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Abstract. Problem generators are practical solutions for generating a set
of inputs to specific problems. These inputs are widely used for testing,
comparing and optimizing placement algorithms. The problem generator
presented in this paper fills the gap in the area of 2D Cutting & Pack-
ing as the sum of the area of the small objects is equal to the area of
the Large Object and has at least one perfect solution. In this paper,
the already proposed Upper Deck algorithm is revisited and used to test
the proposed generator outputs. This algorithm bypasses the dead area
problem that occurs in most of all well-known strategies of the 2D Single
Knapsack Problem where we have a single large rectangle to cover with
small, heterogeneous rectangle shapes, whom total area exceeds the large
object’s area. The idea of placing the small shapes in a free corner sim-
plifies and speeds the placement algorithm as only the available angles
are checked for possible placements, and collision detection only requires
the checking of corners and edges of the placed shape. Since the proposed
generator output has at least one exact solution, a series of optimization
performed on the algorithm is also presented.
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1 Introduction

Cutting and Packing (C&P) problems are of great interest in operation re-
search. From storage filling to memory allocation, the knapsack problem ap-
pears in many forms. As these problems are NP-complete (non-deterministic
polynomial time), meta-heuristic approaches, such as Genetic Algorithms (GA),
are popular as they provide good-enough solutions.

Problem generators are seen as a tool to overcome limitations imposed by
the absence of appropriate test problems [14] in the field of C&P. The problem
generator proposed and presented in this paper aims to fill the gap in the area
by providing problems with at least one exact solution which, besides bench-
marking, can be used to improve upon existing algorithms.

The upper deck placement GA, which was presented by one of the authors
in the 2nd ESICUP meeting [6], is revisited in this paper and improvement
attempts are made using the output of the proposed problem generator.

1.1 Problem generators

There are many problem generators developed for C&P. For our problem of
two-dimensional rectangle cutting problem, the existing generator is the 2DC-
PackGen [14] developed by Silva, Oliveira and Wsher, downloadable from [17].
Since each of these generates shapes whose summed areas exceeds the surface
area there is no best-known solution to these. While this is not a problem, since
the aim of meta-heuristic algorithms is to provide a good enough solution for
this kind of problems, it is a problem if we need to know of better solutions
to further optimize the placing algorithms. Using brute force to try out all
possible combinations to obtain the best possible solution its not a practical
option. On the 2ndESICUP meeting, Alvarez-Valdez [1] defined the problems
with perfect solutions as Jigsaw problems. T. Inamichi, et al. [9] proposed al-
gorithms for perfect packing problems. Mumford and Wang [13] uses a perfect
guillotine-cut example to check the performance of their algorithms. The first
approach to the Jigsaw generator problem was from Illys and Fbin [7], but it
was not implemented. This paper presents such an exact fit or in other words
a perfect matching 2D, non-guillotine cutting stock problem generator.

1.2 Cutting stock problems

According to the typology of cutting stock problems [16], our work falls into
the two-dimensional Single Knapsack Problem (2D-SKP) category. Previous
algorithms to solve this problem are the Bottom Left algorithm (BL) [10], the
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improved BL algorithm [12], the BL Fill algorithm [4]. There are other, newer
algorithms proposed and presented, but these are the first best approaches.

2 Proposed problem generator

In contrast to existing generators which generate shapes with a given distri-
bution, usually gamma, until the combined area of these exceeds the cutting
stock area, our generator starts with the cutting stock area and uses expand-
ing rectangles placed at random locations to achieve complete coverage of this
area. As opposed to other methods of randomly cutting an area into smaller
pieces, the presented method was chosen due to ease of implementation in an
arbitrary programming language.

For easy use, the generator is provided a graphical interface where the in-
put parameters can be set: the width and height of the cutting stock area, the
initial seed used for the pseudo-random number generator, the minimum and
maximum shape extensions (in other words the growth of the shapes) and a
cutoff ratio for random shape location. The width and height determine the
unit square size of the stock cutting area, where each generated shape size is
a multiple of this unit area.

The generation process starts with a given size area represented as a W x H
(width, height) grid on which small shapes are placed and expanded in each
step. These steps are repeated by the generator until these shapes cover the
entire surface area.

Each step begins by randomly selecting an X and Y location on the grid. If
the chosen coordinates are outside of any existing shape, in other words, it’s a
free cell, then a new 1 x 1 size shape is created at the location and marked for
the next operation. If the coordinates are inside an existing shape then, that
shape is marked.

Using the previously marked shape, if possible, this is expanded in a random
direction: up, down, left or right. The number of expansion attempts of the
shape is dictated by the input parameters.

It is trivial to observe that as the number of free unit squares decreases it’s
harder to hit any new unoccupied cells by generating random X,Y locations,
consequently the algorithm’s progression is slowing down. The FaCR cutoff
ratio represents the ratio between the free and total cells after which instead
of choosing random locations, the generator selects one from the remaining
free cells, marks it as a new shape and expands this until possible. This oper-
ation is repeated until all cells are occupied by a shape, thus completing the
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generation process and achieving a perfect matching problem. This measure is
needed to ensure that the generation process ends in a timely manner. From
experimental results a 0.1 —0.25 cutoff value is ideal. Figure 1 illustrates some
of the steps and the end result.

Algorithm 1: Pseudo-code for problem generator

Data: Input parameters:
W, H: width and height of the cutting stock area
FaCR: Free area Cutoff Ratio
minks, maxEks: minimum and maximum number of shape
expansion
Result: shape list
begin
TotalArea +— W x H;
FreeArea « 0;
while (FreeArea/TotalArea) > FaCR do
Generate random X,Y coordinates // 0 < X < W, 0 < Y < H
if Grid[X,Y] is empty then
Generate new 1 x 1 Shapel[i] at Grid[X, Y] location;
L Mark Grid[X, Y] as part of Shapelil;

Es « Random() // minks < Es < maxEs
Expand Shape[i] Es number of times;
Recalculate FreeArea;

while FreeArea ; 0 do
Get X, Y of next free unit square;
Generate new 1 x 1 Shape[i] at Grid[X, Y] location;
Es « Random() // minks < Es < maxEs
Expand Shape[i] Es number of times;
Recalculate FreeArea;

3 Upper deck placement genetic algorithm

Placement algorithms are used to place small objects, known as shapes in
our case rectangles on a Large Object, known as cutting stock in our case a
rectangle too. The sides of the small pieces are parallel to the stock plate, the
pieces do not overlap each other and do not exceed the dimension of the stock
plate.



Exact fit problem generator, revisiting the upper deck placement GA 77

= [T E 1
I L

HHH = |

Figure 1: Shape generation process, early, mid and final stage
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The genetic algorithm version of the upper deck algorithm was proposed at
a previous conference [6], therefore a full version of this is not described here.
Instead, we reflect on the differentiating parts from a conventional placement
GA, namely the shape placement, angle generation part and the genetic op-
erators of this. Before this paper, only the little objects order of placement
was coded in permutation chromosomes. The rotation possibility was also ad-
dressed by Hopper and Turton in [3] but was not encoded in the gene, while
the deck was not addressed at all.

Each input shapes is provided with a unique identification id. Even if two
shapes are identical they are given separate ids and treated as distinct. This
sacrifices some memory for computational speed gains since avoids the neces-
sity of counting and checking the correct number of placed shapes against the
input at each genetic operation.

3.1 Chromosome structure

Each gene in the chromosome represents a shape’s placement properties. These
include: unique identification id, a set of Boolean value indicating whether the
shape is placed or not at the stored angle number and its rotation.

3.2 Heuristic

The strong point of the algorithm consists of the utilized heuristic. The al-
gorithm maintains a list of the available angles where the next shape can
be placed. This significantly lowers the number of possibilities needed to be
checked for a possible shape placement, thus increasing the computational ef-
ficiency of the algorithm. The notation of the available angles is in the order
of appearance and clockwise as shown in Figure 2. As new shapes are placed,
depending on the placement, the number of angles can increase or decrease,
but the notation is always maintained.
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By definition [6], the upper angles are defined as the angle created by the
intersection of either two of the cutting stock area walls, the edges of previ-
ously placed shapes or a combination of these. Therefore these are the concave
angles. This definition has practical reasons behind it. As an example let’s con-
sider the filling a storage area that has a single entrance, where placing crates
in concave angles would be unpractical.

Angle 1 Angle 2

23

3 4

Figure 2: Angle notation on various stages of placement
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Figure 3: Collision detection: corners first, then along the edges

3.3 Collision detection

For computational speed improvement, as proposed prior [6], a raster grid is
used to detect the possibility of placement. This sacrifices additional memory
in favor of computational speed. The collision detection in this case, as illus-
trated in Figure 3, only involves checking the corners first and then checking
against the borders in the raster grid. Another advantage is that the number of
already placed shapes does not impact the detection speed since this depends
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only on the number of angles which has to be checked and on the length of
the edges (width, height) of the shape being tested.

3.4 Genetic operators

Roulette Based Fitness (RBF) selection and Partially mixed-cyclic (PMX-
CX) crossover are used. The fitness value is F = 1 — R, where R is the waste
percentage

Are Qfree
- )
Are Qtotal

R € [0, 1], therefore F € [0,1]. A higher value of F indicates a better solution
than a lower one. Mutation can either change the rotation of an angle or switch
two genes. Since shape id is unique, their change it’s not allowed.

4 Results and improvements

The first test of the algorithm was using an already presented problem [5,
8]. The problem is presented in more detail in Section 4.4. The initial tests
were conducted using a population of 100 individuals, 1000 generations, 0.15
crossover and 0.05 mutation. Both crossover and mutation values express the
fraction of affected population by the genetic operators in a [0..1] interval. The
algorithm generated a best fitness value of 0.969 with an average best fitness
value of 0.941 out of 100 runs. The fitness value was collected after each 100th
generation. This result is illustrated in Figure 5a by the straight line.

However, using an input of 558 shapes listed in Appendix Input list, 120x110,
558 shapes with an cutting stock area of 120 x 110 from our generator, as
indicated by the dotted line on the same figure, the algorithm convergence,
in our opinion, was extremely low over the 1000 generations. Arguably the
difference is due to the exact fit solution generated. In this case, each of the
shapes not placed has a far bigger impact on the fitness value compared to
the previous test where the number of shapes used has a far greater total area
than the cutting stock. To improve on this limitation, instead of placing a
shape at a random angle, we modified the algorithm to try all possible angles
of placement available at a given step. The following sections describe the
improvements obtained using this idea.
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4.1 Crossover and mutation operation improvement

Since each gene stores the placed angle number for the shape, in case of
crossover and mutation operations some of these will fall outside of the avail-
able angle numbers at a given step. While this is not necessarily an issue
because with generation progression these individuals are eliminated, in prac-
tice, we found that this results in unreasonable slow convergence over the 1000
generations. To overcome this limitation all mutated chromosomes are reeval-
uated, the placement angles of the shapes are, if needed, recalculated and the
genes updated. In such case, the shape is attempted to be placed again at
the available angles. This in term, requires that the rest of the chromosome
to be updated as well. The operation requires an additional computational
effort, however, the result is a significant convergence improvement as seen in
Figure 5b represented by the straight line compared to the result shown in
Figure ba with the dotted line.

We also applied the concept of elite individuals [15], the aim of which is
to ensure that individuals carrying the best solutions propagate to the next
generation. The result of this improvement is also incorporated in the result
illustrated in Figure bb with the straight line.
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Figure 4: Population size influence on fitness

4.2 Initial population and maximum generation size

After we achieved a satisfying conversion, we investigated the quality of the
starting population and the size of maximum generations. As there is an exact
fit solution to the input used but also noticing the fitness convergence, we tried
to improve the quality of the initial population by applying the above idea of
testing all possible angles when trying to place a given shape. This resulted in
the starting population’s best fitness value improvement by an average value
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Figure 5: Comparison between the original and the improved algorithm

of 0.1122 (11.22%). This result is observable in the difference of the starting
fitness values between Figure 5a and Figure 5b.

Testing the population size influence on the algorithm’s result quality we
considered that the average fitness value increase is beneficial up to a popula-
tion of 200 — 250 for the current set of input. Illustrated in Figure 4, the result
was obtained out of 10 runs using the 558 input shape list and the fitness value
collected every 100th generation. As a result, we considered a population of
250 with a maximum of 1000 generations for the further tests.

4.3 Mass extinction

For even better convergence to the known solution, the notion of mass ex-
tinction [11] which shows some promise in regards to certain types of genetic
algorithms [2] was also tested. Using preliminary tests, parameter values of
0.25 and 250 are used, meaning that a quarter of the population is eliminated
each 250th generations. After the extinction process, the crossover probability
is dynamically increased to double the value to allow for population regenera-
tion. In this case, the chance increases for weaker fitness value individuals to
produce offsets. The theoretical benefit of the extinction process is that the
newly created individuals increase the population diversity, thus allowing the
population to explore more of the search space or if being stuck in a local
maxima this operation increases the chance of breaking out. The result ob-
tained from a 100 consecutive runs, as illustrated in Figure 5b with the dotted
line, shows a slight improvement of the average best fitness values by 0.00418
(0.418%) with a lightly faster convergence.
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4.4 Revisiting the 64x64 particular covering problem

With the improved algorithm, we revisited the particular covering problem
[5, 8] of placing most squares from a list of 1x 1,2 x 2, to 46 x 46 on a 64 x 64
grid, trying to get the most cell coverage. Here we managed to improve on the
existing solution presented in the old paper where the best result obtained left
35 free cells, illustrated in figure Figure 6a, while the new solution, illustrated
in figure Figure 6b, has only 32 free. The result was obtained from 100 runs
and the best fitness was achieved twice, in runs 24 and 71.
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(a) Previous result with 35 free space (b) Improved result with 32 free space

Figure 6: Improvement made to the particular placement problem

5 Conclusions and future work

In this paper, we presented an exact fit 2D problem generator which fills a
gap in the problem generators area. Preliminary testing was done using the
revisited upper deck placement genetic algorithm. Using the input from the
generator a series of improvements made to the algorithm was investigated
and presented. These improved both the quality of the starting population as
well as the convergence of the GA. We also revisited the 64 x 64 particular
covering problem where we managed to improve on the previous result. Further
development plans for the presented generator include the option to generate
guillotine stock problems as well as three-dimensional problems.
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Appendix

Input list, 120x110, 558 shapes

The following table contains the list of input shapes used for testing the GA.
The values in column ”#” represents the id of the shape, columns ”W.” and
"H.” its width and height, while column ”Nr.” indicates the quantity of this.

#] W.| I.] Nr. #] W.] I.] Nr. #] W.] I.] Nr. Z[ W.| I.] Nr.
I 1] 1] 34 36] 4] 5] 6 71 7] 3| 3 106] 10| 7] 2
2| 1| 2| 19 371 4| 6| 5 72| 7| 4 3 07| 10| 8| 3
3] 1] 3] 9 38 4| 7| 2 73 7| 5| 4 108 10| 12| 1
al 1| 4| 9 39| 4| 8| 1 4| 7] 6| 4 109 10| 13| 2
51 1] 5| 13 40| 4] 9| 2 757 7 2 110 10| 16| 1
6 1| 6| 5 41| 4| 10| 2 6| 7| 8 1 11| 11| 3| 1
71 1 7| 2 42| 5| 1] 7 7] 9] 1 112 11| 5| 3
8| 1| 8| 4 43| 5| 2| 8 78| 7| 12| 3 113 11| 6| 1
9| 1| 11| 1 44| 5| 3| 6 790 7| 13| 2 114| 11| 10| 1

0] 2| 1| 15 45| 5| 4] 10 go| 8| 1| 1 115 11] 11| 1

11| 2| 2| 18 46| 5| 5| 7 g1 8| 2| s 116 11| 12| 1

12| 2| 3| 19 471 5| 6| 6 82| 8| 3] 1 17| 12| 4| 2

13 2| 4] 1 48| 5| 7| 5 83| 8| 4| 1 118 12| 5| 2

14| 2| 5| 7 49| 5| 8| 1 84| 8| 5| 3 119 12| 7| 1

15| 2| 6| 7 500 5| 9| 3 85| 8| 6| 1 120 12| 8| 2

6] 2| 7| 2 51 5| 10| 1 86| 8| 7| 1 121 12| 10| 1

17| 2| 8| 3 52| 5| 11| 1 87| 8| 8| 2 122 13| 3| 1

18 2| 9] 1 53] 5| 12| 1 88| 8| 9 1 123 13| 4| 1

19 2| 15| 1 54 6| 1| 5 89| 8| 10| 2 124| 13| 5| 1

20 3| 1| 18 55 6] 2| 6 90| 8| 12| 1 125 13| 6| 2

21| 3| 2| 22 56| 6| 3| 3 91| 8| 13| 1 126] 13| 7| 1

22| 3| 3| 14 571 6| 4] 9 92| 9| 1| 1 127 13| 12| 1

23| 3| 4| 8 58 6| 5| 9 93| 9| 2| 2 128 14| 4| 1

24| 3| 5| 4 59 6| 6| 5 94| 9| 3| 1 129 14| 5| 2

25| 3| 6] 11 60| 6| 7| 3 95| 9| 4| 3 130 15| 2| 1

26| 3| 7| 1 61| 6| 8| 3 96| 9| 5| 2 131 15| 6| 1

271 3| 9| 2 62| 6| 9| 3 97| 9| 7| 2 132| 15| 9| 2

28| 3| 10| 1 63| 6| 10| 1 98| o 8| 1 133 16| 4| 1

20| 3| 11| 2 64| 6| 11| 1 99| 9| 9| 2 134| 16| 5| 1

30| 3| 13| 3 65| 6| 12| 1 100/ 9| 10| 1 135 16| 6| 1

31| 3| 20| 1 66| 6| 14| 1 1| 9| 11| 2 136] 19| 9| 1

320 4| 1| 10 67| 6| 15| 2 102] 9| 15| 1 137] 22| 9| 1

33 4] 2| 9 68 6| 19| 1 103] 10| 2| 1

34| 4] 3| 12 69| 7| 1| 6 104 10| 4| 2

35| 4| 4| 10 o 7| 2| 7 105 10| 6| 1
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