
Acta Univ. Sapientiae, Informatica 10, 1 (2018) 86–109

DOI: 10.2478/ausi-2018-0006

Hierarchical clustering with deep

Q-learning

Richárd FORSTER
Eötvös University

email: forceuse@inf.elte.hu

Ágnes FÜLÖP
Eötvös University

email: fulop@caesar.elte.hu

Abstract. Following up on our previous study on applying hierarchical
clustering algorithms to high energy particle physics, this paper explores
the possibilities to use deep learning to generate models capable of pro-
cessing the clusterization themselves. The technique chosen for training
is reinforcement learning, that allows the system to evolve based on in-
teractions between the model and the underlying graph. The result is a
model, that by learning on a modest dataset of 10, 000 nodes during 70
epochs can reach 83, 77% precision for hierarchical and 86, 33% for high
energy jet physics datasets in predicting the appropriate clusters.

1 Introduction

Different datasets should be clusterized with specific approaches. For real world
networks, hierarchical algorithms, like the Louvain method, provides an effi-
cient way to produce the clusters, that will represent elements, that have a
strong connection. In high energy physics clusterization can be done by finding
jets using for example the kt jet clustering. Here a cluster will be a narrow
cone of hadrons and other particles produced by the hadronization of a quark
or gluon in a heavy ion experiment. Fusing these algorithms a more generic

Computing Classification System 1998: I.1.4
Mathematics Subject Classification 2010: 58A20
Key words and phrases: jet, cluster algorithm, hierarchical clustering, deep q-learning,
neural network, multi-core, keras, cntk, louvain

86

http://people.inf.elte.hu/forceuse/
http://www.inf.elte.hu
mailto:forceuse@inf.elte.hu
http://compalg.inf.elte.hu/~fulop/
http://www.inf.elte.hu
mailto:fulop@caesar.elte.hu

Clustering with deep learning 87

process can be conceived, that was studied in [13]. As a consequence building
a graph from the available particles, the same hierarchical clustering can be
computed, like on other network related datasets. The graph of the two differ-
ent input differs only in how the edges are represented, while networks have
some strength associated to their connections, the weight of the edges between
the different nodes, for particles this weight will be the distance between the
elements.

Further generalizing the approach, in this paper a deep learning method is
described based on reinforcement learning, that allows the system, to learn
to clusterize the input graphs without any external user interaction, relying
only on the agent’s experience on the graph. This way a single algorithm can
be used for the different kind of datasets without any additional specificity
in the computational process. In the context of present paper this will lead
to a generic model, that is capable to predict the clusterization steps of the
elements in different hierarchical clustering tasks.

The evaluation is provided on real world network data taken from the U.S.
Census 2010 database. Further data was generated for jet physics using the
AliRoot framework [29]. A comparison is given on modularity level of the
clusterization between the standard Louvain method and a modified version
using the generated model for predicting future communities. Early results
shows, that the neural network is capable to achieve an average precision on
the Census test dataset of 83, 77% and 84, 12% for jet dataset, learning for
only 70 epochs on a training set consisting from information collected only on
the hierarchical dataset.

2 Hierarchical clustering

This section contains a brief introduction of the used hierarchical clustering
algorithm and how it was fused with the processes of the jet algorithms from
physics to achieve a generalized clustering solution.

2.1 Jet

A jet is a narrow cone of hadrons and other particles which were produced by
the hadronization processes of a quark or gluon plasma in a particle physics or
heavy ion experiment[27]. The constituent particles are carrying a color charge,
such as quarks, they cannot exist in free form due to QCD confinement. This
theory allows the colorless states only. The color-free particles formed dur-
ing the fragmentation process form the jet, because the fragments all tend to

88 R. Forster, Á. Fülöp

travel in the same direction, creating a narrow jet of particles (Figure 1). Jets
are measured in particle detectors and researched to determine the properties
of the original quarks. Jets are produced in QCD hard scattering processes,
evolving high transverse momentum quarks or gluons, which is called collec-
tively partons in the partonic picture[25]. Perturbative QCD calculations may
have colored partons in the final state, but the colorless hadrons are detected
in the observed experimental. It can be understand what happened in the
detector, if all outgoing colored partons must first undergo parton showering
and then combination of the created partons into hadrons.

Figure 1: Structure of jet

2.2 Jet clusterisation

The jet clustererisation means when we research the jet momentum owing to
the final state particles in the calorimeter [30]. For more accurate understand-
ing the conversion results, we can take into account a muon systems. They form
the clusters all together. Two problems should be noted in theoretical research:
the infrared (IR) safety and collinear safety. The infrared safe means, that the
measured object does not depend on the low energy theoretical physics. The
collinear(C) safety is understood, when a parton is substituted by a collinear
pair of partons, then the jet clustering outcome does not change. Then the jet
can be observed by perturbative technic to apply the experiment, because the
jet does not modulate when the particles radiates a very soft objects, or fails to
two collinear particles. By theoretical consideration in the case of the infrared
divergence the integral of Feynman diagram diverges due to the constituent
objects hold very small energy which goes to zero. When the system consists
massless particles, it can apply an infrared cutoff and it approximates to zero.
The divergence stays finite quantity in the experimental data. Then the in-

Clustering with deep learning 89

frared safe and collinear safe jet reconstruction algorithm can be evaluated for
the measurement which satisfies the theoretical considerations or it is used to
a given order due to the IRC safe method. Because the jet mass and energy
depend on the jet radius, therefore these quantities can be determined more
precisely, if the jet radius becomes larger. In the case of the smaller size the
cluster consists of more hadronised particles.

Substructure of jet It can be one jet which including more than one group
of gaussian- distributed clusters. Substructure is possible a non gaussian com-
ponent, which is compliances to an offset. It can also contains another gaussian
group of clusters, ie. second hard jet. Three different types can be defined:

I: Subjet from uncorrelated sources, overlapping the hard jet which is thought
or clustered together with it. This is soft process, derived from proton-leftovers,
initial state radiation, beam-rests and/or scatterings, e.g. pileup (PU) and un-
derlying event (UE).

II: Subjet from correlated sources, clustered together with the hard jet con-
sidered, coming from the same primary vertex, but another branch of the
Feynman diagram.

III: Subjet from correlated sources, deriving from the decay of a single
boosted particle, clustered together into a single jet.

2.3 Jet algorithm

During the last 40 years several jet reconstruction algorithms have been devel-
oped for hadronic colliders [31, 1]. The first ever jet algorithm was published
by Sterman and Weinberg in the 1970’s [34]. The cone algorithm plays an
important role when a jet consists of a large amount of hadronic energy in a
small angular region. It is based on a combination of particles with their neigh-
bours in η − ϕ space within a cone of radius R =

√
(∆ϕ2 + ∆η2). However

the sequential recombination cluster algorithms combine the pairs of objects
which have very close pt values. The particles merge into a new cluster through
successive pair recombination. The starting point is the lowest pt particles for
clustering in the kt algorithm, but in the anti-kt recombination algorithm it
is the highest momentum particles.

The jet clustering involves the reconstructed jet momentum of particles,
which leaves the calorimeter together with modified values by the tracker
system.

90 R. Forster, Á. Fülöp

2.3.1 Cone algorithm

The Cone algorithm is one of the regularly used methods at the hadron col-
liders. The main steps of the iteration are the following [34]: the seed par-
ticle i belongs to the initial direction, and it is necessary to sum up the
momenta of all particle j, which is situated in a circle of radius R (∆R2ij =

(yi − yj)
2 + (ϕi − ϕj)

2 < R2) around i, where yi and ϕi are the rapidity and
azimuth of particle i.

The direction of the sum is applied as a new seed direction. The iteration
procedure is repeated as long as the direction of the determined cone is stable.

It is worth noting what happens when two seed cone overlaps during the
iteration. Two different groups of cone algorithms are discussed: One possible
solution is to select the first seed particle that has the greatest transverse
momentum. Have to find the corresponding stable cone, i.e. jet and delete the
particles from the event, which were included in the jet. Then choose a new
seed, which is the hardest particle from the remaining particles, and apply to
search the next jet. The procedure is repeated until there is no particle that
has not worked. This method avoids overlapping.
Other possibility is the so called ”overlapping” cones with the split-merge
approach. All the stable cones are found, which are determined by iteration
from all particles. This avoids the same particle from appearing in multiple
cones. The split-merge procedure can be used to consider combining pair of
cones. In this case more than a fraction f of the transverse momentum of the
softer cones derives from the harder particles; otherwise the common particles
assigned to the cone, which is closer to them. The split-merge procedure applies
the initial list of protojets, which contains the full list of stable cones:

1. Take the protojet with the largest pt (i.e. hardest protojet), label it a.

2. Search the next hardest protojet that shares particles with a (i.e. over-
laps), label it b. If no such protojet exists, delete a from the list of
protojets and add it to the list of final jets.

3. Determine the total pt of the particles, which is shared between the two
protojets, pt,shared.

• If pt,shared > f, where f is a free parameter, it is called the overlap
threshold, replace protojets a and b with a single merged protojet.

• Otherwise the protojets are scattered, for example assigning the
shared particles to the protojet whose axis is closer.

4. Repeat from step 1 as long as there are protojets left.

Clustering with deep learning 91

A similar procedure to split-merge method is the so called split-drop, where
the non-shared particles, which fall into the softer of two overlapping cones
are dropped, i.e. are deleted from the jets altogether.

2.3.2 Sequential recombination jet algorithm

They go beyond just finding jets and implicitly assign a clustering sequence
to an event, which is often closely connected with approximate probabilistic
pictures that one may have for parton branching. The current work focuses
on the kt algorithm, whose parallelization was studied in [11] and [12].

The kt algorithm for hadrons In the case of the proton-proton collision,
the variables which are invariant under longitudinal boots are applied. These
quantities which were introduced by [5] and the distance measures are longi-
tudinally invariant as the following:

dij = min
(
p2ti, p

2
tj

)
∆R2ij, ∆Rij = (yi − yj)

2 + (ϕi −ϕj)
2 (1)

diB = p2ti. (2)

In this definition the two beam jets are not distinguished.
If p = −1, then it gives the ”anti-kt” algorithm. In this case the clustering

contains hard particles instead of soft ones. Therefore the jets extend out-
wards around hard seeds. Because the algorithm depends on the energy and
angle through the distance measure, therefore the collinear branching will be
collected at the beginning of the sequence.

2.4 The Louvain algorithm

The Louvain method [4], is a multi-phase, iterative, greedy hierarchical clus-
terization algorithm, working on undirected, weighted graphs. The algorithm
processes through multiple phases, within each phase multiple iterations until
a convergence criteria is met. Its parallelization was explored in [22], that was
further evolved into a GPU based implementation as was detailed in [10]. The
modularity is a monotonically increasing function, spreading across multiple
iterations, giving a numerical representation on the quality of the clusters.
Because the modularity is monotonically increasing, the process is guaranteed
to terminate. Running on a real world dataset, termination is achieved in not
more than a dozen iterations.

92 R. Forster, Á. Fülöp

2.4.1 Modularity

On a set, S = C1, C2, ..., Ck, containing every community in a given partitioning
of V, where 1 ≤ k ≤ N and V is the set of nodes, N is the number of nodes.
Modularity Q is given by the following [26]:

Q =
1

2W

∑
i∈V

ei→C(i) −∑
C∈S

(
degC
2W

· degC
2W

)
, (3)

where degC is the sum of the degrees of all the nodes in community C,
ei→C(i) is the sum of weights of all edges connecting node i to all nodes in
community C(i) and W is the sum of the weight of all the edges.

Modularity has multiple variants, like the ones described in [37, 2, 3]. Yet
the one defined in Eq. (3) is the more commonly used.

2.5 Hierarchical kt clustering

In [13] it was studied how to do hierarchical clustering, following the rules of
the kt algorithm. First the list of particles has to be transformed into a graph,
with the particles themselves appointed as nodes. The distance between the
elements is a suitable selection for a weight to all edges between adjacent
particles. But as it eventually leads up to n ∗ (n − 1)/2 links, where n is the
number of nodes, a better solution is to make connections between nearest
neighbours and to the second to nearest. If the particle’s nearest ”neighbour”
is the beam, it will be represented with an isolated node. While the Louvain
algorithm relies on modularity gain to drive the computation, the jet clustering
variant doesn’t have the modularity calculation, as it is known that the process
will end, when all particles are assigned to a jet.

The result of this clustering will still be a dendogram, where the leafs will
represent the jets.

3 Basic artificial neural networks

Since the beginning of the 1990s the artificial neural network (ANN) methods
are employed widely in the high energy physics for the jet reconstruction and
track identification [9, 18]. These methods are well-known in offline and online
data analysis also.

Artificial neural networks are layered networks of artificial neurons (AN) in
which biological neurons are modeled. The underlying principle of operation
is as follows, each AN receives signals from another AN or from environment,

Clustering with deep learning 93

gathers these and creates an output signal which is forwarded to another AN
or the environment. An ANN contains one input layer, one or more hidden
layers and one output layer of ANs. Each AN in a layer is connected to the
ANs in the next layer. There are such kind ANN configurations, where the
feedback connections are introduced to the previous layers.

3.1 Architecture

An artificial neuron is denoted by a set of input signals (x1, x2, . . . xn) from
the environment or from another AN. A weight wi (i = 1, . . . n) is assigned
to each input signal. If the value of weight is larger than zero then the signal
is excited, otherwise the signal is inhibited. AN assembles all input signals,
determines a net signal and propagates an output signal.

3.1.1 Types of artificial networks

Some features of neural systems which makes them the most distinct from the
properties of conventional computing:

• The associative recognition of complex structures

• Data may be non-complete, inconsistent or noisy

• The systems can train, i.e. they are able to learn and organize themselves

• The algorithm and hardware are parallel

There are many types of artificial neural networks. In the high energy partic-
le physics the so-called multi-layer perception (MLP) is the most widespread.
Here a functional mapping from input xk to output zk values is realised with
a function fzk :

zk = fzk

m+1∑
j=1

wkjfyj

(
n+1∑
i=1

vjixi

) ,
where vji are the weights between the input layer and the hidden layer, and
wkj are the weights between the hidden layer and the output layer. This type
of ANN is called feed-forward multi-layer ANN.

It can be extended into a layer of functional units. In this case an activation
function is implemented for the input layer. This ANN type is called functional
link ANN. The output of this ANN is similar such as previously ANN, without
it has additional layer, which contains q functions hl(x1 . . . xn)(l = 1 . . . q).

94 R. Forster, Á. Fülöp

The weights between the input layer and the functional layer are uli = 1, if hl
depends on xi, and uli = 0 otherwise. The output of this ANN is:

zk = fzk

m+1∑
j=1

wkjfyj

(
q+1∑
l=1

vjlhl(x1 . . . xn)

) .
The functional link ANNs provides better computational time and accuracy
then the simple feed-forward multi-layer ANN.

Application in high-energy physics The first application, which was
published in 1988, discussed a recurrent ANN for tracking reconstruction [8].
A recurrent ANN was also used for tracking reconstruction in LEP experiment
[28]. An article published about a neural network method which was applied to
find efficient mapping between certain observed hadronic kinematical variables
and the quark-gluon identify. With this method it is able to separate gluon
from quark jets originating from the Monte-Carlo generated e+e− events [21].
A possible discrimination method is presented by the combination of a neural
network and QCD to separate the quark and gluon jet of e+e− annihilation
[6].

The neural network clusterisation algorithm was applied for the ATLAS
pixel detector to identify and split merged measurements created by multiple
charged particles [20]. The neural network based cluster reconstruction algo-
rithm which can identify overlapping clusters and improves overall particle
position reconstruction [32].

Artificial intelligence offers the potential to automate challenging data-
processing tasks in collider physics. To establish its prospects, it was explored
to what extent deep learning with convolutional neural networks can discrim-
inate quark and gluon jets [19].

4 Q-learning

Q-learning is a model-free reinforcement learning technique [35]. The reinforce-
ment learning problem is meant to be learning from interactions to achieve a
goal. The learner and decision-maker is called the agent. The thing it interacts
with is called the environment, that contains everything from the world sur-
rounding the agent. There’s a continuous interaction between, where the agent
selects an action and the environment responds by presenting new situations
(states) to the agent. The environment also returns rewards, special numerical

Clustering with deep learning 95

values that the agent tries to maximize over time. A full specification of an
environment defines a task, that is an instance of the reinforcement learning
problem. Specifically, the agent and environment interact at each of a sequence
of discrete time steps t = 0, 1, 2, At each time step t, the agent receives
the environment’s state, st ∈ S, where S is the set of possible states, and based
on that it selects an action, at ∈ A(st), where A(st) is the set of all available
actions in state st. At the next time step as a response to the action, the agent
receives a numerical reward, rt+1 ∈ R , and finds itself in a new state, st+1
(Figure 2).

Figure 2: The agent-environment interaction in reinforcement learning

At every time step, the agent implements a mapping from states to proba-
bilities of selecting the available actions. This is called the agent’s policy and

96 R. Forster, Á. Fülöp

is denoted by πt, where πt(s, a) is the probability that at = a if st = s.
Reinforcement learning methods specify how the agent changes this using its
experience. The agent’s goal is to maximize the total amount of reward it
receives over the long run.

4.1 Goals and rewards

The purpose or goal of the agent is formalized in terms of a special reward
passed from the environment. At each time step, the reward is a simple num-
ber, rt ∈ R. The agent’s goal is to maximize the total reward it receives.

4.2 Returns

If the rewards accumulated after time step t is denoted by rt+1, rt+2, rt+3, . . . ,
what will be maximized by the agent is the expected return Rt, that is defined
as some function of the received rewards. The simplest case is the sum of the
rewards: Rt = rt+1 + rt+2 + rt+3 + · · ·+ rT , where T is the final time step. This
approach comes naturally, when the agent-environment interaction breaks into
subsequences, or episodes. Each episode ends in a special terminal state, that
is then being reset to a standard starting state. The set of all nonterminal
states is denoted by S, while the set with a terminal state is denoted by S+.

Introducing discounting, the agent tries to maximize the the sum of the
discounted rewards by selecting the right actions. At time step t choosing
action at, the discounted return will be defined with Eq. (4).

Rt = rt+1 + γrt+2 + γ
2rt+3 + · · · =

∞∑
k=0

γkrt+k+1, (4)

where γ is a parameter, 0 ≤ γ ≤ 1, called the discount rate. It determines
the present value of future rewards: a reward received at time step t + k is
worth only γk−1 times the immediate reward. If γ < 1, the infinite sum still
is a finite value as long as the reward sequence {rk} is bounded. If γ = 0,
the agent is concerned only with maximizing immediate rewards. If all actions
influences only the immediate reward, then the agent could maximize equation
4 by separately maximizing each reward. In general, this can reduce access to
future rewards and the return may get reduced. As γ approaches 1, future
rewards are used more strongly.

Clustering with deep learning 97

4.3 The Markov property

Assuming a finite set of states and reward values, also considering how a
general environment responds at time t+ 1 to the action taken at time t, this
response may depend on everything that has happened earlier. In this case
only the complete probability distribution can define the dynamics:

Pr{st+1 = s
′, rt+1 = r|st, at, rt, st−1, at−1, . . . , r1, s0, a0}, (5)

for all s ′,r, and all possible values of the past events: st, at, rt, . . . , r1, s0, a0. If
the state has the Markov property the environment’s response at t+1 depends
only on the state and action at t and the dynamics can be defined by applying
only Eq. (6).

Pr{st+1 = s
′, rt+1 = r|st, at}, (6)

for all s ′, r, st, and at. Consequently if a state has the Markov property,
then it’s a Markov state, only if (6) is equal to (5) for all s ′, r, and histories,
st, at, rt, . . . , r1, s0, a0. In this case, the environment has the Markov property.

4.4 Markov cecision process

A reinforcement learning task satisfying the Markov property is a Markov de-
cision process, or MDP. If the state and action spaces are finite, then it is a
finite MDP. This is defined by its state and action sets and by the environ-
ment’s one-step dynamics. Given any state, action pair, (s, a), the probability
of each possible next state, s ′, is

Pass ′ = Pr{st+1 = s
′|st = s, at = a}.

Having the current state and action, s and a, with any next state, s ′, the
expected value of the next reward can be computed with

Rass ′ = E{rt+1|st = s, at = a, st+1 = s
′}.

These quantities, Pass ′ and Rass ′ , completely specify the most important aspects
of the dynamics of a finite MDP.

4.5 Value functions

Reinforcement learning algorithms are generally based on estimating value
functions, that are either functions of states or state-action. They estimate

98 R. Forster, Á. Fülöp

how good a given state is, or how good a given action in the present state is.
How good it is, depends on future rewards that can be expected, more precisely,
on the expected return. As the rewards received depends on the taken actions,
the value functions are defined with respect to particular policies. A policy, π,
is a mapping from each state, s ∈ S, and action, a ∈ A(s), to the probability
π(s, a) of taking action a while in state s. The value of a state s under a policy
π, denoted by Vπ(s), is the expected return when starting in s and following
π. For MDPs Vπ(s) is defined as

Vπ(s) = Eπ{Rt|st = s} = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s

}
,

where Eπ is the expected value given that the agent follows policy π. The value
of the terminal state is always zero. Vπ is the state-value function for policy π.
Similarly, the value of taking action a in state s under a policy π, denoted by
Qπ(s, a) is defined as the expected return starting from s, taking the action
a, and following policy π:

Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s, at = a

}
.

Qπ is the action-value function for policy π.
Vπ and Qπ can be estimated from experience. If an agent follows policy π

and maintains an average of the actual return values in each encountered state,
then it will converge to the state’s value, Vπ(s), as the number of times that
state is encountered approaches infinity. If in a given state every action has a
separate average, then these will also converge to the action values, Qπ(s, a).

4.6 Optimal value functions

To solve a reinforcement learning task, a specific policy needs to be found,
that achieves a lot of reward over the long run. For finite MDPs, an optimal
policy can be defined. Value functions define a partial ordering over policies.
A policy π is defined to be better than or equal to a policy π ′ if its expected
return is greater than or equal to π ′ for all states. Formally, π ≥ π ′ if and only
if Vπ(s) ≥ Vπ ′(s) for all s ∈ S. At least one policy exists, that is better than
or equal to all other policies and this is the optimal policy. If more than one
exists, the optimal policies are denoted by π∗. The state-value function among

Clustering with deep learning 99

them is the same, called the optimal state-value function, denoted by V∗, and
defined as

V∗(s) = max
π
Vπ(s),

for all s ∈ S. The optimal action-value functions are also shared, denoted by
Q∗, and defined as

Q∗(s, a) = max
π
Qπ(s, a),

for all s ∈ S and a ∈ A(s). For the state-action pair (s, a), this gives the
expected return for taking action a in state s and following an optimal policy.
Thus, Q∗ can be defined in terms of V∗ as follows:

Q∗(s, a) = E{rt+1 + γV
∗(st+1)|st = s, at = a}.

5 Clustering with deep Q-learning

The Deep Q-learning (DQL) [23, 24] is about using deep learning techniques
on the standard Q-learning (Section 4).

Calculating the Q state-action values using deep learning can be achieved by
applying the following extensions to standard reinforcement learning problems:

1. Calculate Q for all possible actions in state st,

2. Make prediction for Q on the new state st+1 and find the action at+1 =
maxa a ∈ A(st+1), that will yield the biggest return,

3. Set the Q return for the selected action to r + γQ(st+1, at+1). For all
other actions the return should remain unchanged,

4. Update the network using back-propagation and mini-batches stochastic
gradient descent.

This approach in itself leads to some additional problems. The exploration-
exploitation issue is related to which action is taken in a given state. By se-
lecting an action that always seems to maximize the discounted future reward,
the agent is acting greedy and might miss other actions, that can yield higher
overall reward in the long run. To be able to find the optimal policy the agent
needs to take some exploratory steps at specific time steps. This is solved by
applying the ε-greedy algorithm [35], where a small probability ε will choose
a completely random action.

100 R. Forster, Á. Fülöp

The other issue is the problem of the local-minima [36]. During training
multiple states can be explored, that are highly correlated and this may make
the network to learn replaying the same episode. This can be solved, by first
storing past observations in a replay memory and taking random samples from
there for the mini-batch, that is used to replay the experience.

5.1 Environment

The environment provides the state that the agent will react to. In case of
clustering the environment will be the full input graph. The actual state the
necessary information required to compute the Louvain method, packaged into
a Numpy stack. These include the weights, degrees, number of loops, the actual
community and the total weight of the graph. Each state represents one node
of the graph with all of its neighbors. The returned rewards for each state will
be based on the result of the actual Louvain clusterization, which means during
training the environment will compute the real clusters. If the action selected
by the agent leads to the best community, that will have a positive reward
set to 10000 and in any other case the returned value will be −1000. After
stepping, the next state will contain the modified community informations.

The agent’s action space is finite and predefined and the environment also
has to reflect this. Let the cardinality of the action space be noted for all
s ∈ S states by |A(s)| For this reason, the state of the environment contains
information about only |A(s)| neighbors. This can lead to more nodes, than
how many really is connected to a given element. In this case the additional
dummy node’s values are filled with extremals, in the current implementation
with negative numbers. One limitation of the actual solution is that if the
number of neighbors are higher, than |A(s)|, then only the first |A(s)| neighbors
will be considered, in the order in which they appear in dataset. The first
”neighbor” will be currently evaluated node, so in case the clusterization will
not yield any better community, the model should see, that the node stays in
place.

To help avoid potential overflow during the computation, weights of the
input graph are normalized to be between 0.000001 and 1.

5.2 Agent

The agent acts as the decision maker, selecting the next community for a given
node. It takes the state of the environment as an input and gives back the index
of the neighbor that is considered to be providing the best community.

Clustering with deep learning 101

5.2.1 Implementation in Keras

Keras [38] is a Python based high-level neural networks API, compatible with
the TensorFlow, CNTK, and Theano machine learning frameworks. This API
encourages experimentation as it supports rapid development of neural net-
works. It allows easy and fast prototyping, with a user friendly, modular, and
extensible structure. Both convolutional networks and recurrent networks can
be developed, also their combinations are also possible in the same agent. As
all modern neural network API it both runs on CPU and GPU for higher
performance.

The core data structure is a model, that is a collection of layers. The simplest
type is the Sequential model, a linear stack of layers. More complex architec-
tures also can be achieved using the Keras functional API.

The clustering agent utilizes a sequential model:

from keras.models import Sequential

model = Sequential()

Stacking layers into a model is done through the add function:

from keras.layers import Dense

model.add(Dense(128, input_shape=(self.state_size,

self.action_size), activation=’relu’))

model.add(Dropout(0.5))

model.add(Dense(128, activation=’relu’))

model.add(Dropout(0.5))

model.add(Dense(128, activation=’relu’))

The first layer will handle the input and has a mandatory parameter defining
its size. In this case input shape is provided as a 2-dimensional matrix, where
state size is the number of parameters stored in the state and action size is
the number of possible actions. The first parameter tells how big the output
dimension will be, so in this case the input will be propagated into a 128-
dimensional output.

The following two layers are hidden layers (Section 3) with 128 internal
nodes, with rectified linear unit (ReLU) activation. The rectifier is an activa-
tion function given by the positive part of its argument: f(x) = x+ = max(0, x),
where x is the input to a neuron. The rectifier was first introduced to a dy-
namical network in [16]. It has been demonstrated in [14] to enable better

102 R. Forster, Á. Fülöp

training of deeper networks, compared to the widely used activation function
prior 2011, the logistic sigmoid [15].

During training overfitting happens, when the ANN goes to memorize the
training patterns. In this case the network is weak in generalizing on new
datasets. This appears for example, when an ANN is very large, namely it has
too many hidden nodes and hence, there are too many weights which need to
be optimized.
The dropout for the hidden layers is used to prevent overfitting on the learning
dataset. Dropout is a technique that makes some randomly selected neurons
ignored during training. Their contribution to the activation of neurons on
deeper layers is removed temporally and the weight updates are not applied
back to the neurons. If neurons are randomly dropped during training, then
others will have to handle the representation, that is required to make pre-
dictions, that is normally handled by the dropped elements. This results in
multiple independent internal representations for the given features [33]. This
way the network becomes capable of better generalization and avoids potential
overfitting on the training data.

The output so far will still be a matrix with the same shape as the input.
This is flatten into a 1-dimensional array by adding the following layer:

model.add(Flatten())

Finally to have the output provide the returns on each available actions, the
last layer changes the output dimension to action size:

model.add(Dense(self.action_size, activation=’linear’))

Once the model is set up, the learning process can be configured with the
compile function:

model.compile(loss=’mse’, optimizer=Adam(lr=self.learning_rate)),

where learning rate has been set to 0.001. For the loss function mean squared
error is used, optimizer is an instance of Adam [17] with the mentioned learning
rate. The discount rate for future rewards have been set to γ = 0.001. This
way the model will try to select actions, that yield the maximum rewards in
the short term. While maximizing the reward in long term can eventually lead
to a policy, that computes the communities correctly, choosing it this small
makes the model learn to select the correct neighbors faster.

To make a prediction on the current state, the predict function is used:

model.predict(state.reshape(1, self.state_size,

self.action_size))

Clustering with deep learning 103

For Keras to work on the input state, it always have to be reshaped into
dimensions (1, state size, action size), while the change always has to keep
the same number of state elements.

6 Results

Evaluation of the proposed solution is done by processing network clustering on
undirected, weighted graphs. These graphs contain real network information,
instead of evaluating on physics related datasets (Section 2.3), as it is more
suitable for the original Louvain method. Because of this, the modularity can
be used as a sort of metric to measure the quality (Subsection 2.4) of the
results. Additionally the number of correct predictions and misses are used to
describe the deep Q-learning (Section 5) based method’s efficiency.

Numerical evaluations are done by generating one iteration on the first level
of the dendogram as the top level takes the most time to generate as it is
based on all the original input nodes. The GPU implementation of the Louvain
method being used was first described in [10].

6.1 Dataset

The proposed model, as well as the Louvain clustering works on undirected,
weighted graphs. Such graphs can be generated from U.S. Census 2010 and
Tiger/Line 2010 shapefiles, that are freely available from [40] and from jet
physics information simulated by the AliRoot framework.

6.1.1 Census dataset

The Census dataset contains the following:

• the vertices are the Census Blocks;

• there’s an edge between two vertices if the corresponding Census Blocks
share a line segment on their border

• each vertex has two weights:

– Census2010 POP100 or the number of people living in that Census
Block

– Land Area of the Census Block in square meters

• the edge weights are the pseudo-length of the shared borderlines.

• each Census Block is identified by a point, that is given longitudinal and
latitudinal coordinates

104 R. Forster, Á. Fülöp

A census block is the smallest geographical unit used by the United States
Census Bureau for tabulation of 100-percent data. The pseudo-length is given
by
√
(x2 + y2), where x and y are the differences in longitudes and latitudes

of each line segment on the shared borderlines. The final result is multiplied
by 107 to make the edge weights integers. For clusterization the node weights
are not used.

The matrices used for evaluation contains the information related to New
York, Oregon and Texas (Table 1), that was arbitrarily selected from the
SuiteSparse Matrix Collection [39]. The graph details can be found in [7].

New York Oregon Texas

Nodes 350, 169 196, 621 914, 231

Edges 1, 709, 544 979, 512 4, 456, 272

Table 1: Size of the Census datasets

6.1.2 Jet dataset

AliRoot is the Off-line framework for simulation, reconstruction and anal-
ysis for CERN’s ALICE experiment. The simulation covers all processes of
primary collisions and generates the newly created particles, follows through
their transportation and calculates the hits in each component.

For the current work the selected dataset is based on the points detected
by the system’s TPC. The Time Projection Chamber (TPC) detector is the
main tracking component of ALICE. Particles passing through this detector
ionizes the gas molecules inside and these ionization points are registered [29].

The datasets were simulated with the framework’s PbPbbench test applica-
tion. Three events were generated, the sizes are detailed in Table 2.

Event1 Event2 Event3

Nodes 140, 535 139, 162 67, 778

Edges 140, 535 139, 162 67, 778

Table 2: Size of the Jet datasets

Due to the limitations of the proposed solution as was described in Sub-
section 5.1, in all cases only 4 neighbors are kept for each nodes during the
computation.

Clustering with deep learning 105

6.2 Precision of the neural network

The precision depends on how well the model can generalize the learned in-
formation. In clustering this will highly depend on the structure of the graph.
The model described in Section 5 have been trained on a training set built
from the Oregon graph. The first 10000 nodes based on the order how they
are first mentioned in the original dataset was taken as a subgraph and the
Louvain method was applied on it, generating the communities. In each step
a matrix was built, where the lines represents the nodes and the columns con-
tains the necessary values for the computation (current community, weight,
degree). Learning phase was running for 70 epochs. The ratio of the good and
bad predictions for Census data are shown in Table 3 and for jet data are
shown in Table 4.

New York Oregon Texas

Positive 310, 972 172, 028 750, 563

Negative 39, 197 24, 593 163, 668

Table 3: Positive/negative predictions of the model for Census data

The deep learning solution’s precision in average is 83, 77%. Specifically on
the datasets it’s respectively 87, 4%, 85, 7% and 78, 2%. Precision can be fur-
ther increased by running the training for more epochs or by further tune
the hyper-parameters. Looking at the number of connected components of
each graph, New York has 3, Oregon 1 and Texas 1. The highest number of
connected components lead to the highest precision, since subgraphs are con-
taining less nodes, than in graphs with less components. As a consequence of
this the model performs better with smaller subgraphs, than on more complex
structures.

Event1 Event2 Event3

Positive 122, 405 123, 436 56, 391

Negative 18, 130 15, 726 11, 387

Table 4: Positive/negative predictions of the model dor jet data

The average precision in this case is 86, 33%. For each event it’s respectively
87, 1%, 88, 7% and 83, 2%. This could be further increased by teaching the
model on training sets that also contains information on the jet structure.

106 R. Forster, Á. Fülöp

6.3 Modularity comparison

The Louvain method assumes nothing of the input graph. The clusterization
can be done without any prior information of the groups being present in the
network. The modularity (Subsection 2.4.1) for the Census data is presented
(Table 5) for all 3 test matrices for both the Louvain algorithm and the deep
Q-learning based solution. The same results are presented for the jet data in
Table 6.

New York Oregon Texas

Louvain 0.82 0.68 0.76

DQL 0.72 0.58 0.59

Table 5: Modularities achieved by Louvain and with the DQL solution for
Census data

The modularities showing similar results to the precision of the network: the
New York graph has a modularity less with 14, 53% compared to the Louvain
computation, while Oregon is less with 13, 8% and Texas is less with 17, 36%.
This proves, that by loosing from the precision, the qualities of the clusters do
not degrade more than, what is lost on the precision.

Event1 Event2 Event3

Louvain 0.76 0.78 0.81

DQL 0.66 0.69 0.67

Table 6: Modularities achieved by Louvain and with the DQL solution for jet
data

The changes in modularities is comparable to that of the Census dataset
results, proving that the generic model learning only on hierarchical data can
also work with comparable efficiency on jet related datasets.

7 Summary

In this paper a reinforcement learning based model was devised to use a com-
munity processor during the generation the dendogram in clusterization tasks.
The training dataset was based on the Louvain method’s processing and was
learned using deep learning from one of the test graphs. The model detailed in
Section 5 predicted the next level of the dendogram with 83, 77% of precision

Clustering with deep learning 107

for the Census dataset and 86.33% for the jet dataset, achieving that, while
only being learned for 70 epochs and on 10000 nodes, that were selected from
the same graph. Reinforcement learning produces a model, that can generalize
based on the training data, as such without a broader selection of structures
it cannot reach higher efficiency.

8 Future work

Increasing the model’s effectiveness, the learning process should be extended,
so it will generalize on any kind of graph with arbitrary number of children.
Also the training set needs to extended with data from graphs with different
structures and complexity. The model should be further evaluated on datasets
with different structural complexities. A coherent method to test the perfor-
mance of the new clusterization should be explored. Thanks to the GPU based
deep learning frameworks, the learning rate increases in accordance with the
power of the underlying GPU, but how the inferencing performance affects
the clustering should be further evaluated.

References

[1] A. Ali, G. Kramer, Jets and QCD: A historical review of the discovery of the
quark and gluon jets and its impact on QCD Eur. Phys. J. H. 36 (2011) 245–326.
[arXiv:1012.2288 [hep-ph]]. ⇒89

[2] D. Bader, J. McCloskey, Modularity and graph algorithms, SIAM AN10 Min-
isymposium on Analyzing Massive Real-World Graphs, 2009, pp. 12-16. ⇒92

[3] J. W. Berry, B. Hendrickson, R. A. LaViolette, C. A. Phillips, Tolerating the
community detection resolution limit with edge weighting, Phys. Rev. E 83, 5
(2011) 056119. ⇒92

[4] V. D. Blondel, J-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of
communities in large networks, Journal of Statistical Mechanics: Theory and
Experiment 10 (2008) P10008 ⇒91

[5] S. Carani, Yu. L Dokshitzer, M. H. Seymour, B. R. Webher, Longitudinally-
invariant k⊥-clustering algorithms for hadron-hadron collisions, Nuclear Physics
B 406 (1993) 187–224. ⇒91

[6] I. Csabai, F. Czakó, Z. Fodor, Quark- and gluon-jet separations using neural
networks, Phys. Rev. D 44 7 (1991) R1905–R1908. ⇒94

[7] T. Davis, Y. Hu, The University of Florida Sparse Matrix Collection, Mathe-
matical Software, Vol 38, Issue 1, 2011, pp 1:1–1:25. ⇒104

[8] B. Denby, Neural networks and cellular automata in experimental high energy
physics, Computer Physics Communications 49 (1988) 429–448. ⇒94

http://www.springer.com/physics/journal/13129
https://arxiv.org/abs/1012.2288
https://www.cc.gatech.edu/~bader/
http://iopscience.iop.org/journal/1742-5468
http://iopscience.iop.org/journal/1742-5468
https://www.researchgate.net/profile/Istvan_Csabai/publications
https://www.neurones.espci.fr/denby/

108 R. Forster, Á. Fülöp

[9] B. Denby, Neural networks in high energy physics: a ten year perspective, Com-
puter Physics Communications 119 (1999) 219. ⇒92

[10] R. Forster, Louvain community detection with parallel heuristics on GPUs, 20th
Jubilee IEEE International Conference on Intelligent Engineering Systems 20
(2016) doi: 10.1109/INES.2016.7555126 ⇒91, 103

[11] R. Forster, A. Fülöp, Jet browser model accelerated by GPUs, Acta Univ. Sapi-
entiae Informatica 8, 2 (2016) 171–185. ⇒91

[12] R. Forster, A. Fülöp, Parallel kt jet clustering algorithm, Acta Univ. Sapientiae
Informatica 9, 1 (2017) 49–64. ⇒91

[13] R. Forster, A. Fülöp, Hierarchical kt jet clustering for parallel achitectures, Acta
Univ. Sapientiae Informatica 9, 2 (2017) 195–213. ⇒87, 92

[14] X. Glorot, A. Bordes, Y- Bengio, Deep sparse rectifier neural networks, Proc 14th
International Conference on Artificial Intelligence and Statistics (AISTATS)
2011, Fort Lauderdale, FL, USA. Volume 15 of JMLR:W&CP 15. ⇒101

[15] J. Han. C. Moraga, The influence of the sigmoid function parameters on the
speed of backpropagation learning, IWANN ’96 Proc. of the Int. Workshop on
Artificial Neural Networks: From Natural to Artificial Neural Computation, 1995,
pp. 195-201. ⇒102

[16] R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, H. S. Seung,
Digital selection and analogue amplification coexist in a cortex-inspired silicon
circuit. Nature 405 (2000) 947-951. ⇒101

[17] D. P. Kingma, J. B. Adam, A method for stochastic optimization, 2014,
arXiv:1412.6980 ⇒102

[18] H. Kolanoski, Application of artifical neural networks in particle physics, Nuclear
Instruments and Methods in Physics Research A 367 (1995) 14–20. ⇒92

[19] P. T. Komiske, E. M. Metodiev, M. D. Schwartz, Deep learning in color: towards
automated quark/gluon jet discrimination, J. High Energy Physics (2017) 110.⇒94

[20] K. J. C. Leney, A neural-network clusterisation algorithm for the ATLAS silicon
pixel detector, J. of Physics: Conbnference Series 523 (2014) 012023. ⇒94

[21] L. Lönnblad, C. Peterson, T. Rögnvaldsson, Using neural networks to identify
jets, Nuclear Physics B349 (1991) 675–702. ⇒94

[22] H. Lu, Mahantesh Halappanavar, A. Kalyanaraman, Parallel heuristics for scal-
able community detection, Parallel Computing 47 (2015) 1937. ⇒91

[23] V. Mnih et al., Playing Atari with deep reinforcement learning, 2013,
arXiv:1312.5602 ⇒99

[24] V. Mnih et al., Human-level control through deep reinforcement learning, Nature,
2015, doi:10.1038/nature14236 ⇒99

[25] T. Muta, Foundation of Quantum Chrodinamics, World Scientific Press, 1986.⇒88
[26] M. E. J. Newman, M. Girvan, Finding and evaluating community structure in

networks, Phys. Rev. E 69 2 (2004) 026113. ⇒92
[27] M. E. Peskin, D. V. Schroeder, Quantum Field Theory, Westview Press, 1995.⇒87

http://www.acta.sapientia.ro/acta-info
http://www.acta.sapientia.ro/acta-info
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
https://arxiv.org/abs/1412.6980
https://www-zeuthen.desy.de/~kolanosk/home/person/Publications_Kolanoski_130925.pdf
https://scholar.google.com/citations?user=rLdfJ1gAAAAJ&hl=en
https://arxiv.org/abs/1312.5602

Clustering with deep learning 109

[28] C. Peterson, Track finding with neural networks, Nuclear Instruments and Meth-
ods A279 (1988) 537. ⇒94

[29] D. Rohr, S. Gorbunov, A. Szostak, M. Kretz, T. Kollegger, T. Breitner, T. Alt,
ALICE HLT TPC Tracking of Pb-Pb Events on GPUs, Journal of Physics:
Conference Series 396 (2012) doi:10.1088/1742-6596/396/1/012044 ⇒87, 104

[30] G. P. Salam, Towards jetography, Eur. Phys. J. C67 (2010) 637-686. ⇒88
[31] S. Salur, Full Jet reconstruction in heavy ion collisions, Nuclear Physics A 830,

1-4 (2009) 139c–146c. ⇒89
[32] K. E. Selbach, Neural network based cluster reconstruction in the ATLAS pixel

detector, Nuclear Instruments and Methods in Physics Research A 718 (2013)
363–365. ⇒94

[33] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: A simple way to prevent neural networks from overfitting, JMLR 15
(2014) 1929-1958. ⇒102

[34] G. Sterman, S. Weinberg, Jets from quantum chromodynamics, Phys. Rev. Lett.
39 (1977) 1436. ⇒89, 90

[35] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, A Bradford
Book, 1998, ISBN: 978-0262193986 ⇒94, 99

[36] G. Swirszcz, W. M. Czarnecki, R. Pascanu, Local minima in training of neural
networks, 2016, arXiv:1611.06310 ⇒100

[37] V. A. Traag, P. Van Dooren, Y. Nesterov, Narrow scope for resolution-limit-free
community detection, Phys. Rev. E 84, 1 (2011) 016114. ⇒92

[38] ∗ ∗ ∗ Keras: The Python Deep Learning library ⇒101
[39] ∗ ∗ ∗ SuiteSparse Matrix Collection ⇒104
[40] ∗ ∗ ∗ United States Census Bureau ⇒103

Received: April 5, 2018 • Revised: July 30, 2018

http://iopscience.iop.org/journal/1742-6596
http://iopscience.iop.org/journal/1742-6596
https://en.wikipedia.org/wiki/Gavin_Salam
https://arxiv.org/abs/0906.1833
https://journals.aps.org/prl/
https://scholar.google.ca/citations?user=eSPY8LwAAAAJ&hl=en
https://arxiv.org/abs/1611.06310v1
https://keras.io/
https://sparse.tamu.edu/
https://census.gov/

	1 Introduction
	2 Hierarchical clustering
	2.1 Jet
	2.2 Jet clusterisation
	2.3 Jet algorithm
	2.3.1 Cone algorithm
	2.3.2 Sequential recombination jet algorithm

	2.4 The Louvain algorithm
	2.4.1 Modularity

	2.5 Hierarchical kt clustering

	3 Basic artificial neural networks
	3.1 Architecture
	3.1.1 Types of artificial networks

	4 Q-learning
	4.1 Goals and rewards
	4.2 Returns
	4.3 The Markov property
	4.4 Markov cecision process
	4.5 Value functions
	4.6 Optimal value functions

	5 Clustering with deep Q-learning
	5.1 Environment
	5.2 Agent
	5.2.1 Implementation in Keras

	6 Results
	6.1 Dataset
	6.1.1 Census dataset
	6.1.2 Jet dataset

	6.2 Precision of the neural network
	6.3 Modularity comparison

	7 Summary
	8 Future work

