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Abstract: Gear hobs are the most widely and frequently used gear cutting tools. 
During the time passed between the moment of invention (Schiele, 1876) and the 
present, gear hobs reached a considerable evolution regarding the geometry, the profile 
of the edge, the relieving technologies finalizing in the latest constructive and design 
solutions. This paper deals with the calculus of the edge profile in the case the basic 
worm of the hob has involute helicoid surfaces. In order to obtain a constant grinding 
allowance on the relief faces of the gear hob teeth it is necessary to compute the edge of 
the roughing relieving cutter. The equations are deduced considering that the 
provenience involute worm is a one teethed helical gear with shifted profile. The 
presented mathematical model proves that linearizing the relieving cutter profile is not 
an adequate solution if aspiring to higher precision. 
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1. Basic concepts regarding the precision of meshing with gear hobs 

Gear hobs are the most widely used cutting tools in the gear industry. It was 
invented in 1856 by the German Christian Schiele. The application of the 
invention followed later because that time the existing manufacturing 
technology was not able to ensure the constancy of the cutting edge profile after 
the re-sharpening operation. This handicap was eliminated by the invention of 
the relieving lathe, accorded to Friederich Mueller, an American engineer from 
Hartford, Connecticut (US Patent 1299207 A, 1916.) 

The widely use of this excellent gear cutting tool started with the invention 
of the German engineer Herman Pfauter, who built up in his factory situated in 
Chemnitz the first universal gear hobbing machine. 

The mathematical models of the gear hobs were widely studied that after. 
Technical literature contains an immense quantity of studies, papers, 
dissertations regarding different aspects of the geometry, profile precision and 
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constructive solutions. Nowadays a large diversification of constructive 
solutions are on hands. This solutions offer large machining possibilities with 
increased cutting performance including the novel and very popular dry cutting 
technology.  

Regarding the mathematical model of the cutting kinematics, two major 
geometric approaches can be defined. The first model considers that gear hob’s 
generating surfaces are permanently tangent to the surfaces of a generating rack, 
and the rack is moving along its pitch line due to the helix effect that appears 
while the hob is rotating about its own axis [1, 2, 5]. Introducing the axial feed, 
the edges of the hob will sweep the all rack tooth surface. This model is almost 
everywhere accepted. As a consequence the meshing with a gear hob and with a 
planning comb is considered often to be equivalent. Litvin has demonstrated 
that this supposition can be accepted only as an approximation, because the 
helix effect introduces certain profile modifications [15]. 

The second geometric hypothesis, more appropriate in opinion of the 
authors, considers that gear hob’s generating surface coincides with a one to 
utmost 5 teethed helical gear’s tooth surface. This helical gear constitute with 
the machined gear a hyperbolic gear pair. In case of cutting of an involute gear, 
the generating surface most coinciding with an involute worm, meshed with a 
standard generating rack [4, 12, 13, 14]. 

As long as modern computing and simulation methods and environments 
were developed, research regarding the profile of cutting edge and cutting 
wedge surfaces marked a new evolution. Different mathematical models were 
developed regarding the meshing between a gear and an arbitrary rack [3, 8]. 
Nowadays sophisticated numerical control based manufacturing technologies 
allow the achieving of the most complex surfaces [9, 10]. 

However, standards indicate only the basic cutter profile of the gear hob [6] 
admitting that this is equivalent with the basic rack profile. Gear hob profile is 
considered to be the task of the manufacturers. 

Regarding the peculiar aspects mentioned in the synthesis above the goal of 
present paper is to answer in which cases the linearization of the roughing 
relieving cutter edge or the grinding wheel profile is possible. In the followings 
the hypothesis of the involute basic worm of the gear hob is admitted. 

2. Theoretical and geometrical aspects of the basic worm’s surface 

Based on the theoretical achievements presented above, this paper starts by 
admitting the second hypothesis described above related to gear hobbing. As a 
consequence, generating surface of the gear hob is an involute helicoid that is 
meshing with a standard rack, whose standard dimensions are defined in the 
normal section [11]. The pitch cylinder of the hob’s basic involute worm is 
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tangent to the pitch plane of the rack, while the axis of the worm is 
perpendicular to the direction of linear motion of the rack in case of reciprocate 
meshing. Here the main helix of the involute thread closes with the pitch line 
the angle 0 , equal with the pitch helix angle of the involute thread [13, 14]. As 
a consequence the rack teeth declination angle becomes 00 2   . In case of 
one start thread the value of the declination angle must be smaller than 230’ 
that leads to a much brooded rack profile whose profile angle approaches 
almost 84. The consequence is that the difference between the radiuses of the 
basic circle and the pitch circle are improper large. This fact involves improper 
involute curve segments as real generatrix-point manifolds for the involute 
helicoid surfaces as it is shown in Fig. 1. 

It can be observed that the properties of a worm thread profile limiting 
involute arch are completely different from the involute arches that limits a 
classical spur gear tooth profile [16]. The profile shifting modifies the tooth 
thickness on the pitch circle. In case of one starting thread worm and zero 
profile shifting this is equal to the half of the pitch circle circumference, as it is 
stated by the position of the involute curves 1 and 1’. If a positive profile 
shifting exists the tooth thickness is increasing. Therefore pitch circle points of 
the tooth profiles present not anymore diametric symmetry as it can be observed 
on curves 2 and 2’. Due to the particularly involute curve segments situated 
between the pitch and the addendum circle, in contrarious with the case of 
involute tooth, the topland width increases while increasing the profile shifting 
parameter. Due to this fact, increasing the profile shifting leads to a massive hob 
tooth that is disadvantageous as it generates large dedendum transition curves 
on the meshed gear tooth profile.  From this reasons the basic worm of the gear 
hob is accepted as a helical involute one teethed Willis type gear. 

The classical parametric equations of the involute curve [11, 15] are not 
advantageous for computing the useful subset of the involute helix surface due 
to the fact that the rolling parameter of the involute generating line – the  angle 
– get there values starting from zero, and the useful subset mentioned before 
needs values grater then  radians more difficult to be perceptible. According to 
this, involute arch 1 is drawn by the extremity A1 of the segment AA1, while the 
half-line opposite to AA1 rolls on the basic circle. 

For an arbitrary position set by the value  of the rolling parameter, the 
segment AA1 becomes BB1 and point where B’ matches the following 
coordinates: 
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Figure 1: The complete generating curve of an involute worm (radial section) 

 
Here the argument of sine and cosine function has the form 
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where x
  denotes the profile shifting. 
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Parameter j differentiates the involute arches who define the cross section of 
the worm. If 1j  equations (1) refer the arch 1, for 1j  they describe the 
opposite arch 1’.  

Using the second fundamental equation of the involute trigonometry [16] or the 
parametrical polar form of the involute, 
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it can be proven that topland width increases with the profile shifting. 
The equations of the involute worm surfaces are obtained through a roto-

translation of the involute profile along the axis z. Excepting the transformation 
matrix [11] and the elementary calculus the equations result in the following 
form: 
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It is easy to observe that the structure of equations (4) is similar to equations 
(2) of the involute. However involute worm gear’s equations can be re-written 
using the equations of the generating line that rolls on the basic helix [7], but in 
the following calculuses with this would lead to more complicated equations. 

3. The gear hob derived from an involute worm 

As defined in the literature gear hob is a worm that is endowed with cutting 
properties. Therefore cutting edges and cutting wedge surfaces must be created. 
The simple intersection of the worm surface with another helicoid is not enough 
while relief surfaces giving positive relief angles will not be produced. For 
achieve this, relieving operation must be applied. Nowadays relieving is 
realized on relieving lathes, both the roughing by cutting and the final grinding. 
The tooth resulted after the relieving operation present helicoid surfaces based 
on a conical helix directory. Practically, re-sharpening ensures the edge form 
constancy [7, 12]. Theoretically it was proven that the edge form of the spiroid 
gear hobs variates with the re-sharpening [11]. This effect appear at the 
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cylindrical gear hob edges too, but it is neglectable since the modification is 
lower than 410  mm. The problem appears due to the fact that the re-sharpened 
edge cannot rebuild the original involute worm in the gearing process. Re-
sharpening operations lead to diameter decreasing, helix angle increasing and as 
a consequence – to the modification of the curvature of helical surfaces of the 
equivalent worm. The equivalent worm can be defined as a worm whose helical 
surfaces include the edges of the re-sharpened hob. Errors of the involute profile 
obtained by hobbing, in case of admitting the perfect involute helical worm, are 
calculated in [15]. 

The main question that can be put regarding the theoretical and the 
geometrical peculiarities described before is how the best approximation of the 
involute worm can be obtained. The answer is given here by the model of the 
cutting edges. First cutting edges are obtained if intersecting the surfaces of the 
worm given by equations (4) with a helical rake face whose main helix line is 
perpendicular to the main helix line of the worm. Thus, the pitch C

p  of the rake 
face results from the condition of perpendicularity applied on the outstretched 
pitch cylinder [7]: 
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The rake face of the hob is a linear helicoid whose generatrix is a straight 
line intersecting the axis and perpendicular to this. The directory of the surface 
is a cylindrical helix that fits the pitch cylinder and perpendicular to the pitch 
helix. Mathematically it can be described by the rototranslation of a line 
coincident with axis x using a helical direction opposite to the worm. After 
elementary calculus the equations of the rake face are the followings: 
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Fig. 2 shows the helix surfaces of the involute worm intersected by the 
helical rake face. 

The equations of the theoretical cutting edges result from equations (4) and 
(7). Here a dependence between the independent parameters u,  of the helix 
surfaces l

  and r
 must be obtained. The easiest way is to transform the rake 

face’s equations in an implicit form by eliminating parameters u and t:  
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Figure 2: The involute worm thread limiting surfaces and the rake face 
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Now the coordinate functions (4) are implemented in equation (7) that becomes of 
form   0,  u . In order to simplify the expression of the solution, some variable 
changings are necessary. Thus, 
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and using this form the solution of   0,  u  regarding to parameter u is the 
following: 
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Finally, replacing the parameter u in (4) by the function (9) and using the 
transformations (8), the unified equations for both edges result as: 
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The edges and the rake face are shown in Fig. 3. 
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Figure 3: The theoretical cutting edges and the rake face 

4. Manufacturing peculiarities 

As well as known, relief faces of the gear-hob teeth are obtained by relieving 
turning and grinding, on the relieving lathe [1, 2, 5, 7, 17]. In order to reduce 
the manufacturing costs the investments in relieving operations are to be 
minimized. A fair solution can be obtained if the relief faces are linearized e.g. 
the generatrix of the surfaces must be a straight line. This leads to the aim of 
linearizing the cutting edges, while in this case the costs with the relieving 
cutter and the grinding wheel are considerably reduced. Even in case the 
precision of the edges are not acceptable still result a rough surface that presents 
a quasi-equal grinding allowance repartition that is advantageous. As a 
conclusion, the linearization of the cutting edges produce lowered 
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manufacturing costs or a higher precision of the grinding realized with a wheel 
dressed about a curved profile. 

Let’s suppose that the cutting edge results as intersection of two 
perpendicular planes 
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Now let’s consider N equidistant points along the edge chosen as subject of 
linearization. The more the edgepoint is distanced from the line, the absolute 
value of the right side of equations (11) raises. As a consequence, the objective 
function can be defined as the sum of squares of left sides: 
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The objective function written in this form cannot be used, due to the 
symmetry related to index i. This causes the rank of the linear system of six 
equations built up of the partial derivatives of F is only 3 while the number of 
unknowns,  2;1,,, i

iii
g  is 6. The given situation can be overstepped by 

applying the Lagrangian multipliers method. Accepting the approximating line 
resulting as intersection of perpendicular planes, it is obvious that  
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Using the constraint (13) whose subject is function (12) the new objective 
function results as 
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The system built up of the partial derivatives of the objective function in 7 
unknowns is the following: 
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This is a nonlinear system that is recommended to be handled numerically. 
In order to minimize the number of iterations the initial position of the 

intersected planes is chosen in the vicinity of the edgepoint situated on the pitch 
cylinder. Let’s denote 0R  the radius of the pitch cylinder. Using the x and y 
coordinate functions (10), the value of the parameter 1  results as 
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A good first approximation for the normal vectors of the planes can be deduced 
involving the geometrical elements presented in Fig. 4. Let’s denote A the 
intersection point of the pitch cylinder generatrix 00    with that tangent line of 
the rake face’s pitch helix 00    that intersects the axis x. 
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Figure 4: The geometrical elements involved in the computing of the first solution 

 
The plane t

P is built on the axis x and the pitch helix tangent. Planes r
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P are perpendicular to t

P  intersecting this along the profile lines of the 

normal rake, declined by 0 to the axis x. Thus a
m
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coordinates of points E and F with respect of the values -1 and 1 of the switch 
parameter j are 
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In the same way the direction unit vectors of the profile lines can be written as 
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Using the normal unit vector of the plane t
P of coordinates  
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and expression (18), the normal vectors of the planes  r
P  respectively l

P can be 
computed as the cross product lrt ,un  . Using the coordinates (17) of the points E 
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respectively F the equations of the planes mentioned before can be written. 
Applying elementary transformations to these the first approximation of values 

2,1,,, i
iii

g  will be obtained. 

5. The distribution of the distances from the theoretical edge to the 

approximant optimum. 

Let’s denote the solution of the system (16) built up for the left or the right 
edge with  0
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by the correspondent values given through the solution of the system (16), the 
coordinates of the approximant line’s characteristic point M result as follows: 
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Here, for the simplifying of the formulae let’s accept 0t . 
The error is defined as the distance from the theoretical edgepoint to the 

approximant line. Recognizing here the classical analytical geometry problem of 
the distance from a given point to a line it can be written the distance as the module 
of the cross product computed with the unit vector e of the line and the vector 
binding the external point A of the theoretical edge with an arbitrary point of the 
line, in this case M. Thus, it can be written the distance as 
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6. Numerical results 

The mathematical model described above was tested for a gear hob derived 
from a basic involute worm of one tooth, for a normal module value mm5

n
m

and a normal rack profile of  200 . Eight values of the pitch helix angle were 
considered in arithmetic progression, starting from  20  till 5430   with an 
increment of 510  . The computed distributions of the errors are presented in 
Fig. 5. 
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Figure 5: The geometrical elements involved in the computing of the first solution 

 
Studying the shape of the error distribution curves the following remarks can 

be made: 
 the best approximation lines doesn’t intersect the theoretical edge; 
 the error curves present a local maximum in the vicinity of the 

theoretical edgepoint situated on the pitch cylinder; 
 the error’s absolute maximum values are approximately equal and 

they are situated near the extremities of the theoretical edge;  
 the maximum value of the error increases exponential with the pitch 

helix angle. 
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If computing the maximum error value for the intermediate value of the 
helix angle 5420  and for the module values of 1.25, 2.5, 5, 8 and 10 mm 
(according to DIN780) it will proved that the error is in linear dependence with 
the module. 

The results above confirm the maximum error approximating formula must 
be of following form: 

yxmC 0e        (23) 

Using the data deduced on the parameter values described before, formula (23) 
becomes 

m077046,2
0324841,1 e       (23) 

with a level of Pearson’s r-correlation of 0,999990362592. 

3. Conclusion 

As the mathematical model confirms, the pitch helix angle has a strong 
influence on the edge profile errors when the linearization is attempted.  

The small values of the helix angles, e.g.  20  the errors are acceptable, 
but the pitch diameter of the hob strongly increases that leads to exaggerated 
material consumption, especially in case of large modules.  

By helix angles larger than 2 , for finishing precision the linearization of the 
edges, the relieving using straight line profiled grinding wheels is not admitted. 
Here curved tooth profiles must be machined. 

The linearized edges lead to irregular convolute worms, because they are not 
crossing lines. 

The empirical formula can be used for computing the probable value of the 
maximal error while the edges are linearized. If the admissible value of error is 
given, formula (23) allows the computing of the maximum value of the pitch 
helix angle. Using this value, the frontal module and the pitch diameter of the 
theoretical involute worm can be computed. This led to the smallest possible 
diameters in case of linearized edges. If the addendum diameter exceeds the 
maximum admissible value, the decreasing is possible only if curved edges are 
applied. 
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