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Abstract: The objective of this paper is solving of the Modified Filter Algebraic 
Riccati Equation (MFARE) for calculating of the filter gain. The results are used for 
model-based fault detection filtering of faults in the air path of diesel engines. The H-
infinity optimization approach requires the solution of a linear-quadratic optimization 
problem that leads to the solution of MFARE. In our paper two basic concepts for 
solving MFARE are examined, namely the analytically implemented gamma-iteration 
and casting the problem as a convex optimization problem based on Linear Matrix 
Inequalities (LMIs).  

The algorithms are implemented in MATLAB. Each algorithm has to ensure the 
condition for a global convergence and also has to deliver an optimal solution. Not at 
least, the computational cost has to be as small as possible.  
 

Keywords: modified Filter Algebraic Riccati Equation, linear-quadratic optimization 
problem, H-infinity optimization, gamma-iteration, LMI  

1. Introduction 

With the increasing complexity of combustion engines in current automotive 
vehicles, the early detection of failures for engine diagnostics plays an 
increasingly important role. Possible faults are due to actuator, sensor and 
component failures, which can lead to engine malfunctions or even damages in 
the worst case. The subject of our investigation is a robust model-based fault 
detection filtering of faults in the air path of diesel engines. The filter robustness 
is ensured by the application of a design trade-off that is made between the 
worst-case disturbance and the L2 norm of the filter error. This method requires 
the solution of a linear-quadratic optimization problem that leads to the solution 
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of the Modified Filter Algebraic Riccati Equation (MFARE), see e.g. in [1], [2], 
[3] and [4].   

Combustion engines can typically be characterized by highly nonlinear 
processes that may have very fast dynamics. This property poses additional 
requirements for the fault detection filter implementation. On the one hand, the 
filter should be capable of running recursively, in real-time, in few millisecond 
cycles, by taking the constrained computational capability of on-board 
microcontrollers into account. On the other hand, the computational complexity 
of the model might need processing power usually not available for the specific 
application. For this reason, finding an efficient algorithm to an optimal solution 
of the MFARE, which is definitely the core of the fault detection filter, is of 
great importance.  

Several investigations have been carried out in the past two decades for 
using LMI to issues of robust control see e.g. [5], [6], [7]. So, it has been 
already proven, that LMI-s are effective and powerful tools for handling 
complex, but standard problems, such as fast computing of global optimum with 
some pre-specified accuracy. This has to be done by solving of the H-infinity 
optimization problem. While the analytically computed gamma-iteration 
represents the first step to solving MFARE, we have been first off, all interested 
in the efficiency and robustness of the solution based on LMI, which should, in 
our assumption, produce a better performance. 

This paper is organized as follows: after the introduction, in Section II we 
shortly revisit the problem of H-infinity optimization and describe briefly the 
derivation of MFARE. In Section III MFARE is converted to an optimization 
problem based on LMI. In Section IV an algorithm called gamma-iteration is 
implemented to solve MFARE analytically. Then it is formulated as a linear 
objective minimization problem using LMI. Finally, each algorithm is evaluated 
to measure convergence, computation cost and at last but not at least, 
practicability. 

2. Deriving the Modified Filter Algebraic Riccati Equation for robust 

H-infinity detection filtering 

2.1 The optimal H-infinity detection filtering problem 

The goal of H-infinity filtering is minimizing the magnitude of the effects of 
perturbations on the filter output and maximizing the magnitude of the transfer 
function from failure modes to the filter error, through the appropriate choice of 
filter gain. This estimation problem can be represented as a mixed H2 / H∞ 

filtering problem (Edelmayer, 2012) [8]. 
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Figure 1: A standard setup for a robust H∞ filtering synthesis problem  
(G: Generalized Plant, F: Filter) 

According to the study in [7], the linear time-invariant system (LTI-system) 
subjected to disturbance and unknown faults can be represented in state space 
form as follows: 
 
 
                           (1) 
 

In (1) x  ℝ𝑛, y 𝜖 ℝ𝑝, u 𝜖 ℝ𝑚, and ω 𝜖 ℝ𝑝  denotes the process disturbance in 
𝐿2 [0, 𝑇]. A, B, C and Bω are appropriate constant matrices. It is assumed, that 
(A, C) is an observable pair. 𝐵𝜅 =[𝐵𝑤,𝐿Δ] is the worst-case input direction and 
𝜅(𝑡) ∈  𝐿2 [0, 𝑇] is the input function for all 𝑡 ∈ ℝ+ representing the worst–case 
effects of modelling uncertainties and external disturbances. It is to be noted, 
that the equation does not include parametric uncertainty [8]. The cumulative 
effect of a number of k faults appearing in known directions Li of the state space 
is modelled by an additive linear term, ∑ 𝐿𝑖𝜈𝑖(𝑡) . Li 𝜖 ℝ𝑛𝑥𝑠  and  𝜈𝑖(𝑡) are the 
fault signatures and failure modes respectively. 𝜈𝑖(𝑡) are arbitrary unknown 
time functions for 𝑡 ≥ 𝑡𝑗𝑖 , 0 ≤ 𝑡 ≤ 𝑇, where 𝑡𝑗𝑖 is the time instant when the  
i-th fault appears and 𝜈𝑖 = 0, if 𝑡 < 𝑡𝑗𝑖 . If  𝜈𝑖(𝑡) = 0, for every i, then the plant 
is assumed to be fault free. Assume, however, that only one fault appears in the 
system at a time [8]. 

 
For the purpose of explanation of the concept of the H-infinity filter, 

consider the system representation given in Fig.1., where z 𝜖 ℝ𝑝 denotes the 
output signal.  Based on the LTI-system model (1), the state estimate can be 
obtained as 
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In (2), 𝑥 𝜖 ℝ𝑛 represents the observer state, 𝑦̂ 𝜖 ℝ𝑝represents the output 
estimate, and 𝑧̂ 𝜖 ℝ𝑝represents the weighted output estimate, K is the observer 
gain matrix and Cz is the constant estimation weight (see in [8]). 
 

The filter error system can be derived as 
 

 
        (3) 

 
In (3), 𝑥̃(t) and (t) are the state error and weighted output error, respectively, 

defined as 
 

        (4) 
 

In the presence of faults, the estimation error does not converge 
asymptotically to zero, but converges asymptotically to a subspace which is 
different from zero [8]. 

In the following we have to choose the filter gain, by minimizing the 
magnitude of the effects of perturbations on the output of the filter, which has to 
maximize the magnitude of the transfer function from failure modes to the filter 
error.  

2.2 Solution to a H-infinity filtering 

Based on the representation in Fig.1, the performance measure considered as 
a quadratic cost function of the minimax method is defined as 
 

(5)     
 
where 𝛾 > 0 is a positive rational constant.  

According to the H-infinity filtering problem the quadratic cost function to 
be minimized is defined as 
 

(6)     
 

The performance can be formulated as a min-max problem. That is, 
minimizing the H-infinity norm of the transfer function, denoted by H𝜀κ, of the 
worst-case disturbance to the filter output. The worst-case performance is given 
by 
 

         (7) 
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The filter gain K can be obtained by solving a linear-quadratic optimization 
problem, using the procedure presented below (see also in [8]).  

With substitution of the decision variable Q ∈ 𝑅𝑛𝑥𝑛 which is a positive 
definite matrix, the observer equation can be described as  
 

          
       (8) 

 
The goal of the linear-quadratic optimization is to obtain the smallest L2 -

gain of the disturbance input of the system that is guaranteed to be less than a 
specified positive constant 𝛾𝑚𝑖𝑛, and in the same time to increase filtering 
sensitivity as much as possible (Edelmayer, 2012). The algorithm, which is used 
to find an optimal solution for Q, iteratively reduces 𝛾 until Q has no longer a 
positive definite solution. Note that the 𝛾𝑚𝑖𝑛 obtained this way is within a given 
arbitrarily small tolerance 𝜀 > 0.  

 
The procedure is based on the solution of the Modified Filter Algebraic 

Riccati Equation (MFARE). From the bounded-real lemma, we have ‖𝐻𝜀𝜅‖∞ <
𝛾  if and only if there exists 𝑄 ≥ 0 such that  

 
     (9) 

 

After solving equation (9) and getting a solution for Q, the filter gain matrix 
can be obtained as 

         (10) 

With the use of 𝛾𝑚𝑖𝑛 the detection threshold of the filter can be given as 
 

(11) 

It is important to note, that the failure modes, which have the magnitude 
smaller than that of the detection threshold, cannot be detected by the filter. 
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3. Solving MFARE by LMI 

Originally the problem was introduced in about 1890 by the Russian 
mathematician Aleksandr Mikhailovich Lyapunov. Linear Matrix Inequalities 
(LMIs) have become nowadays effective and powerful tools for solving 
complex optimization problems. The applicability of LMI is really wide, 
starting e.g. from classical Lyapunov stability analysis of linear time variant and 
invariant systems, going through traditional Linear Quadratic Gaussian (LQG) 
control, up to the synthesis of modern robust H-infinity state feedback. The 
reason for it is that many problems can be cast as convex optimization 
problems. What is more, most of them can be converted to a standard LMI 
problem such as computing of global optimum with some pre-specified 
accuracy, even if it is to be done in our case by solving of H-infinity 
optimization problem. The main benefit of the LMI formulation is that it defines 
a convex constraint with respect to the variable vector. For that reason, it has a 
convex feasible set which can be found guaranteed by convex optimization.  

A detailed survey about the theory of LMI can also be found in the 
mathematical literature, see e.g. in [9], [10] and also in textbooks for control 
engineering e.g. in [11], [12], [13] and [14]. 
 

3.1 Standard problems involving LMIs 

A linear matrix inequality is a matrix inequality of the form 
 
 (12) 
 

where 𝑥 ∈ 𝑹𝑚 is the vector of decision variables, and 
𝐹𝑖 = 𝐹𝑖

𝑇 ∈ 𝑹𝑛 𝑥 𝑛, 𝑖 = 0, ⋯ , 𝑚 are symmetric matrices. 
Let 𝐴(𝑥), 𝐵(𝑥) and 𝐶(𝑥) be symmetric matrices that depend affinely on 

𝑥 𝜖 ℝ𝑚. Then, in addition to the canonical from in (12) standard LMI problems 
can be formulated in three different ways (see e.g. in [13]): 
 

1. Feasibility problem with the task of finding a solution for decision 
variable 𝑥 so that the constraint 

𝐴(𝑥) < 0  (13) 
is sufficient. 

 
2. Linear objective minimization i.e. searching for x which minimizes the 

linear function subject to an LMI.  
 

That is, minimize cT 𝑥  subject to 𝐴(𝑥) < 0 . (14) 
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3. Generalized eigenvalue minimization problem i.e. minimizing the 
maximum generalized eigenvalue of a pair of matrices, that depend 
affinely on a variable, subject to an LMI constraint.  
The task is to minimize 𝜆 subject to an LMI constraint: 

 
𝐴(𝑥)  <  λ𝐵(𝑥)  (15) 

𝐵(𝑥)  >  0 
𝐶(𝑥) < 0 . 

 
Unfortunately, most of the control synthesis problems are not formulated as 

an LMI, but the nonlinear (convex) inequalities can be converted to an LMI 
form using the Schur complements’ lemma (Boyd et. al. in 1994) [13].  

According to this lemma the expressions (16) and (17) are equivalent. 
 
 (16) 
 
 

 (17) 
 
𝑄(𝑥) = 𝑄(𝑥)𝑇 , 𝑅(𝑥) < 0, and 𝑆(𝑥) depend affinely on 𝑥.  

In this manner the set of nonlinear inequalities in (17) can be represented as 
the LMI in (16). 
 

Back to our problem of quadratic optimization we have to solve the MFARE 
as 

 
 (18) 

 
 

To transform (18) into an LMI, at first, we rewrite it in form of inequalities. 
For this let 𝑅 = 𝑄−1, so we get 
 
 (19) 
 

Applying the Schur complement lemma (17) for (19) yields to  
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Finally, by using the Schur complement lemma in (16) we obtain the LMI 
for the MFARE as  

 

 (21) 
 
 
which has a solution 𝑅 = 𝑅𝑇 ∈ ℝ𝑛 𝑥 𝑚 and 𝛾 > 0. 

Consequently, we can solve the MFARE by minimizing 𝛾 with respect to 
𝑅 ≻ 0 subject to (21). 

The corresponding Hamiltonian matrix 
 
 
 (22) 
 
 
has no eigenvalue on the imaginary axis. 

In most cases it is possible to solve the Algebraic Riccati Equation also 
through similarity transformation of the Hamiltonian matrix see e.g. in [15]. 
Although this method is not for solving MFARE as an optimization problem, so 
it won’t lead to an expected result, it may be useful to check a result obtained 
via optimization. 

The method is described as follows, see in [15]. First the (2𝑛, 𝑛) matrix 𝑉 is 
built which contains the eigenvectors corresponding to the eigenvalues with 
negative real parts (stable invariant subspace) of the Hamiltonian matrix: 
 
 (23) 

 

We can get the solution for matrix 𝑄𝐻 as 

 (24) 

4. Calculation of the filter gain based on the LTI -model of the air 

path of the diesel engines 

For the investigation of fault detection filtering problem, we are interested in 
the efficiency and robustness of the optimal solution. Thus, two different 
methods for solving MFARE are compared. First, an algorithm called gamma-
iteration is implemented to solve MFARE analytically, then it is formulated as a 
linear objective minimization problem, solved via LMI. 
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4.1 LTI-model for the air path of diesel engines 

As mentioned in the introduction of the robust fault detection filter design 
methodologies that we apply in our investigation, it is required to use the LTI-
model. Here we refer to a simplified nonlinear model of the air path which was 
first suggested by Jankovic and Kolmanovsky in 1998 [16] and later by Jung 
[17] for the purpose of robust control of the diesel engines. In our earlier 
investigation [18] we have already linearized this model around a specified 
operating point (Herceg, 2006) [19]. For the sake of simplification, we have 
considered the fuelling of diesel oil as a constant input, and not as a disturbance, 
furthermore the disturbance was modelled as the fluctuating change of the 
engine speed. 

As a result, we derive the following LTI-model in the chosen operating point 
[18]  
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where A, B, C and Bω are appropriate constant matrices, Bω  is the matrix for the 
disturbance acting on the system. 

4.2 Solution of the MFARE by a gamma-iteration algorithm 

This section discusses a conventional numerical method called gamma-
iteration to get an optimal solution of MFARE. It has to be noted, that this 
method is often referred to, see e.g. in [1], [2] and [20], [21], but we have not 
found any algorithm about it. This has been the motivation for its description. 

For the start of the explanation, the estimation weight of the filter is chosen 
arbitrarily, according to the methodology described in [8]: 
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 (26) 
 
The MFARE is written again as  

(27) 

Arranged for the use of the MATLAB function care [22], the equation 
becomes: 
 

 (28) 

 

It is important to note, that the function care is typically used for solving the 
H-infinity Riccati Equation for control problems. However, according to the 
principle of duality between controllers and observers the care function can be 
parameterized to be used for a filter in the form: 

 [Q L Gr report] = care (A', CC, Bκ* Bκ', Rcare , 'report'), 

where 𝐶𝐶 = [𝐶𝑧
𝑇 𝐶𝑇]. 

The function care returns the optimal value for the decision variable, 
denoted by Q.  

Of course the Rcare - matrix contains 𝛾, but this has a constant value for a 
specified level of the disturbance attenuation. It results that the function care 
cannot be directly used for a quadratic minimization problem, that is, the value 
of 𝛾 is to be iteratively reduced and the decision variable minimized. In this 
manner, in order to get the 𝛾𝑚𝑖𝑛 value, and so the corresponding optimal 
solution for Q, we implemented an algorithm called gamma-iteration in which 
an interval halving method is used iteratively. The algorithm reduces the value 
of 𝛾 until Q has no longer positive definite solution. The 𝛾𝑚𝑖𝑛, which is 
reached, is within the limits given by an arbitrarily small tolerance 𝜀 > 0.  

The gamma-iteration algorithm can be formulated as follows. 
The inputs for the method are the  A, Bd, C, Cz matrices, which define the 

LTI-system, eps as the relative accuracy of the solution, maxgamma as the right 
limit of the interval (the left limit is zero). 
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a, b and i are secondary variables, they stand for assignation of interval and 
counting cycle respectively. 

The outputs are: matrix Q as a positive definite decision variable, the gamma 
as step size (midpoint), the mingamma variable, which contains the value of  
gamma at the end of an iteration, the minigamma contains the gamma value 
when the iteration is finished. 

Each iteration performs the following steps: 
1. Calculate gamma, the midpoint of the interval, which is assigned by a 

and b, that is gamma = a+(b-a)/2; 
2. Call the MATLAB function care which returns the matrix Q and the 

“report”; 
3. Calculate the eigenvalues of Q , called Lambda; 
4. If the convergence criteria of the iteration are not satisfied, namely: Q is 

NOT positive definite, i.e. prod(Lambda)<=0 or the associated 
Hamiltonian matrix (22) that contains 𝛾 has eigenvalues on or very near 
the imaginary axis, then the upper and lower bounds of interval are 
changed; 
Otherwise the value of gamma is saved, that is mingamma = gamma 
and the iteration is continued; 

5. Examine whether the new interval defined by b-a reached the relative 
accuracy of the solution, called epsilon. If not, the iteration is repeated, 
if yes, the iteration is finished and the filter gain is calculated based on 
the previous value of gamma (mingamma).  

The algorithm is implemented in MATLAB and the script is given below (the 
example is based on the LTI-system defined by (25)). 
 

 

  

 

 

  

% matrices of the proposed LTI-system 

A=[ -5.2643, 4.7316, 28.5021; 50.7697, -156.9827, 0; 0 , 0.4287, -9.0909 ]; 

B=[1.6111e+009, 0, 0; -1.5720e+010, 8.3514e+004, 146083000; 0, -141.6784, 0]; 

C=[1, 0 ,0 ; 0, 1, 0 ; 0, 0, 3.924e-005]; Cz=[5, 0, 0; 0 ,5, 0; 0, 0, 25];  

Bd=[-47.7946 0 0  ; 466.3408 0 0  ; 0 0 0 ]; 
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Repeating the 𝛾-iteration 21 times, the optimal value of 𝛾𝑚𝑖𝑛 =  4.9698  is obtained. 
Using (10), the corresponding filter gain results as: 

 

  

(29) 

eps =1e-2;     % the relative accuracy of the solution 
CC =[Cz', C'];    % building the output matrix 

m1 = size(Cz',2);    % building submatrices for the Rcare 

m2 = size(C',2);         diagonally matrix 

maxgamma =1100;   % the upper limit of the interval 

gamma = maxgamma;    % the step size (midpoint) 

b= maxgamma;    % the initial upper limit of the interval  

a=0;      % the initial lower limit of the interval 

i=0;     % initialization of the step counter 
 

while (b-a) >eps % examine whether the new interval 

reached the relative accuracy 

 gamma = a+(b-a)/2;    % interval-halving  

 i = i+1;    % step counting 
 

% calculation of the Rcare diagonal matrix containing the gamma value 

  Rcare = [-(gamma )^2*eye(m1) zeros(m1, m2) ; zeros(m2, m1) eye(m2)]; 

 

% solving of the MFARE using the function care  

 [Q L Gr report] = care(A', CC, Bd*Bd', Rcare, 'report') 

Lambda = eig(Q);  % calculation of the eigenvalues of Q 
 

% reports:  

% if it is < 0, then the associated Hamiltonian matrix has its   

eigenvalues on or very near the imaginary axis, which results in failure 

% if prod(Lambda)<=0, then Q is not positive definite 

if (report==-1 || report==-2 || prod(Lambda)<=0) 

  a = gamma;   % the lower bound is changed to gamma  

else 

b = gamma;  % the upper bound is changed to gamma 

mingamma = gamma; % saving gamma value  

end    % the iteration is continued 

end     % the iteration is finished 

gammamin = mingamma   % the obtained γmin 

K=Q*C'     % the obtained filter gain 

257.2236 .2216
.2216     699.

  -39  -0.0000
   -39 0.0000 .

-0
2298  

.6744 .7934  1   0.0000
K

 
 


 
  
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It has to be noted, that in steps 8,11,13 and 20 we did not get solution 
because care returned with a report = -1. This means that the associated 
Hamiltonian matrix (22) had its eigenvalues on or very close to the imaginary 
axis which results in failure, see in [22]. According to the interval halving 
algorithm, in these steps the upper and lower bounds of the interval are changed 
in order to keep the solution away from the imaginary axis. 

In order to prove the filter performance for disturbance attenuation, the 
transfer function of the disturbance to a filter residual for the obtained filter gain 
K is 

(30) 

The evolution of the disturbance attenuation during the iteration steps can be 
observed on the value of  ‖𝐻𝜀𝜔(𝑠)‖∞ , calculated in MATLAB and plotted in 
Fig. 2. 

 

Figure 2: The variation of the  ‖𝐻𝜀𝜔(𝑠)‖∞ value as a function of gamma values during 
the iteration 

The optimal value obtained at the end of the iteration is for  ‖Hεω(s)‖∞ =
3.3737. 

1H (s) (sI A KC) B .ZC 

  
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4.3 The impact of increasing the value of 𝛾𝑚𝑖𝑛 

As known, 𝛾 is a measure for the filter sensitivity [8]. In the following it is 
examined the impact of increasing the value of γmin . 

In case if  𝛾𝑚𝑖𝑛 reached its upper limit (here 𝛾𝑚𝑖𝑛 = ∞) the term depending 
on 𝛾 dropped out and (9) was reduced to the form 

(31) 

Table 1: The impact of increasing the value of  𝛾𝑚𝑖𝑛 
 

gamma matrix K Eigenvalues 
of Q 

( )H s 

 

𝛾𝑚𝑖𝑛 
 257.2236  -39.2216   -0.0000 
-39.2216   699.2298   0.0000 
-0.7934     1.6744       0.0000 

 0.0875 
253.7718 
702.6875 

3.4047 

10 𝛾𝑚𝑖𝑛  
 13.5339  -39.8412    0.0000 
 -39.8412  330.4657  0.0000 
 -0.2148    0.2480      0.0000 

 0.0017 
 8.6061 
 335.3976 

4.9492 

100 𝛾𝑚𝑖𝑛 
 13.4326  -39.6856    0.0000 
-39.6856  329.3445   0.0000 
 -0.2129    0.2461      0.0000 

 0.0017 
 8.5275 
 334.2637 

4.9717 

determinist. 
Kalman 
Filter 

 13.4328  -39.6857    0.0000 
-39.6856  329.3445   0.0000 
 -0.2129    0.2461      0.0000 

 0.0017 
 8.5275 
 334.2637 

4.9719 

The magnitude of the transfer functions of the disturbance to a filter residual 
for increased 𝛾𝑚𝑖𝑛 values is shown in Fig. 3. 

0.T T T

K KAQ QA QC CQ B B   
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Figure 3: The magnitude (maximal singular values) of transfer functions: 

H𝜀ɷ (𝛾𝑚𝑖𝑛): green line , H𝜀ɷ (10 𝛾𝑚𝑖𝑛): blue line , H𝜀ɷ (100 𝛾𝑚𝑖𝑛): red line 

 
As it can be seen in Table 1, the smallest value for ‖𝐻𝜀ɷ  (𝑠)‖∞ is 3.4047 

(10.6415 dB) so the best filter sensitivity against worst case disturbance can be 
achieved in case of 𝛾𝑚𝑖𝑛 as it is shown in Fig.3. 

In case of 100 𝛾𝑚𝑖𝑛 and the deterministic Kalman-filter there exists no 
significant difference between the magnitudes of the transfer functions, as it can 
be seen in Fig.3 (blue and red lines). For 100 𝛾𝑚𝑖𝑛 we get a ‖𝐻𝜀ɷ (𝑠)‖∞ = 
4.9717 (13.93 dB), which results in lower disturbance attenuation.  

It can be concluded, that the more the value of 𝛾𝑚𝑖𝑛 is increased, the less 
filter sensitivity can be achieved. In this sense, getting an optimal  𝛾𝑚𝑖𝑛 value is 
of great importance.  

It is conceivable, that the H-infinity filter becomes a deterministic Kalman- 
filter by reaching its upper limit at 𝛾𝑚𝑖𝑛 = ∞. This can be also proven easily 
based on (31). 

Of course, the H-infinity filter ensures that the energy gain from the 
disturbances to the estimation error is always less than a pre-specified level 𝛾2. 
Thus it is less conservative than the deterministic Kalman-filter. This is its main 
advantage from designer’s point of view.  
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4.3 Verification of the solution obtained for the MFARE via the Hamiltonian-

matrix 

It is possible to verify the solution for the decision variable also via 
calculating the eigenvectors of the Hamiltonian-matrix of MFARE as it was 
explained in Subsection 3.1. 

The resulting Hamiltonian-matrix for MFARE in case of  γmin = 4.9698 is  
 

5

 -0.0001 0.0005 0.0000 0.0000 0.0000    0.0000
 0.0000 -0.0016 0.0000 0.0000 0.0000    0.0000
0.0003  0.0000 -0.0001 0.0000 0.0000    0.0003

10
 -0.0228 0.2229 0.0000 0.0001 -0.
0.2229 -2.1747 0.0000 
0.0000 0.0000 0.0000

H  .
0000 -0.0003

-0.0005 0.0016 0.0000
0.0000 -0.0000  0.0001

 
 
 
 
 
 
 
 
   

 
At first we calculate the eigenvalues and the corresponding eigenvectors of 

the Hamiltonian-matrix via a similarity transformation. The resulting matrix, 
containing the eigenvalues is  

 

Secondly, we have to build a (2𝑛, 𝑛) matrix 𝑉, which contains the 
eigenvectors of the Hamiltonian matrix corresponding to the eigenvalues with 
negative real parts (23). 

The submatrices of V, which contain the eigenvectors, are: 
 

 

 

 
Let 𝑄𝐻  denote a solution calculated using the Hamiltonian-matrix, which has a 

solution  

 
 

 

 

From the gamma-iteration in Subsection 4.2 we got an optimal solution as  
 
 
 

1
2 1

258.0838 -32.9691 -0.7468
-33.7848 691.7261 1.7722 .
-0.7809 1.6763 0.0932

HQ V V 

 
 

 
 
  

1 2

0.0005 0.0039 0.0029  0.1749 0.9986 0.8475
- 0.0014  0.0001 -0.0003  , -0.9846 -0.0516 -0.5171 .
0.0004 0.0062 -0.1194 -0.0027 -0.0023  -0.0139

V V

   
   

 
   
      

 ( ) 150.0393, -150.0393, 6.8273, 0.4622, -0.4622, -6.8273 .idiag H diag 

257.2236 .2216
.2216     699.2

  -39   -0.7934
-39 .6744 .
-0.

298 1 
.6744 7934  1   0.0934

Q

 
 


 
  
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It can be stated , that matrices  𝑄𝐻  and Q  are slightly different. This leads to 
the conclusion of plausibility of an optimal solution Q obtained by the gamma- 
iteration. 

4.4 Solution for the MFARE by LMI  

In Section 3 we introduced the method for finding the optimal solution for 
MFARE implemented analytically as an interval halving algorithm. However, 
the task of minimization results in the task of computing a system of matrix 
equations which is not always convex [8].  

Thus, let us now consider the problem of finding the optimal solution for the 
filter gain by solving of MFARE formulated as a LMI. 

To handle it, several commercial software tools can be chosen. In this study 
the LMI Control Toolbox of MATLAB has been used, which provides a set of 
convenient functions to solve problems involving LMIs [23]. 

Generally, the solution of LMIs is carried out in two stages in MATLAB. At 
first, the decision variables of the LMI are defined, then it is defined the system 
of LMIs based on these decision variables. These are mostly represented in 
matrix form. In the second stage, the optimization problem is solved 
numerically using the chosen solvers as it is explained in Section 2. 

In our case study the LMI in (21) is formulated as a linear objective 
minimization problem. That is, the task is to minimize a linear function of 𝑥 
subject to an LMI constraint:  

                                                            (32) 
 

The LMI for the MFARE derived in Section 2 is described in (21). 
In the following it is presented the MATLAB script for the linear objective 

minimization problem of the MFARE  
 

 

 

 

 

 

 

 

 

 min : ( ) 0 .T

x
c x F x

% matrices of the proposed LTI-system 

A=[ -5.2643, 4.7316, 28.5021; 50.7697, -156.9827, 0; 0 , 0.4287, -9.0909 ]; 

B=[1.6111e+009, 0, 0; -1.5720e+010, 8.3514e+004, 146083000; 0, -141.6784, 0];  

C=[1, 0 ,0 ; 0, 1, 0 ; 0, 0, 3.924e-005]; Cz=[5, 0, 0; 0 ,5, 0; 0, 0, 25];  

Bd=[-47.7946 0 0  ; 466.3408 0 0  ; 0 0 0 ]; 

I=eye(3); 

 % specifying the matrix variables of the LMI 

 setlmis([]); 

 R = lmivar(1, [size(A, 1) 1]); 

 % constructing the system of the LMI 

 gamma2 = lmivar(1, [1, 1]); 
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 lmiterm([1, 1, 1, R], 1, A, 's');          % R’A+AR 

 lmiterm([1, 1, 1, 0], -C'*C);             % -C’C 

 lmiterm([1, 2, 1, 0], Cz);                  % Cz 

 lmiterm([1, 2, 2, gamma2], -1, I);    % -gamma^2I 

 lmiterm([1, 2, 3, 0], 0);                     % 0 

 lmiterm([1, 3, 1,R], Bd', 1);             % Bd’R 

 lmiterm([1, 3, 2, 0], 0);                     % 0 

 lmiterm([1, 3, 3, 0], -1);                    % -I 

 lmiterm([-2, 1, 1,R], 1, 1); 

 lmiterm([-3, 1, 1, gamma2], 1, 1); 

 % obtaining the system of the LMI 

 lmimingfilt5 = getlmis;   

 c = mat2dec(lmimingfilt5, zeros(size(A, 1), size(A, 1)), 1); 

 % the relative accuracy of the solution 

  options = [1e-3 , 0, 0, 0, 0]; 

 % solving LMI 

 [alpha, popt] = mincx(lmimingfilt5, c,  options); 

 % the optimal value for the decision variable "R"' 

 Ropt = dec2mat(lmimingfilt5, popt, R); 

 

 % the optimal value of the gamma 

 gopt = dec2mat(lmimingfilt5, popt, gamma2); 

 % the obtained γmin  

 gammaopt=sqrt(gopt) 

 % the optimal solution of the LMI  

 Qopt = inv(Ropt); 

 % the calculated filter gain 

 K = Qopt*C' 
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4.5 Comparison of the performance of the LMI with the performance of the 

gamma-iteration 

The efficiency and robustness of the optimal solution are interesting aspects 
of the fault detection filtering problem. Thus, two different methods for solving 
MFARE are compared, namely the LMI formulated as a linear objective 
minimization problem and the numerically implemented gamma-iteration.  

The results of the MATLAB simulations are shown in Table 2. 
 

Table 2: Comparison of the different solutions for the MFARE  
 

Performance LMI as an linear objective 
minimization problem gamma-iteration 

𝛾𝑚𝑖𝑛 4.9704 4.9698  

K 278.80   -52.70      0.0000 
-52.70   1308.4      0.0000 
-0.500   0.600        0.0000 

257.2236  -39.2216   0.0000 
-39.2216   699.2298  0.0000 
-0.7934     1.6744      0.0000 

Eigenvalues 
of Q 

0.3 
276.1 
1311 

0.0017 
8.5275 
334.2637  

‖𝐻𝜀𝜔(𝑠)‖
∞

 4.4345 3.4047 

number of 
iterations 

9 21 

computation 
cost (sec) 

0.1 1 

 
From the simulation and results of the comparison of the two different 

methods it can be concluded that each one gives an optimal solution. To be 
more precise, the minimization algorithm has been applied until the satisfaction 
of the positive definiteness. As it can be seen in Table 2, the smallest 𝛾𝑚𝑖𝑛 value 
could be reached using the simple gamma-iteration, but the result obtained this 
way is just slightly different from the result obtained using LMI. However, the 
higher filter gain obtained in case of LMI suggests that the filter may be faster 
but less effective against disturbance. On other hand the burden of successive 
numerical computation of the quadratic matrix equality resulted in a significant 
computation cost. It has disadvantages despite its simplicity. From the results it 
is visible that modern computation methods as LMI are more capable to handle 
such complex mathematical problems as the solution of the MFARE. From the 
results mentioned above, it is conceivable that LMI-s are effective and powerful 
tools for handling complex but standard problems such as rapidly computing of 
a global optimum with some specified accuracy.  
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The technique of gamma-iteration, despite its slowness, is easy to be 
handled. Concretely it gives more flexibility to examine the solution for 
MFARE. For example, it is easy to analyze the impact of the gamma value on 
the number of iteration steps or the impact of changing of the disturbance on the 
optimal solution. 

One can easily perform experiments and get answers e.g. to the following 
questions: How does the iteration converge? How do the eigenvalues of the 
decision variable change? How close are they to the imaginary axis? How are 
they distributed? How does the filter gain change by reduction of the value of 
gamma? All these issues can be easily examined, step by step during the 
iterations. 

4. Conclusion 

In our paper we performed a benchmark based on collected concepts for 
solutions of MFARE by conventional gamma-iteration and LMI. From the 
simulation results of LMI, it can be concluded that it is well capable for 
computing the global optimum of the quadratic cost function rapidly with some 
specified accuracy even if this is to be done in the case of MFARE. Both 
methods, i.e. the gamma-iteration and the LMI formulation as a linear objective 
minimization problem, are capable for solution of MFARE. Moreover, they 
deliver only slightly different results. However, the LMI leads to an optimal 
solution faster, in about 100ms.  

The analytically implemented gamma-iteration, despite its slowness, gives 
much more flexibility to examine the minimization process. For example, it is 
easy to examine the impact of the iteration steps or the impact of changing of 
the disturbance on the optimal solution. For this reason we propose the use of 
both approaches, that is, using the gamma-iteration in the preliminary stage in 
order to perform an analysis and using LMI in the stage of the synthesis to 
perform the implementation. Our further work will include an extension of our 
LMI approach to a switched linear system. 
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