A survey on sentiment classification algorithms, challenges and applications

Open access

Abstract

Sentiment classification is the process of exploring sentiments, emotions, ideas and thoughts in the sentences which are expressed by the people. Sentiment classification allows us to judge the sentiments and feelings of the peoples by analyzing their reviews, social media comments etc. about all the aspects. Machine learning techniques and Lexicon based techniques are being mostly used in sentiment classification to predict sentiments from customers reviews and comments. Machine learning techniques includes several learning algorithms to judge the sentiments i.e Navie bayes, support vector machines etc whereas Lexicon Based techniques includes SentiWordnet, Wordnet etc. The main target of this survey is to give nearly full image of sentiment classification techniques. Survey paper provides the comprehensive overview of recent and past research on sentiment classification and provides excellent research queries and approaches for future aspects

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] M. Aminu Contextual lexicon-based sentiment analysis for social media PhD Thesis Université Robert Gordon University Aberdeen 2016. ⇒ 59

  • [2] A. Andreevskaia S. Bergler When specialists and generalists work togethe over-coming domain dependence in sentiment tagging Proc. ACL08 HLT 2008 pp.290–298. ⇒ 63

  • [3] A. Andronic F. Arleo R. Arnaldi A. Beraudo E. Bruna D. Caffarri Z. Conesa del Valle et al. Heavy-flavour and quarkonium production in the lhc era: from protonproton to heavy-ion collisions The European Physical Journal (2016) 76: 107. ⇒ 67

  • [4] R. N. Behera R. Manan S. Dash Ensemble based hybrid machine learning approach for sentiment classification – A Review International Journal of Computer Applications 146 6 (2016) 31–36. ⇒ 59

  • [5] S. Brody N. Diakopoulos Cooooooooooooooollllllllllllll!!!!!!!!!!!!!!: using word lengthening to detect sentiment in microblogs Conference on Empirical Methods in Natural Language Processing 2007 pp. 562–570. ⇒ 64

  • [6] Y. Choi H.Lee Data properties and the performance of sentiment classification for electronic commerce applications Information Systems Frontiers 19 (2017) 1–20. ⇒ 68

  • [7] K. T. Devendra S. K. Yadav Fast retrieval approach of sentimental analysis with implementation of bloom filter on Hadoop International Conference on Computational Techniques in Information and Communication Technologies 2016 pp.529–551. ⇒ 59

  • [8] L. Dey S. Chakraborty A. Beepa S. Tiwari Sentiment analysis of review datasets Using nave bayes and k-nn classifier Information Engineering and Electronic Business (2016) 54–62. ⇒ 65

  • [9] X. Ding B. Liu P. S. Yu A holistic lexicon-based approach to opinion mining Proc. of the 2008 international conference on web search and data mining ACM 2008 pp. 231–240. ⇒ 64

  • [10] A. Esuli F. Sebastiani Determining term subjectivity and term orientation for opinion mining 11th Conference of the European Chapter of the Association for Computational Linguistics 2006. ⇒ 63

  • [11] Y. Fei Simultaneous support vector selection and parameter optimization using support vector machines for sentiment classification Software Engineering and Service Science (ICSESS) 7th IEEE Int. Conference 2016 pp. 59–62. ⇒ 59

  • [12] S. Feng R. Bose Y. Choi Connotation lexicon: A dash of sentiment beneath the surface meaning Proc. 51st Annual Meeting of the Association for Computational Linguistics 2013 pp-1774–1784. ⇒ 64

  • [13] V. Hatzivassiloglou K. R. McKeown Predicting the semantic orientation of adjectives Proc. 35th Annual Meeting of the Association for Computational Linguistics 1997 pp. 174–181. ⇒ 63

  • [14] W. Haywood J. Ricky J. B. Holcomb E. A. Gonzalez Z. Peng S. Pati P. W. Park W. Wang A. M. Zaske T. Menge R. A. Kozar Modulation of syndecan-1 shedding after hemorrhagic shock and resuscitation PloS 2011. ⇒ 63

  • [15] W. He X. Tian R. Tao W. Zhang G. Yan V. Akula Application of social media analytics: a case of analyzing online hotel reviews Online Information Review (2017) 921–935. ⇒ 65

  • [16] D. T. Hess Akio Matsumoto Sung-Oog Kim H. E. Marshall J. S. Stamler Protein s-nitrosylation: purview and parameters Nature Reviews Molecular Cell Biology (2005). ⇒ 67

  • [17] T. Hofmann Probabilistic latent semantic indexing Proc. 16th Int. Conference on World Wide Web 1999 pp. 50–57. ⇒ 66

  • [18] W. Jin H. H. Ho R. K. Srihari Opinionminer: a novel machine learning system for web opinion mining and extraction Proc. 15th ACM SIGKDD Int. Conference on Knowledge Discovery and Data Mining 2009 pp. 1195–1204. ⇒ 67

  • [19] N. Kaji M. Kitsuregawa Building lexicon for sentiment analysis from massive collection of html documents Proc. of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL) 2007. ⇒ 64

  • [20] J. Kamps M. Marx R. J. Mokken M. D. Rijkel Using wordnet to measure semantic orientations of adjectives LREC 2004 pp. 1115–1118. ⇒ 63

  • [21] H. Kanayama T. Nasukawa Fully automatic lexicon expansion for domain-oriented sentiment analysis Proc. 2006 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics 2006 pp. 355–363. ⇒ 64

  • [22] A. Mudinas D. Zhang M. Levene Combining lexicon and learning based approaches for concept-level sentiment analysis Proc. of the First Int. Workshop on Issues of Sentiment Discovery and Opinion Mining 2012 pp. 51–58. ⇒ 66

  • [23] S. Li C. R. Huang G. Zhou S. Y. M. Lee Employing personal/impersonal views in supervised and semi-supervised sentiment classification Proc. 48th Annual Meeting of the Association for Computational Linguistics 2010 pp. 414–423. ⇒ 66

  • [24] F. Li M. Huang X. Zhu Sentiment analysis with global topics and local dependency Association for the Advancement of Artificial Intelligence 10 (2010) 1371–1376. ⇒ 66

  • [25] C. Lin Y. H. Lee Joint sentiment/topic model for sentiment analysis Proc. 18th ACM Conference on Information and Knowledge Management 2009 pp. 375–384. ⇒ 66

  • [26] B. Liu E. Blasch Y. Chen D. Shen G. Chen Scalable sentiment classification for big data analysis using naive bayes classifier IEEE Int. Conference on Big Data 2013 pp. 99–104. ⇒ 65

  • [27] B. Liu H. Minqing C. Junsheng Opinion observer: analyzing and comparing opinions on the Web Proc. 14th Int. Conference on World Wide Web 2005 pp. 342–351. ⇒ 67

  • [28] A. Manek P. Deepa C. Mohan K.Venugopal Aspect term extraction for sentiment analysis in large movie reviews using gini index feature selection method and svm classifier World wide web 20 (2016). ⇒ 61 65

  • [29] C. Mate Product aspect ranking using sentiment analysis: a survey Int. Research Journal of Engineering and Technology (2014). ⇒ 61

  • [30] Q. Mei X. Ling M. Wondra H. Su C. Zhai Topic sentiment mixture: modeling facts and opinions in weblogs Proc. 16th Int. Conference on World Wide Web 2007 pp. 171–180. ⇒ 66

  • [31] P. Melville W. Gryc R. D. Lawrence Sentiment analysis of blogs by combining lexical knowledge with text classication Proc. 15th ACM SIGKDD Int. Conference on Knowledge Discovery and Data Mining 2012 pp. 163–173. ⇒ 67

  • [32] G. M. Miller Wordnet: a lexical database for english Communications of the Association for Computing Machinery (1995) 39–41. ⇒ 63

  • [33] A. Ortigosa J. Martin R. Carro Sentiment analysis in facebook and its application to e-learning Computers in Human Behavior 31 (2014) 527–541. ⇒ 68

  • [34] B. Pang L. Lee S. Vaithyanathan Thumbs up?: sentiment classification using machine learning techniques Proc. ACL-02 Conference on Empirical Methods in Natural Language Processing 2002 pp. 79–86. ⇒ 64 67

  • [35] R. Prabowo M. Thelwal Sentiment analysis: a combined approach Journal of Informetrics 3 (2009) 143–157. ⇒ 66

  • [36] M. R. R. Rana M. A. Akbar T. Ahmad Sentiment classification of customer reviews using bayesian classifier Asian Journal of Engineering Sciences & Technology 7 (2017). ⇒ 65

  • [37] H. Shaziya G. Kavitha R. Zaheer Text categorization of movie reviews for sentiment analysis Int. Journal of Innovative Research in Science Engineering and Technology (2015) 11255–11262. ⇒ 65

  • [38] S. P. Sivasubramanian N. Suganya Sentiment analysis on micro-blogs Int. Innovative Research Journal of Engineering and Technology 2 (2017) 46–51. ⇒ 59

  • [39] G. Somprasertsri P. Lalitrojwong Mining feature-opinion in online customer reviews for opinion summarization J. UCS 16 (2010) 938–955. ⇒ 67

  • [40] J. Steinberger T. Brychcin M. Konkol Sentiment and social media analysis Proc. 5th Workshop on Computational Approaches to Subjectivity 2014. ⇒ 59

  • [41] B. N. Supriya V. Kallimani S. Prakash C. B. Akki Twitter sentiment analysis using binary classification technique Int. Conference on Nature of Computation and Communication 2016 pp. 391–396. ⇒ 59

  • [42] M. Thelwall K. Buckley G. Paltoglou Sentiment strength detection for the social web Journal of the Association for Information Science and Technology 63 (2012) 163–173. ⇒ 67

  • [43] P. D. Turney M. L. Littman Measuring praise and criticism: inference of semantic orientation from association ACM Transactions on Information Systems (TOIS) (2003) 315–346. ⇒ 63

  • [44] T. Wilson P. Hoffmann S. Somasundaran J. Kessler Opinionfinder: a system for subjectivity analysis HLT-Demo ’05 Proc. of HLT/EMNLP on Interactive Demonstrations 2005 pp. 34–35. ⇒ 67

  • [45] Q. Ye Z. Zhang R. Law Sentiment classification of online reviews to travel destinations by supervised machine learning approaches Expert systems with applications 36 (2009) 6527–6535. ⇒ 64

  • [46] N. Zainuddin A. Selamat V. Kekan Sentiment analysis using support vector machine Computer Communications and Control Technology (I4CT) 2014 Int. Conference 2014 pp. 333–337. ⇒ 59

  • [47] A. Zubiaga I. S. Vicente P. Gamallo J. R. P. Campos I. A. Loinaz N. Aranberri A. Ezeiza V. F. Fernandez Overview of tweetlid: tweet language identification TweetLID SEPLN 2014 pp. 1–11. ⇒ 59

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 272 255 14
PDF Downloads 222 207 7