
(n)
t ′,1, x

(n)
t ′,2, . . . , x

(n)
t ′,m

series corresponds to {p1, p2 . . . , pm} probability distribution, where pj := P(x
(n)
t ′,j)

(j = 1, . . . ,m).
The entropy H, disequilibrium D and statistical complexity C can be deter-

mined by appropriate measures using the term of LMC complexity (5). The
structure of the complexity is plotted in the C×H×D space (Figure 4), where
parameter p changes between 0 and 1. The behaviour of complexity C mono-
tone decreasing, so this corresponds to class (c) over the parameter range [0,1].
In a small interval at p ' 0.8 the shape of complexity formed convex curve
(class (b)).

On-off intermittency The quasiperiodic damped pendulum provides on-
off intermittency in a special values of parameter, where Lyapunov exponent
has a finite fluctuation around axis of L = 0 as it was detailed in the Section
(3). The volume of the snapshot attractor is widely changing near to axis
(L = 0), therefore we applied the dispersion rate S(t) (22), which scales by
the maximal Lyapunov exponent (23). The structure of the complexity C(p)
shows local maximums (Figure 3) similarly as the average of the dispersion
< S(t) > over the parameter space p (Figure 2). The complexity reflects the
behaviour of the pendulum i.e. the on-off intermittency. Then the probability
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Figure 1: The snapshot attractor of the quasiperiodic driven pendulum at
parameters K = 0.8, V = 0.55, p = 0.6.

distribution of the snapshot attractor i.e. dispersion of the trajectories’ points
in the manifold at a given time instant t ′ shows similar behaviour as the affect
of the on-off intermittency.

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

p

<
S
(t
)
>

Figure 2: The < S(t) > depends on parameter p in logarithm scale.
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Figure 3: The complexity C depends on the entropy S and parameter p.
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Figure 4: The complexity C depends on the entropy H and disequilibrium D
for different parameter p (0 ≤ p ≤ 1).
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5 Conclusion

The inner structure of statistical complexity is determined in a quasiperiodical
driven system at a given scale. The effect of the on-off intermittency appears
in complexity of the aperiodic damped system, which allows the predictability
by the by the distribution probability of the snapshot attractor.
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