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Estimating clique size by coloring the

nodes of auxiliary graphs
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University of Pécs, Pécs, Hungary
email: sszabo7@hotmail.com

Abstract. It is a common practice to find upper bound for clique number
via legal coloring of the nodes of the graph. We will point out that with a
little extra work we may lower this bound. Applying this procedure to a
suitably constructed auxiliary graph one may further improve the clique
size estimate of the original graph.

1 Introduction

A graph is called a finite simple graph if it has finitely many nodes and edges
and in addition it does not have any loop or double edge. Let G = (V, E) be a
finite simple graph. A subgraph ∆ of G is called a clique if each two distinct
nodes of ∆ are adjacent. If the clique ∆ has k nodes we call it a k-clique of G.
For each finite simple graph G there is a well defined integer k such that G
contains a k-clique but G does not contain any (k+ 1)-clique. This k is called
the clique number of G and it is denoted by ω(G). Each k-clique in G is called
a maximum clique of G. (For more background information and applications
of the clique problem the reader should consult with [2], [4], [6], [12].)

We color the nodes of G such that each node has exactly one color and
adjacent nodes cannot receive the same color. This type of coloring of the
nodes of G is called legal coloring. For each finite simple graph G there is a
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well defined integer k such that the nodes of G can be legally colored using k
colors but the nodes of G cannot be legally colored using k− 1 colors. This k
is called the chromatic number of G and it is denoted by χ(G).

It is well-known that the problems of determining ω(G) or χ(G) belong to
the NP hard complexity class. (See [5].)

Many clique solver algorithms used in practice employ clique size upper
estimates to curtail the size of the search space. (See [1], [7], [8], [11], [13],
[15], [16].) Since ω(G) ≤ χ(G) holds it is a common practice to use a greedy
coloring procedure to locate a legal coloring of the nodes of G and use the
number of colors as an upper estimate for ω(G). We will point out that with
a little more extra work one can reduce this upper bound.

Using the given graph G we construct an auxiliary graph Γ such that an
upper estimate for ω(Γ) yields an upper estimate for ω(G). The new estimate
is typically better but it comes for a computationally higher price. We will
present two particular instances of such auxiliary graphs.

2 The basic procedure

In this section first we describe a procedure to estimate the clique size of a
finite simple graph G = (V, E). For the sake of easier reference we will call the
proposed procedure as the method of profiles. As a starting point we legally
color the nodes of G. We may use any coloring algorithm. (See [9], [3].) We
do not assume that the number of colors we use is optimal. Let C1, . . . , Cγ be
the color classes of the nodes. Set

U = C1 ∪ · · · ∪ Cp and W = Cp+1 ∪ · · · ∪ Cγ, (1)

where p = bγ/2c. Let H and K be the subgraphs of G induced by the sets U
and W, respectively.

To a node u ∈ U we assign a quantity cdeg(u) called the clique degree of u.
We form the subgraph Lu induced in G by the subset N(u) ∩W of the nodes
of G. Here N(u) is the set of neighbors of u in G. We would prefer to set
cdeg(u) to be ω(Lu). But computing ω(Lu) maybe overly time consuming. So
we settle for an upper estimate of ω(Lu). We may use our favorite procedure
to find an upper estimate for ω(Lu).

Analogously, to a node w ∈ W we assign a clique degree cdeg(w). We
consider the subgraph Lw induced by the set N(w) ∩ U and cdeg(w) is an
upper estimate of ω(Lw).

For the remaining part of the description of the algorithm we assume that
the clique degrees of the nodes of G are at our disposal. We define a profile
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for the graph H which is a sequence of numbers α′
1, . . . , α

′
p. We set

αi = max{cdeg(v) : v ∈ Ci}, 1 ≤ i ≤ p.

Then we arrange the numbers α1, . . . , αp into a non-increasing order to get the
profile α′

1, . . . , α
′
p of H. In a similar fashion we construct a profile β′

1, . . . , β
′
q

for the graph K, where q = γ− p. We set

βi = max{cdeg(v) : v ∈ Ci}, p+ 1 ≤ i ≤ γ.

Finally we list the numbers βp+1, . . . , βγ in a non-increasing order to get the
profile β′

1, . . . , β
′
q of K.

After this phase of the algorithm the profiles of the graphs H and K are
available. We call an ordered pair

(r, s), 0 ≤ r ≤ p, 0 ≤ s ≤ q (2)

qualifying if each of the following inequalities

α′
1 ≥ s, . . . , α′

r ≥ s (3)

β′
1 ≥ r, . . . , β′

s ≥ r (4)

holds. We do not exclude the r = 0 possibility. In the r = 0 case the inequalities
(4) clearly hold and the condition (3) vacuously satisfied. Similarly, the s = 0
possibility is not excluded. When s = 0, the inequalities (4) obviously hold
and the requirement (4) vacuously satisfied.

We inspect the (p+ 1)(q+ 1) ordered pairs (r, s) in (2) in the order

(p− i, q), (p− i+ 1, q− 1), . . . , (p, q− i), 0 ≤ i ≤ p+ q

to find the quantity

t = max{r+ s : (r, s) is qualifying}. (5)

We claim that ω(G) ≤ t. We state and prove this result more formally.

Lemma 1 Let G = (V, E) be a finite simple graph having at least one node.
The quantity defined in (5) is an upper bound of the clique number of G.

Proof. Set k = ω(G). Clearly G must contain a k-clique ∆. Let U′ be the set
of nodes of ∆ that are in U and let W′ be the set of nodes of ∆ that are in
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W. Here U and W are the subsets of V defined in (1). Obviously, U′ ∩W′ = ∅
and |U′|+ |W′| = k. We distinguish four cases.

Case 1 U′ = ∅ W′ = ∅
Case 2 U′ = ∅ W′ 6= ∅
Case 3 U′ 6= ∅ W′ = ∅
Case 4 U′ 6= ∅ W′ 6= ∅

Since G has at least one node it must have a 1-clique. Thus k ≥ 1 holds and
so case 1 is not possible.

If U′ = ∅, then ∆ is a clique in the subgraph K of G induced by W. The
nodes of K are legally colored with q colors and so k ≤ q. Note that p = 0 and
the ordered pair (0, q) is a qualifying pair. It follows that q ≤ t. Thus k ≤ q
as required. This settles case 2. Case 3 can be sorted out in a similar way.

In case 4 the set of nodes of ∆ is equal to U′ ∪W′. This means that the
unordered pair {u,w} is an edge of G for each u ∈ U′, w ∈ W′. Let r = |U′|
and s = |W′|. The subgraph Lu of G induced by N(u) ∩W must contain an
s-clique. There are r choices for the node u ∈ U′. These choices show that the
inequalities (3) hold. Similarly, the subgraph Lw of G induced by N(w) ∩ U
must contain an r-clique. There are s choices for the node w ∈ W′. These
choices show that the inequalities (4) hold. Therefore the ordered pair (r, s) is
a qualifying pair. The inequality k ≤ r+ s holds for each qualifying pair (r, s).
Thus k ≤ t, as required. �

3 A small size example

In this section we work out a small example in details to illustrate the method
of profiles.

Example 2 Let us consider the finite simple graph G = (V, E) given by its
adjacency matrix in Table 1. A geometric representation of G is depicted in
Figure 1. The graph has 16 vertices and 39 edges.

Using the simplest greedy sequential coloring procedure we colored the nodes
of G legally. The procedure is presented in Table 2. The first column contains
the nodes of the graph G. The last column holds the colors of the nodes. A
column between the first and the last represents a partial coloring of the nodes
of G. The “←” symbol points to the pivot node. The node to which we are
assigning color at this phase. The “]” symbol after a color indicates that the
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Figure 1: A geometric representation of the graph G in Example 2.

pivot node is adjacent to this node and the marked color cannot be assigned
to the pivot node.

The color classes of the nodes are the following

C1 = {1, 5, 7, 10, 15}, C2 = {2, 3, 9, 11, 14}, C3 = {4, 6, 12, 16}, C4 = {8, 13}.

The coloring of the nodes gives that ω(G) ≤ 4. We try to reduce this upper
estimate. We set

U = C1 ∪ C2, W = C3 ∪ C4.

We computed the clique degrees of the nodes and the profiles of the graphs
H, K. The results are summarized in the first three arrays of Table 3. An
inspection of the qualifying pairs (r, s) reveals that ω(G) ≤ 3.

The inspection to decide if a given ordered pair (r, s) is qualifying or not is
summarized in the last array of Table 3. We assume that there is a complete
bipartite graph with independent sets A and B whose cardinalities are r and
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Figure 2: A graphical representation of the graph G in Examples 3 and 6.

s respectively and the graph of course has rs edges. Each of the r nodes of A
needs to have a clique degree at least r and each of the s nodes of B needs to
have clique degree at least r. These requirements are listed in a row labeled
by the word “needed”. The available clique degrees are listed in a row labeled
by the word “found”. Comparing these rows we can spot if the pair (r, s) is
not qualifying. We used a “+” sign to indicate when the needed and the found
clique degrees do not meet with the requirement.

We would like to emphasize that the method of profiles can produce an
upper estimate for ω(G) which is below χ(G). (Such an estimate is termed as
infra chromatic in the literature.) In order to exhibit such an example we note
that χ(G) = 4. Let us suppose on the contrary that χ(G) = 3. Let us order
the nodes of G as listed in the first column in the second array in Table 2. The
nodes 1, 3, 4 are the nodes of a 3-clique in G. We may color these nodes by
colors 1, 2, 3. After these choices the greedy coloring procedure will color the
nodes up to node 10 uniquely. For node 13 we must use an additional color.
The indirect assumption χ(G) = 3 leads to a contradiction.

4 The first auxiliary graph

Let G = (V, E) be a finite simple graph. Using G we construct a new graph
Γ1 = (W,F). We call Γ1 the first auxiliary graph associated with G. The nodes of
Γ1 are the ordered pairs (v, a), v ∈ V, 1 ≤ a ≤ 2. If the unordered pair {v1, v2}

is an edge of G, then the four pair-wise distinct distinct nodes (v1, 1), (v1, 2),
(v2, 1), (v2, 2) of Γ1 are the nodes of a 4-clique in Γ1. In other words if {v1, v2} ∈
E, then {w1, w2} ∈ F for each distinct w1, w2 ∈ {(v1, 1), (v1, 2), (v2, 1), (v2, 2)}.

We illustrate the construction of the auxiliary graph in connection with a
very small size toy example.
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1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

1 × • • • •
2 • × • • •
3 • × • • •
4 • • × • • • •
5 • • × • • • •
6 • • × • •
7 • • × • •
8 • • • × • • • •
9 • • • • × • • •

10 • • × • •
11 • • × • •
12 • • • • × • •
13 • • • • × • •
14 • • • × •
15 • • • × •
16 • • • • ×

Table 1: The adjacency matrix of the graph G in Example 2.

Example 3 Let us consider the finite simple graph G = (V, E) given by its
adjacency matrix in Table 4. A geometric representation of G is depicted in
Figure 2. The graph has 6 vertices and 8 edges.

A geometric representation of the auxiliary graph Γ1 can be seen in Figure
3. The adjacency matrix of Γ1 is given in Table 5. In fact two versions of the
adjacency matrix are given. The nodes of Γ1 are listed in different ways.

The clique numbers of the graphs G and Γ1 are related. This is the content
of the next lemma.

Lemma 4 Let G be a finite simple graph and let Γ1 be the associated auxiliary
graph. Then 2ω(G) ≤ ω(Γ1).

Proof. Set k = ω(G). The graph G contains a k-clique ∆. Let U be the set
of nodes of ∆. Let T = {(u, a) : u ∈ U, 1 ≤ a ≤ 2}. Clearly |T | = 2|U| = 2k.
Note that two distinct nodes (u1, a1), (u2, a2) in T are always adjacent nodes
in Γ1. �

Lemma 4 tells us that if t is an upper bound for ω(Γ1), then t/2 is an upper
bound for ω(G).
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1 1] 1] 1] 1 1 1 1 1] 1 1 1 1 1 1 1 1

2 ← 2 2 2] 2] 2 2] 2 2 2 2 2 2 2 2 2

3 ← 2] 2 2 2] 2 2 2 2 2] 2 2 2 2 2

4 ← 3] 3 3] 3] 3 3 3 3 3] 3 3 3 3

5 ← 1] 1 1 1] 1 1 1] 1 1] 1 1 1

6 ← 3 3 3] 3] 3 3 3 3 3 3 3

7 ← 1] 1 1 1] 1 1 1 1 1 1

8 ← 4] 4 4] 4] 4 4 4 4] 4

9 ← 2] 2 2 2] 2 2] 2 2

10 ← 1 1 1] 1] 1 1 1

11 ← 2] 2 2 2] 2 2

12 ← 3] 3 3] 3 3

13 ← 4] 4 4] 4

14 ← 2 2] 2

15 ← 1] 1

16 ← 3

1 1 1 1 1 1 1] 1] 1 1 1 1 1

3 2] 2 2 2] 2 2 2 2 2 2 2 2

4 3] 3] 3 3 3 3 3 3] 3 3 3] 3

7 ← 1] 1] 1 1 1 1 1 1 1 1 1

8 ← 2] 2] 2 2] 2] 2 2 2 2 2

11 ← 3] 3] 3 3 3 3 3 3 3

12 ← 1] 1 1 1] 1 1 1] 1

15 ← 2 2] 2 2 2 2 2

2 ← 3 3] 3] 3 3 3

9 ← 3] 3] 3] 3] 3

5 ← 2] 2 2 2

6 ← 1] 1 1

10 ← 2] 2

13 ← 4

14

16

Table 2: The greedy coloring of the nodes in Example 2.
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C1 C2

node 1 5 7 10 15 2 3 9 11 14
clique degree 1 1 1 1 1 1 1 1 2 2
maximum 1 2

C3 C4

node 4 6 12 16 8 13
clique degree 2 2 2 1 2 2
maximum 2 2

profile of H 2 1
profile of K 2 2

r = 2, s = 2
needed 2 2 2 2
found 2 1 2 2

+
r = 1, s = 2
needed 2 1 1
found 2 2 2

Table 3: The nodes with clique degrees and the profiles of H and K in Example
2.

1 2 3 4 5 6

1 × • • •
2 • × • •
3 • × • •
4 • • • × •
5 • • ×
6 • ×

Table 4: The adjacency matrix of the graph G in Examples 3 and 6.
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1 2 3 4 5 6 1 2 3 4 5 6

1 1 1 1 1 1 2 2 2 2 2 2

1,1 × • • • • • • •
2,1 • × • • • • • •
3,1 • × • • • • • •
4,1 • • • × • • • • • •
5,1 • • × • • •
6,1 • × • •
1,2 • • • • × • • •
2,2 • • • • • × • •
3,2 • • • • • × • •
4,2 • • • • • • • • × •
5,2 • • • • • ×
6,2 • • • ×

1 1 2 2 3 3 4 4 5 5 6 6

1 2 1 2 1 2 1 2 1 2 1 2

1,1 × • • • • • • •
1,2 • × • • • • • •
2,1 • • × • • • • •
2,2 • • • × • • • •
3,1 • • × • • • • •
3,2 • • • × • • • •
4,1 • • • • • • × • • •
4,2 • • • • • • • × • •
5,1 • • • • × •
5,2 • • • • • ×
6,1 • • × •
6,2 • • • ×

Table 5: The adjacency matrix of the auxiliary graph Γ1 in Example 3.
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Figure 3: A graphical representation of the auxiliary graph Γ1 in Example 3.
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The chromatic numbers of the graphs G and Γ1 are not independent of each
other. This is the content of the next lemma.

Lemma 5 Let G be a finite simple graph and let Γ1 be the associated auxiliary
graph. Then χ(Γ1) ≤ 2χ(G).

Proof. Set k = χ(G). The nodes of G have a legal coloring using k colors.
The coloring of the nodes of G can be given by a function f : V → {1, 2, . . . , k},
where f(v) is the color of node v of G. Let

D = {(x, y) : 1 ≤ x ≤ k, 1 ≤ y ≤ 2}.

Clearly D has 2k elements. Using f we construct a function g : W → D by
setting g((v, a)) = (f(v), a) for each v ∈ V, a ∈ {1, 2}. We would like to verify
that g defines a legal coloring of the nodes of Γ1.

Let w1 = (v1, a1) and w2 = (v2, a2) be two distinct nodes of Γ1. Assume on
the contrary that w1, w2 are adjacent nodes in Γ1 and g(w1) = g(w2). Note
that g(w1) = g(w2) implies f(v1) = f(v2) and a1 = a2. As a1 = a2 it follows
that v1 and v2 are adjacent nodes in G. In this situation f(v1) = f(v2) cannot
hold. This contradiction shows that g defines a legal coloring of the nodes of
Γ1. Thus χ(Γ1) ≤ 2k, as required. �

Combining the results of Lemmas 4 and 5 gives that

2ω(G) ≤ ω(Γ1) ≤ χ(Γ1) ≤ 2χ(G)

and so
ω(G) ≤ [χ(Γ1)]/2 ≤ χ(G).

Thus [χ(Γ1)]/2 gives a better estimate for the clique number of G than χ(G)
does.

When G is a cycle of odd length, then χ(G) = 3 and χ(Γ1) = 5. There
are infinitely many cases with χ(Γ1)/2 < χ(G). In a typical application we do
not compute chromatic numbers instead using a greedy coloring procedure we
locate legal colorings for the nodes of G and Γ1. The number of colors we find
in this way are only upper estimates of the corresponding chromatic numbers.
Lemma 5 says nothing about the relation of these upper bounds. On the other
hand from the proof of Lemma 5 we can read off that if the nodes of G can
be legally colored using k colors, then this coloring can be extended to a legal
coloring of the nodes of Γ1 using 2k colors.

When we use a computationally not demanding greedy coloring algorithm
we may locate a legal coloring of the nodes of G and Γ1. Then using the number
of colors we establish two upper bounds for ω(G) and we can use the better
one.
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1 1 1 2 2 3 3 4

2 4 5 3 4 4 6 5

1,2 × • •
1,4 • × • • •
1,5 • × •
2,3 × • •
2,4 • • • × •
3,4 • • ×
3,6 ×
4,5 • • ×

Table 6: The adjacency matrix of the auxiliary graph Γ2 in Example 6.

5 The second auxiliary graph

Let G = (V, E) be a finite simple graph. Using G we construct a new graph
Γ2 = (W,F). We call this new graph the second auxiliary graph associated
with G. The nodes of Γ2 are the edges of G. Let w1 = {u1, v1}, w2 = {u2, v2}

be two distinct nodes of Γ2. Set U = {u1, v1, u2, v2}. Note that as w1 and w2
are distinct edges in G, the cardinality of U is either 3 or 4. If the subgraph
induced by the set U in G is a clique in G, then we connect the nodes w1 and
w2 by an edge in Γ2.

We work out the details of the construction of the auxiliary graph in con-
nection with a small size graph.

Example 6 Let us consider the finite simple graph G = (V, E) given in Ex-
ample 3.

A geometric representation of the auxiliary graph Γ2 is depicted in Figure 4
and Table 6 contains the adjacency matrix of Γ2.

The clique numbers of the graphs G and Γ2 are related. This is the content
of the next lemma.

Lemma 7 Let G be a finite simple graph and let Γ2 be the associated auxiliary
graph. Then [ω(G)][ω(G) − 1] ≤ 2ω(Γ2).

Proof. Set k = ω(G). The graph G contains a k-clique ∆. Let U be the set
of nodes of ∆. Let T = {{u, v} : u, v ∈ U,u 6= v}. Clearly |T | = |U|(|U|− 1)/2 =
k(k − 1)/2. Note that any two distinct nodes {u1, v1}, {u2, v2} in T are always
adjacent in Γ2. �
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Figure 4: A graphical representation of the auxiliary graph Γ2 in Example 6.

Using the method of profiles described in Section 2 we may establish that t
is an upper bound of ω(Γ2). By Lemma 7, [ω(G)][ω(G) − 1] ≤ 2t. Therefore
if t′ is the largest integer for which t′(t′ − 1) ≤ 2t, then t′ is an upper bound
for ω(G).

The chromatic numbers of the graphs G and Γ2 are not independent of each
other. This is the content of the next lemma.

Lemma 8 Let G be a finite simple graph and let Γ2 be the associated auxiliary
graph. Then 2χ(Γ2) ≤ [χ(G)][χ(G) − 1].

Proof. Set k = χ(G). The nodes of G can be colored legally using k colors.
The coloring can be given by a function f : V → {1, 2, . . . , k}, where f(v) is the
color of the node v of G. Set

D = {{x, y} : 1 ≤ x, y ≤ k, x 6= y}.

Obviously the cardinality of D is equal to k(k− 1)/2. Using f we construct a
function g :W → D defined by g({u, v}) = {f(u), f(v)}.

We would like to show that g defines a legal coloring of the nodes of Γ2.
Let w1 = {u1, v1}, w2 = {u2, v2} be two distinct adjacent nodes of Γ2. Let
U = {u1, v1, u2, v2}. Assume on the contrary that g(w1) = g(w2).

Let us consider the case when the cardinality of the set U is four. In this
case the nodes u1, v1, u2, v2 are pairwise distinct and they are nodes of a
4-clique in G. As {u1, v1} is an edge of G and f is a legal coloring of the nodes
of G it follows that f(u1) 6= f(v1). Similarly f(u2) 6= f(v2) must hold. From the
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assumption

g(w1) = {f(u1), f(v1)} = {f(u2), f(v2)} = g(w2)

we get that either
f(u1) = f(u2), f(v1) = f(v2)

or
f(u1) = f(v2), f(v1) = f(u2).

The unordered pairs

{u1, u2}, {u1, v2}, {v1, u2}, {v1, v2}

are edges of G. This violates the fact that f is a legal coloring.
Let us turn to the case when U has three elements. In this case we may

assume that u1 = u2 and v1 6= v2 since this is only a matter of renaming the
nodes. In this situation {v1, v2} is an edge of G. The g(w1) = g(w2) assumption
reduces to {f(v1)} = {f(v2)} and we get the contradiction that the end nodes of
the edge {v1, v2} are not legally colored. �

Let t be the largest integer for which t(t − 1) ≤ 2χ(Γ2). Combining the
results of Lemmas 7 and 8 we get

[ω(G)][ω(G) − 1] ≤ 2ω(Γ2) ≤ 2χ(Γ2) ≤ [χ(G)][χ(G) − 1]

and so ω(G) ≤ t ≤ χ(G). This means that using χ(Γ2) one gets a better
estimate for ω(G) than using χ(G).

J. Mycielski [10] proved the following result. For each positive integer n
there is a graph Mn such that ω(Mn) = 2 and χ(Mn) = n. Let G be Mn.
In this case the auxiliary graph Γ2 consists of isolated nodes. Thus χ(Γ2) = 1.
Now χ(Γ2) and the inequality [ω(G)][ω(G)−1] ≤ 2χ(Γ2) provide ω(G) ≤ 2. In
other words using χ(Γ2) we get the upper bound 2 for ω(G) while using χ(G)
we get n as an upper bound for ω(G).

6 Numerical experiments

In order to test the practical utility and feasibility of the method of profiles we
have carried out numerical experiments. In this section we describe the results
of these experiments.

The graphs we used are belonging to three families. However all test graphs
are coming from coding theory. Monotonic matrices are related to certain one
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n |V | |E| ω1 ω̂1 ω2 ω̂2 ω4 ω̂4

3 27 189 6 6 6 5 6 5

4 64 1 296 12 10 12 10 12 10

5 125 5 500 20 18 20 17 20 18

6 216 17 550 30 27 30 26 30 27

7 343 46 305 42 37 42 38 42 39

8 512 106 624 56 50 56 51 56 52

9 729 221 616 72 66 72 67 72 68

10 1 000 425 250 90 83 90 84 90 85

11 1 331 765 325 110 103 110 103 110 105

12 1 728 1 306 800 132 124 132 124 132 126

13 2 197 2 135 484 156 145 156 147 156 150

Table 7: Monotonic matrices, simple greedy coloring, first auxiliary graph.

n |V | |E| ω1 ω̂1 ω2 ω̂2 ω4 ω̂4

3 8 9 2 2 2 2 2 2

4 16 57 4 4 4 4 4 4

5 32 305 8 8 7 7 6 6

6 64 1 473 14 14 13 12 12 11

7 128 6 657 26 26 23 22 22 20

8 256 28 801 50 50 45 44 40 39

9 512 121 089 101 98 88 86 79 75

10 1 024 499 713 199 194 170 165 146 143

11 2 048 2 037 761 395 386 329 325 278 274

Table 8: Deletion error detecting codes, simple greedy coloring, first auxiliary
graph.
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n |V | |E| ω1 ω̂1 ω2 ω̂2 ω4 ω̂4

6 15 45 4 4 4 3 4 3

7 35 385 10 9 10 8 10 8

8 70 1 855 20 19 20 17 20 18

9 126 6 615 35 33 35 31 35 32

10 210 19 425 56 53 56 52 56 52

11 330 49 665 84 81 84 78 84 79

12 495 114 345 120 116 120 114 120 114

13 715 242 385 165 162 165 159 165 158

14 1 001 480 480 220 216 220 214 220 212

15 1 365 900 900 286 282 286 277 286 278

16 1 820 1 611 610 364 358 364 355 364 354

Table 9: Johnson codes, simple greedy coloring, first auxiliary graph.

n |V | |E| ω1 ω̂1 ω2 ω̂2 ω4 ω̂4

3 27 189 6 6 5 5 5 5

4 64 1 296 11 11 10 9 10 8

5 125 5 500 17 17 16 15 16 14

6 216 17 550 26 26 22 21 24 21

7 343 46 305 36 34 34 32 32 30

8 512 106 624 47 46 43 41 43 41

9 729 221 616 58 58 56 55 53 51

10 1 000 425 250 74 74 69 67 67 65

11 1 331 765 325 90 90 85 84 86 84

Table 10: Monotonic matrices, dsatur coloring, first auxiliary graph.
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n |V | |E| ω1 ω̂1 ω2 ω̂2 ω4 ω̂4

3 8 9 2 2 2 2 2 2

4 16 57 4 4 4 4 4 4

5 32 305 7 7 6 6 6 6

6 64 1 473 13 13 12 12 11 11

7 128 6 657 23 23 22 21 22 20

8 256 28 801 43 43 40 40 43 40

9 512 121 089 79 79 80 77 79 77

10 1 024 499 713 156 156 154 154 153 151

Table 11: Deletion error detecting codes, dsatur coloring, first auxiliary graph.

n |V | |E| ω1 ω̂1 ω2 ω̂2 ω4 ω̂4

6 15 45 4 4 4 3 3 3

7 35 385 9 9 8 8 9 8

8 70 1 855 17 17 16 15 15 14

9 126 6 615 29 27 28 26 28 28

10 210 19 425 46 46 44 43 43 42

11 330 49 665 67 67 63 63 62 62

12 495 114 345 99 99 90 89 87 85

13 715 242 385 132 132 121 120 122 121

14 1 001 480 480 172 172 153 153 160 160

15 1 365 900 900 221 221 201 201 206 205

Table 12: Johnson codes, dsatur coloring, first auxiliary graph.

n |V | |E| χ ω χ̂ ω̂

3 27 189 10 5 10 5

4 64 1 296 37 9 32 8

5 125 5 500 113 15 103 14

6 216 17 550 273 23 257 23

7 343 46 305 565 34 542 33

Table 13: Monotonic matrices, simple greedy coloring, second auxiliary graph.
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n |V | |E| χ ω χ̂ ω̂

3 8 9 1 2 1 2

4 16 57 6 4 6 4

5 32 305 17 6 16 6

6 64 1 473 60 11 53 10

7 128 6 657 221 21 207 20

8 256 28 801 875 42 846 41

Table 14: Deletion error detecting codes, simple greedy coloring, second aux-
iliary graph.

n |V | |E| χ ω χ̂ ω̂

6 15 45 3 3 3 3

7 35 385 23 7 23 7

8 70 1 855 107 15 98 14

9 126 6 615 391 28 372 27

10 210 19 425 1 131 48 1 098 48

11 330 49 665 2 754 74 2 703 73

Table 15: Johnson codes, simple greedy coloring, second auxiliary graph.

n |V | |E| χ ω χ̂ ω̂

3 27 189 10 5 10 5

4 64 1 296 31 8 31 8

5 125 5 500 83 13 75 12

Table 16: Monotonic matrices, dsatur coloring, second auxiliary graph.

n |V | |E| χ ω χ̂ ω̂

3 8 9 1 2 1 2

4 16 57 6 4 6 4

5 32 305 15 6 15 6

6 64 1 473 50 9 50 9

7 128 6 657 196 20 183 19

Table 17: Deletion error detecting codes, dsatur coloring, second auxiliary
graph.
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n |V | |E| χ ω χ̂ ω̂

6 15 45 3 3 3 3

7 35 385 23 7 22 7

8 70 1 855 111 15 101 14

9 126 6 615 340 25 323 24

Table 18: Johnson codes, dsatur coloring, second auxiliary graph.

error correcting codes. (The reader can find further details in [14].) A dele-
tion error occurs when a fixed length code word is loosing one letter during
transmission. The deletion error correcting codes are connected to this phe-
nomenon. Binary codes with fixed length code words with a specified number
of zeros are the Johnson codes. The graphs associated with these codes are
commonly used for testing clique search algorithm. (See for instance [6].)

The method of profiles is flexible in the sense that we are free to choose
any node coloring algorithm to construct a legal coloring of the nodes of the
original graph or the auxiliary graphs. In the numerical experiments we carried
out only two greedy coloring algorithms were employed. One of them is the
most commonly used simple greedy sequential coloring. The other one is the
dsatur coloring algorithm described in [3].

In Table 7 the first column contains the parameter n of the graph. This
parameter is related to the size of the alphabet over which the code is defined.
The columns labeled by |V | and |E| hold the numbers of the nodes and the
edges of the graph, respectively. The column headed by ω1 holds the clique
size estimate we get coloring the nodes of the original graph using the simple
greedy coloring algorithm. Here the number of the colors is the upper estimate
of the clique size. The column headed by ω̂1 holds the clique size estimate we
get coloring the nodes of the original graph using the simple greedy coloring
algorithm. This time the estimate of the clique size is the result of the method
of profiles.

The column labeled by ω2 refers to the clique size estimate we get coloring
the nodes of the first auxiliary graph using the simple greedy coloring algo-
rithm. Here half of the number of the colors is the upper estimate of the clique
size. The column labeled by ω̂2 refers to the clique size estimate we get col-
oring the nodes of the first auxiliary graph using the simple greedy coloring
algorithm. This time the estimate of the clique size is the result of the method
of profiles.

The column labeled by ω4 gives the clique size estimate we get coloring
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the nodes of the first auxiliary graph of the first auxiliary using the simple
greedy coloring algorithm. Here quarter of the number of the colors is the
upper estimate of the clique size. The column labeled by ω̂4 gives the clique
size estimate we get coloring the nodes of the first auxiliary graph of the
first auxiliary graph using the simple greedy coloring algorithm. This time the
estimate of the clique size is the result of the method of profiles.

Note that the number of the nodes of the first auxiliary graph is the double of
the number of the nodes of the original graph. We adopt the terminology that
the original graph is a 1-fold version of itself, the first auxiliary graph is a 2-fold
version of the original graph, and the first auxiliary graph of the first auxiliary
graph is a 4-fold version of the original graph. Using this terminology we may
say that the column labeled by ωb contains the clique size estimate based
on the b-fold version of the original graph not using the proposed procedure.
Further the column labeled by ω̂b contain the clique size estimate based on
the b-fold version of the original graph using the method of profiles.

Tables 8 and 9 exhibit analogous information as Table 7. In these tables the
graphs associated with monotonic matrices are replaced by graphs associated
with deletion error correcting and Johnson codes, respectively.

Tables 10, 11, 12 summarize similar results that are in Tables 7, 8, 9. The
only difference is that at these occasions the simple greedy coloring algorithm
is replaced by the dsatur coloring algorithm.

The first three columns in Table 13 are labeled by n, |V |, |E| record the
parameter, the number of the nodes, the number of the edges of the graph
associated with a monotonic matrix. The columns labeled by χ and ω contain
the number of colors produced by simple greedy coloring procedure applied
to the second auxiliary graph and the clique size estimate derived from this
number of colors, respectively. The last two columns labeled by χ̂ and ω̂ show
the reduced number of colors the method of profiles gives and the derived
clique size estimate, respectively.

Tables 14 and 15 present similar results as Table 13 the only thing which
has changed is that the graph associated with monotonic matrices are replaced
by graphs associated with deletion error correcting and Johnson codes.

Finally Tables 16, 17, 18 exhibit similar results as Tables 13, 14, 15 but this
time the simple greedy coloring procedure is replaced by the dsatur coloring
algorithm.
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