E$ AcTtA UNIV. SAPIENTIAE, INFORMATICA 10, 1 (2018) 43-57

DOI: 10.2478 /ausi-2018-0003

On the use of model transformation for the

automation of product derivation process
in SPL

Nesrine LAHIANI Djamal BENNOUAR
LRDSI Laboratory LIMPAF Laboratory
C.S. Department C.S. Department
Saad Dahlab University Akli Mohand Oulhadj University
Blida, Algeria Bouira, Algeria
email: email:
lahiani.nesrine@gmail.com djamal.bennouar@univ-bouira.dz

Abstract. Product Derivation represents one of the main challenges
that Software Product Line (SPL) faces. Deriving individual products
from shared software assets is a time-consuming and an expensive activ-
ity. In this paper, we (1) present an MDE approach for engineering SPL
and (2) propose to leverage model-to-model transformations (MMT) and
model-to-text (MTT) transformations for supporting both domain engi-
neering and application engineering processes. In this work, we use ATL
as a model-to-model transformation language and Acceleo as a model-to-
text transformation language.The proposed approach is discussed with
e-Health product line applications.

1 Introduction

Companies are more and more forced to customize their software products for
completely different customers. In practice they often clone an existing system

Computing Classification System 1998: C4, D.2.11 D.2.13

Mathematics Subject Classification 2010: 68N99

Key words and phrases: product derivation, software product lines, model-driven engi-
neering, domain specific language

43

https://www.researchgate.net/profile/Lahiani_Nesrine
http://www.univ-blida.dz/
http://www.univ-blida.dz/
http://www.univ-blida.dz/
http://www.univ-blida.dz/
mailto:lahiani.nesrine@gmail.com
mailto:lahiani.nesrine@gmail.com
https://www.researchgate.net/profile/Djamal_Bennouar3
http://www.univ-bouira.dz
http://www.univ-bouira.dz
http://www.univ-bouira.dz
http://www.univ-bouira.dz
mailto:djamal.bennouar@univ-bouira.dz

44 N. Lahiani, D. Bennouar

and adapt it to the customer’s needs. In such scenarios software product lines
promise benefits, for example, reduced maintenance effort, improved quality,
and customizability. However, introducing new development processes into a
company is risky and might not pay off . The other advantage is that this fairly
recent software development paradigm allows companies to create efficiently
a variety of complicated products with a short lead-time.

In a software product line context, software products are developed in two
phases, i.e. a domain engineering process and an application engineering pro-
cess. Domain engineering a basis is provided for the actual development of the
individual products. During application engineering individual products are
derived from the product line, i.e. constructed using a subset of the shared
software artifacts. If necessary, additional or replacement product-specific as-
sets may be created.

The key activity in application engineering is Product Derivation. It ad-
dresses the construction of a concrete product from the product line core
assets, which includes the derivation of application artifacts from domain ar-
tifacts, for instance the derivation of Application Requirements from Domain
Requirements, the derivation of the Application Architecture from the Do-
main Architecture and the derivation of Application Components from Do-
main Components.

In this context, this paper proposes a model-driven product derivation ap-
proach based on Model-Driven Engineering principles [20, 21] . We use (1)
metamodels to represent domain concerns such as application, architectural,
or technological; (2) models that conform to metamodels to designate partic-
ular products of product lines; (3) model transformation programs to derivate
members of the line from an initial model. Transformation programs are com-
posed by transformation rules. Each transformation rule is responsible for pro-
ducing a part of the final product. To derive a complete product, we have to
assemble the rules in a precise ordering that determines the order in which the
individual parts are produced and assembled. To express configurable variabil-
ity we use feature models. Our feature model represents variation points and
variants according to user needs. From the feature model, a product Designer
defines a Configuration with his choices. Consequently, our big challenge is
to produce adapted transformation programs to contain rules able to derive
products with the desired user choices.

The remainder of this paper is structured as follows: Section 2 discusses
related work, while Section 3 introduces the terminology and concepts used
in this work.In Section 4 we present an overview of our approach for product

On the use of MT for the automation of PD process in SPL 45

derivation. Section 5 illustrates the application of our approach on a case study.
Finally, Section 6 presents the conclusions.

2 Related work

In this section, we cite the state-of-the-art related to product derivation ap-
proaches. Perovich et al. in [19] employ model-driven techniques to transform
a feature model to specific product architectures. However, the domain design
is specified in terms of ATL transformation rules, therefore the transforma-
tion processes is not completely automated. Such an approach is complex and
makes the SPL architecture design process difficult.

An approach is proposed in [4, 5] to derive the architecture of a product by
selectively copying elements from the SPL architecture based on a product-
specific feature configuration. The SPL architecture model contains variability
to cover all products aspects. This approach deals only with the derivation of
the high level product architecture. The mapping between features and the
components realizing their implementation is done through an implementation
model. A prototype that implements the derivation as a model transformation
is described in the Atlas Transformation language.

Tawhid et al. in [22] proposed to derive an UML model of a specific product
from the UML model of a product line based on a given feature configuration
is enabled through the mapping between features from the feature model and
their realizations in the design model. The mapping technique proposed aims
to minimize the amount of explicit feature annotations in the UML design
model of SPL. Implicit feature mapping is inferred during product derivation
from the relationships between annotated and non-annotated model elements
as defined in the UML metamodel and well-formed rules. The transformation
is realized in ATL.

Gonzlez-Huerta et al. in [11] presented a set of guidelines for the definition of
pattern-based quality-driven architectural transformations in a Model-Driven
SPL development environment. These guidelines rely both on a multimodel
that represents the product line from multiple viewpoints as well as on a deriva-
tion process that makes use of this multimodel to derive a product architecture
that meets the quality requirements.

Parra et al.[18] propose an approach for feature-based architecture com-
position in component-based software product lines. To fill the gap between
features and software components, authors rely on the definition of aspect-like
composition models that link every particular feature with several software

46 N. Lahiani, D. Bennouar

components. The approach detects that one feature requires a second feature
when the pointcut that define the variation point for the first feature refer-
ences source code elements referred to by the aspect that defines the second
feature. The approach can detect when one feature excludes a second feature,
when the pointcuts (that define the variation points) for both features refer
to the same source code elements.

All the preceding approaches constitute good effort to provide a smooth
transition from feature models to product architectures. In addition, some ap-
proaches such as [19, 22] use model-driven techniques to transform a feature
model into product architectures. However, as the domain design is speci-
fied in terms of ATL transformation rules [3], the transformation processes
cannot be fully automated. Other similar efforts that rely on aspect-oriented
techniques[18] to derive product architectures from feature selections .Al-
though, the derivation at higher levels of abstraction, that is from generic
to concrete product line architectures, is poorly addressed.

3 Terminology and basic concepts

In this Section we describe the main terminology and basic concepts of the
different areas involved in our approach.

3.1 Product lines

DEFINITION (PRODUCT LINES). A Software Product Lines can be defined as
is a set of software-intensive systems that share a common, managed set of
features satisfying the specific needs of a particular market segment or mission
and are developed from a common set of core assets in a prescribed way [6].

DEFINITION (FEATURE MODELING). Feature modeling is the activity of
identifying externally visible characteristics of products in a domain and or-
ganizing them into a model called a feature model. The feature modeling
described in this section is based on that of [7].

DEFINITION (PRODUCT DERIVATION) We focus in this paper at application
engineering known also as product derivation (PD). PD has been defined in
many different ways. McGregor in [16] describes the process as “Product
derivation is the focus of a software product line organization and its exact
form contributes heavily to the achicvement of targeted goals .

Deelstra et al. in [8] define product derivation by “A product is said to be
derived from a product family if it is developed using shared product family
artifacts. The term product derivation therefore refers to the complete process
of constructing a product from product family software assets “.

On the use of MT for the automation of PD process in SPL 47

3.2 Model-driven engineering

DEFINITION (MDE) Kent defines Model Driven Engineering (MDE) by ex-
tending MDA with the notion of software development process (i.e., MDE
emerged later as a generalization of the MDA for software development) [12].
MDE refers to the systematicuse of models as primary engineering artifacts
throughout the engineering lifecycle. All the definition of MDE are based on
the concept of model, meta-model, and model transformation.

DEFINITION (META-MODEL) A model is frequently considered an instance
conforming a meta-model. Based on [14] “a meta-model is a model of a mod-
eling language where the languageis specified”.

DEFINITION (MODEL TRANSFORMATION) Performing a model transforma-
tion by taking one or more models as the input and producing one or more
models as the output requires a clear understanding of the abstract syntax
and the semantics of the source and the target models. Metamodelling is a
key concept in MDA that defines the abstract syntax of the models and the
inter-relationships between the model elements [13].

The common setting for all transformation languages is such that the model
to be transformed (source model) is supplied as a set of class and association
instances conforming to the source metamodel. The result of transformation
is the target model - the set of instances conforming to the target metamodel.
Therefore the transformation has to operate on instance sets specified by a
class diagram.

4 Model-driven product derivation approach

In this section, we present an overview of our approach for product deriva-
tion. It is founded on the principles and techniques of software product lines
and model driven engineering. Figure 1 illustrates the main elements of our
approach and their respective relationships.

4.1 Domain engineering

Domain analysis. Domain analysis [17] or Feature modelling is the first
activity to define the commonality and variability that can be expected to
occur among the SPL members identified in the product line’s scope. We use
feature model to present the similarities and variations among the products
identified in the product line’s scope that can be expected to occur.

48 N. Lahiani, D. Bennouar

Domain Engineering

| Domain Analysis | >| Domain Design H RDa(;ima:l:u <
ealisation

Requirements

1
1
1
A v TImproving

v 1
- , . - | P AM
= o B = — e e e L] e new Assets

Components Libary

SPL Feature Model SPL Architecture Model

| |
I) v

Product Analysis [r====| ProductDesign > Rzzg:t(i;ttm —

Customer’s
Requirements

— 5 Mamally done for each product v
——> Manualy done only oace Validated
====» Automatically generated Product

Figure 1: Overview of our approach

Application Engineering

To build our metamodel we modify and simplify the metamodel proposed
by Czarnecki et al. [7]; we depict it in Figure 2. All Features in the Feature
Model have different names and may be composed of several members.

Domain design. At this stage the proposed derivation approach uses the
mapping technique [15] in aim to map features to architecture model. After
that, feature model is considered as an input parameter and then is processed
by a model-to-model (M2M) transformation written in ATL (Atlas Transfor-
mation Language)[2] that creates an Architecture Model which is composed
of a set of rules and helpers. The rules define the mapping between the source
and target model. The helpers are methods that can be called from different
points in the ATL transformation. This model describes all components that
have to be included to implement this particular Application Feature Model.
We need to create in the target model all the model element types that com-
pose a component model as its shown in Figure 3.

On the use of MT for the automation of PD process in SPL 49

Product
0. . *
Feature 0%
—.‘ .-
+name: String 2 0%
» +description: String .- | Dependency
- +isOptional: Boolean = false | - Stri
Attribute +isRoot: Boolean = false *name: String
+name: String -
+type: String
Alternative Require Standard
child
0..1
FeatureGroup
+isXor: Boolean = false

Figure 2: UML metamodel for feature models.

Domain realization. The goals of the domain realization sub-process are
to provide the detailed design and the implementation of reusable software
assets, based on the Architecture Model obtained in the domain design. In ad-
dition, domain realization incorporates configuration mechanisms that enable
application realization to select variants and build an application with the
reusable artifacts. The model obtained in Domain Design is then processed
by a model-to-text (M2T) transformation which generates an equivalent tex-
tual configuration implemented using Acceleo language [1] to promote the
generation of Java. This tool specializes in the generation of text files (code,
XML, documentation) starting from models. Using Acceleo we can generate
the source code based on templates and models expressed with EMF [9].

4.2 Application engineering

Product analysis. The main goal of product analysis is to document the
requirements artifacts for a particular application and at the same time reuse,
as much as possible, the domain requirements artefacts. A feature configura-

50 N. Lahiani, D. Bennouar

Model

N
. Component

+name: String

U..
Connector

+name: String

o.x [0..*

1 .. *
Port Attribute

+name: String

N

Client Server

+name: String
+type: String

+target 1

+source

Figure 3: UML metamodel for Component models.

tion is the production of this activity which is a legal combination of features
that specifies a particular product. This activity uses feature models as input
to select the feature relevant for customers requirements to build the product
and identify the specific-assets of the product. Once the selection is checked
and validated by the product designer the output at this stage is a specialized
version of feature model (application feature model).

Product design. The main goal of the product design activity is to produce
the product architecture model. The product architecture model is defined for
the particular product being developed, considering its desired features defined
in the feature configuration model.

Product realization. The main goal of product realization is to build the
actual product, taking in consideration the product architecture defined in the
previous activity. The corresponding component implementations developed

On the use of MT for the automation of PD process in SPL 51

during the domain implementation must be used to obtain the implementation
of the product.

5 Case study

Health-related Internet technology applications delivering a range of clinical
care, content, and connectivity, are referred to collectively as e-health. The
most remarkable attribute of e-Health is that it is enabling the transformation
of the health system from one that is barely focused on curing diseases in hos-
pitals by health professionals, to a system focused on keeping citizens healthy
by affording them with information to take care of their health whenever the
need arises, and wherever they may be. E-health is promoted as a mechanism
to bring growth, gain, cost savings, and process improvement to health care.

In this context of an e-Health application, we present in this section a simple
case study to illustrate the overall process, from the feature model to the final
product.

5.1 Domain engineering

The first activity is domain analysis where we define the feature model for
e-Health Product Line, as Figure 4 (part A) shown doctors could connect via
the application to follow up (1) remote consultation (via phone/message) and
(2) manage patients accounts. Patient also must do (3) a registration so that
he/she can consult and (4) pay using its own credit card or just by bank
transfer which are alternative features only one could be chosen. Drug refill
and offline consultation are two optional features that could be chosen or just
left.

Second activity, the domain design where we build the feature-to-architecture
transformation rule artifact is built. We use a model-to-model transforma-
tion we developed to create an initial version of this model from the feature
model, only containing all defined features and their member relationship.
We present a fragment of one of the rules using the ATL specialization of our
metamodel illustrated in Figure 3, using textual notation. Final activity in do-
main engineering is the domain realization. The architecture-to-components
transformation rule artifact is built. We use a model-to-text transformation
we developed to create an initial version of this model from the architecture
model, only containing all defined features and their member relationship

52 N. Lahiani, D. Bennouar

(A) e_HeaIth_

—— e

DnngRBi_i__Oﬁi'an;i_t;ﬁmHPaﬁa'nnﬂ'ﬁgenm|

Legend | User_Account_Management | | Authentiication_Management | | Phone | | Message | | Credit Card | | Bank Transfert |
'3 Mandatory

K g:?hnnal 4 [l e Health (valid, 4 possible cenfigurations)

A Alternative Drug Refil

[] Offline consultation (B)

F] |E| Patient management
|:| User_Account_Management
Authentification_Management
[l Registration
4 |E| Remote consultation
[E] Phone
Mezzage
4 M| Payment
Credit Card
[F] Bank Transfert

Figure 4: e-Health product line: (a) Feature Model tree for e-Health applica-
tions (b) Feature Configuration Model for e-Health.

5.2 Application engineering

During product analysis we use FeatureIDE [10] an Eclipse plug-in for Feature-
Oriented Software Development to create the feature configuration model
defining the desired features in the new product being built. A feature configu-
ration is a legal combination of features that specifies a particular product. We
use a text-to-model transformation to obtain the model shown in Figure 77 (
part B),that illustrates the selected features as an instance of the metamodel
shown in Figure 2.

During product design, the meta-transformation is used to generate from
the feature-to-architecture transformation rule the Model Architecture arti-
fact. The proposed model transformation approach takes as input the SPL
source model and generates a product target model. Our transformation gen-
erating a concrete product model from a SPL model is implemented in (ATL).
An ATL transformation is composed of a set of rules and helpers. The rules
define the mapping between the source and target model, while the helpers
are methods that can be called from different points in the ATL transforma-
tion. This transformation is then applied to the feature configuration model
to automatically generate the product architecture. Here we show an example
of an ATL helper and rules:

On the use of MT for the automation of PD process in SPL

93

module MyRules; -- Module Template
create OUT: Components from IN: Features;
rule Componnentq{
from
e : Feature!Feature
to
out : Component!Component (
name <- e.name,)
}
rule Association{
from
e : Feature!Dependency
to
out : Component!Connector (
name <- e.name,)
}
rule Attribute {
from
e : Feature!Attribute
to
out : Component!Attribute (
name <- e.name,
type <- e.type)
}
rule Port {
from
e : Feature!QOperation
to
out : Component!Port (
name <- e.name,

type <- e.parameter->select(x|x.kind=#pdk_return)->

asSequence () ->first () .type,

parameters <- e.parameter->select(x|x.kind<>#pdk_return)->

asSequence ()

As Figure 5 illustrates a fragment of the resulting PRODUCT ARCHITEC-
TURE model generated by the rules, applied to the FEATURE CONFIGU-
RATION MODEL shown in Figure 4. The e-Health product line application
component is composed by the subcomponents generated by the rules. Final
activity in application engineering is the application realization. At this stage,

54 N. Lahiani, D. Bennouar

(CorapPatientllanag

erment

!

Cornpd ceount
.-

:Cu:um}:Dfﬂi.neCu:unsu*

ltation

CorpDrugRefill +
[Fhone

CorapFhone CormpRemoteC
[V ssage onsltation
(Complvlessage

CompCreditCard [Credits

] (CompPaymoent
[
CompBankTransfert

[BankT

Corpiuthe ntification * Vsuthentf

Figure 5: Component Model for e-Health product Line applications.

we write a program that generates Java code from our previously created ar-
chitecture model using Acceleo, which navigates the model and creates the
source code (*.java files for Java). Our goal is to transform the features into
java classes and Attribute into class properties, and finally generate set and
get methods for class properties. here is the code used to create a bean for
each of the classes defined in our target model:

On the use of MT for the automation of PD process in SPL 55

[comment encoding = UTF-8 /]
[module generate(’http://www.eclipse.org/uml2/3.0.0/UML’)/]

[template public generate(aClass : Class)]
[file (aClass.name.concat(’.java’), false)]
public class [aClass.name.toUpperFirst()/] {
[for (p: Property | aClass.attribute) separator(’\n’)]
private [p.type.name/] [p.name/];
[/for]

[for (p: Property | aClass.attribute) separator(’\n’)]
public [p.type.name/] get[p.name.toUpperFirst()/1() {
return this. [p.name/];
}
[/for]

[for (o: Operation | aClass.ownedOperation) separator(’\n’)]
public [o.type.name/] [o.name/]() {

}
[/for]
}
[/file]
[/template]

6 Conclusion

The main objective of a product line is reusability.Various assets are being
used in software product lines. These assets have different values. Also, the
values of them differ from the value of the profit obtained through using these
assets is different. Derivation of a product from an SPL seems to be an easy
step since its relied on reuse. Actually the product derivation represents one
of the main challenges that SPL faces due to time-consuming. In this paper,
we intended to reduce the development time of a product by automating the
derivation by generating some java code using Acceleo in conjunction with
ATL. The proposed transformation uses Feature-architecture mapping tech-
nique by instantiating the initial feature model, an instance of feature model
is constructed according to customers requirements. Then, separate features
into two kinds: common and variable. The main idea is to create for each fea-
ture a component or a set of components combined in a specific way. Linking

56 N. Lahiani, D. Bennouar

these created components together based on the relationships among features
in the feature model is the last step of our process. Although testing is of main
importance in the context of product lines due to high reuse, in this paper we
do not cover testing activities and it is one of the limitations of our proposed
approach. This paper has illustrated by means of e-Health application the
overall process, from the feature model to the final product. As future work,
we will add more features to e-Health product line application and also intend
to build a new set of components. A possibility is to apply our approach on
other product line applications as e-Vote and also add testing activity to the
approach.

References

[1] Acceleo Project, [Online]. Available:https: //eclipse.org/acceleo. =49
[2] ATL Project, [Online]. Available: http: //www.eclipse.org/atl/. =48
[3] J.Beézivin, G. Dup, F. Jouault, G. Pitette, & J. E.Rougui, First experiments with
the ATL model transformation language: Transforming XSLT into XQuery. 2nd
OOPSLA Workshop on Generative Techniques in the context of Model Driven
Architecture Vol. 37. 2003 =46
[4] G. Botterweck, K. Lee, S. Thiel, Automating product derivation in software
product line engineering, Software Engineering, Kaiserslautern, 2009, pp. 177—
182. =45
[5] G.Botterweck, L. OBrien, & S. Thiel. Model-driven derivation of product ar-
chitectures. Proc. of the twenty-second IEEE/ACM international conference on
Automated software engineering, 2007, pp. 469-472. =45
[6] P. Clements, L. Northrop. Software Product Lines: Practices and Patterns. The
SEI series in software engineering. Addison—Wesley, Boston, 2002. =46
[7] K. Czarnecki, S. Helsen, U. Eisenecker. Staged configuration using feature mod-
els. Int. Conf. on Software Product Lines, Springer Berlin Heidelberg, 2004,
pPp.266-283. =46, 48
[8] S. Deelstra, M. Sinnema, J. Bosch, Product derivation in software product fam-
ilies: a case study. The Journal of Systems and Software, 74 (2005) 173-194. =
46
[9] Eclipse Modeling Framework, [Online]. Available: http://www.eclipse.org/emf/.
=49
[10] FeatureIDE,[Online] Available: http://wwwiti.cs.unimagdeburg.de/iti_db/
research/featureide/. =52
[11] J. Gonzalez-Huerta, E. Insfran, S. Abrahao, J. D. McGregor, Architecture deriva-
tion in product line development through model transformations, 22nd Int. Conf.
on Information Systems Development, 2013, pp. 371-384. =45
[12] S. Kent, Model driven engineering, Int. Conf. on Integrated Formal Methods,
Lecture Notes in Comp. Sci., 2335 (2002) pp. 286—298. =47

 https: //eclipse.org/acceleo.
http: //www.eclipse.org/atl/.
http://www.botterweck.de/
https://pdfs.semanticscholar.org/a4e7/3e26f01eeff4b4343cdfdcb240636fb9ba72.pdf
http://www.botterweck.de/
https://resources.sei.cmu.edu/library/author.cfm?authorID=4785
https://resources.sei.cmu.edu/library/author.cfm?authorID=4179
http://www.pearsonhighered.com/
https://gsd.uwaterloo.ca/kczarnec
https://www.researchgate.net/scientific-contributions/70544932_Sybren_Deelstra
https://www.researchgate.net/profile/Jan_Bosch
https://www.journals.elsevier.com/journal-of-systems-and-software/
 http://www.eclipse.org/emf/.
http://wwwiti.cs.unimagdeburg.de/iti_db/research/featureide/
http://wwwiti.cs.unimagdeburg.de/iti_db/research/featureide/
https://scholar.google.es/citations?user=yQermMoAAAAJ&hl=es
http://einsfran.blogspot.com/
https://sabrahao.wixsite.com/dsic-upv

On the use of MT for the automation of PD process in SPL 57

[13]
[14]

[15]

[18]

[19]

A. G. Kleppe, J. B. Warmer, W. Bast, MDA FExplained: the Model Driven Ar-
chitecture: Practice and Promise, Addison-Wesley Professional. 2003. =47

I. Kurtev. Adaptability of model transformations, PhD Thesis, University of
Twente Research Information. =47

N. Lahiani, D. Bennouar, A software product line derivation process based on
mapping features to architecture, Proc. of the Int. Conf. on Advanced Commu-
nication Systems and Signal Processing ICOSI, 2015. =48

J. McGregor, Goal-driven product derivation, Journal of Object Technology, 8
5 (2009) 7-19. =46

L. Northrop, P. Clements, With F. Bachmann, J. Bergey, G. Chastek, S. Cohen,
P. Donohoe, L. Jones, R. Krut, R. Little, J. McGregor, L. OBrien, A frame-
work for software product line practice, version 5.0, Software Enginering Institut,
2012. =47

C. Parra, A. Cleve, X.Blanc, L. Duchien, Feature-based composition of soft-
ware architectures. Furopean Conf. on Software Architecture, Springer, Berlin,
Heidelberg, 2010, pp. 230-245. =45, 46

D. Perovich , P. O. Rossel, M. C.Bastarrica, Feature model to product archi-
tectures: Applying MDE to software product lines, Software Architecture, &
European Conf. on Software Architecture, WICSA /ECSA 2009, Joint Working
IEEE/IFIP Conf., IEEE 2009, pp. 201-210. =45, 46

D. C. Schmidt. Guest editors introduction: model-driven engineering. IEEFE
Comput. 39 2 (2006) 25-31. =44

T. Stahl, M. Voelter, K. Czarnecki, Model-Driven Software Development: Tech-
nology, Engineering, Management, John Wiley & Sons 2006. =44

R. Tawhid , D. C. Petriu. Product model derivation by model transformation
in software product lines. Object/Component/Service-Oriented Real-Time Dis-
tributed Computing Workshops (ISORCW), 14th IEEE International Sympo-
sium, IEEE 2011, pp. 72-79. =45, 46

Received: January 14, 2018 « Revised: April 5, 2018

http://www.pearsonhighered.com/
https://research.utwente.nl/en/
https://research.utwente.nl/en/
https://people.cs.clemson.edu/~johnmc/
http://www.jot.fm/
https://resources.sei.cmu.edu/library/author.cfm?authorID=4179
https://resources.sei.cmu.edu/library/author.cfm?authorID=4785
https://scholar.google.fr/citations?user=Amx0tmUAAAAJ&hl=fr&oi=sra
https://scholar.google.fr/citations?user=LM0e_fcAAAAJ&hl=fr&oi=sra
https://www.dcc.uchile.cl/danielperovich
https://users.dcc.uchile.cl/~prossel/
http://www.dre.vanderbilt.edu/~schmidt/
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2
http://www.voelter.de/
https://gsd.uwaterloo.ca/kczarnec
http://www.sce.carleton.ca/faculty/petriu.html

	1 Introduction
	2 Related work
	3 Terminology and basic concepts
	3.1 Product lines
	3.2 Model-driven engineering

	4 Model-driven product derivation approach
	4.1 Domain engineering
	4.2 Application engineering

	5 Case study
	5.1 Domain engineering
	5.2 Application engineering

	6 Conclusion

