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Abstract: In this paper, we introduce a three-dimensional lattice-based computational 

model in which every lattice point can be occupied by an agent of various types (e.g. 

cancer cell, blood vessel cell or extracellular matrix). The behavior of agents can be 

associated to different chemical compounds that obey mass-transfer laws such as 

diffusion and decay in the surrounding environment. Furthermore, agents are also able to 

produce and consume chemical compounds. After a detailed description, the capabilities 

of the model are demonstrated by presenting and discussing a simulation of a biological 

experiment available in the literature. 
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1. Introduction 

Computational modeling of biological processes such as tumor growth or the 

onset of drug resistance is a widely researched area. These complex mechanisms 

are usually explained by both intracellular alterations and interactions with the 

local environment, however, many aspects of these events show nonlinear 

behavior, which makes laboratory experiments hard to design and perform. Not 

mentioning the cost aspects, mathematical and computational models can be 

efficiently used to pre-test hypotheses of different biological phenomena which 

cannot be carried out in standard laboratory experiments. 

Solid tumors of clinically relevant sizes consist billions of cells. Simulating 

the evolution of such cell conglomerates is computationally challenging, 

especially if we wish to follow the faith of each cell one by one. Agent-based 

modeling is a reliable and frequently used technique to simulate the collective 

behavior of many particle-like individual objects like biological cells. 
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Nowadays, one may choose either from many out-of-the-box simulation 

frameworks [1–3] or computational models presented in the literature depending 

on the purpose. It was shown, that agent-based simulations can be efficiently used 

to study the properties (e.g growth, pattern formation or death) of a relatively low 

number of agents [4, 5] as well as emergent behavior of epithelial cell cultures 

[6], just to mention a few possibilities. However, performing simulations with a 

large number of cells (e.g. simulating a few mm3 of tissue) is still computationally 

challenging. To overcome this problem, models can be tailored for high 

performance computing architectures [7, 8] or can be simplified significantly to 

be feasible to run on a standard workstation computer [9]. 

In this paper, an agent-based computational model of cells coupled to 

differential equations governing the mass transport of chemical compounds, 

especially designed for workstations and laptop computers is presented. As a 

trade-off between the size of the simulated space and computational performance, 

many features of the agents are greatly simplified. The agent-based part of the 

model as well as the differential equations are described in Sec. 2. The effect of 

choosing different parameters is presented in Sec. 3A and 3B. To demonstrate the 

capabilities of the coupled model, the simulation of tumor hypoxia, a process in 

which cells inside of a tumor spheroid perish due to the lack of oxygen is also 

presented in Sec. 3C. 

2. Model description 

A. On-lattice agent-based model 

The model is defined on a three-dimensional regular lattice 𝐿 ⊂  𝒁3 on which 

sites can be occupied by single agents in a similar way as presented in [9]. It was 

shown, that this approach highly reduces the computation costs of the simulation 

by ignoring the mechanical characteristics of the agents without losing the 

relevance of the model. 

The basic unit of the model is an agent representing a biological cell. Agent 𝑖 
is defined by its position 𝐱𝑖 ∈ 𝐿, genotype 𝜃𝑖 ∈ Θ, phenotype 𝜙𝑖 ∈ Φ, maturity 

stage 𝑚𝑖 ∈ 𝒁0
+, duplication time 𝜏𝑖 ∈ 𝑹

+, motility 𝜈𝑖 ∈ 𝑹0
+ and aggressivity 𝛼𝑖 ∈

[0,1]. 
Position 𝐱𝑖 defines the site which is fully occupied by 𝑖, therefore 𝐱𝑖(𝑡) ≠

𝐱𝑗(𝑡) when 𝑖 ≠ 𝑗 for all 𝑡 ∈ [0, 𝑇max]. Genotype set Θ defines a collection of 

possible cell types, such as healthy cell, cancer cell or blood vessel cell. Different 

agent types adhere to different rule sets, for instance it is possible to define rules 

that only apply to blood vessel cells. Phenotype 𝜙𝑖 defines the current behavior 

of agent 𝑖 (e.g. the rate of production of a chemical compound). 
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Grid spacing 𝑙𝐿 defines the fineness of the simulated space and it can be 

directly related to the volume of a biological cell. This parameter also influences 

the resolution of the microenvironment (see Sec. 2D). 

B. Cell motility 

Cell movement is modelled by performing motility trials on each cell (see 

Sect. 2E for more details). Motility 𝜈𝑖 characterizes the ability of agent 𝑖 to move 

towards another site of 𝐿. A motility trial performed on agent 𝑖 consists of 

(i) calculating a displacement probability 

 𝑝𝑖 =
𝜈𝑖⋅Δ𝑡𝑚

𝑙𝐿
, (1) 

(ii) randomly selecting a neighboring site 𝐱𝑖
new of 𝑖,  

(iii) updating 𝐱𝑖 = 𝐱𝑖
new with probability 𝑝𝑖 only if 𝐱𝑖

new is an empty site. 

 Hence agent 𝑖 with no neighboring sites moves with a characteristic velocity 

𝜈𝑖. Conversely, if all neighboring sites of 𝑖 are occupied then 𝐱𝑖 does not change 

(i.e. agent 𝑖 turns into stationary until at least one of its neighboring site becomes 

vacant). 

C. Cell proliferation 

 Maturity stage 𝑚𝑖 and duplication time 𝜏𝑖 is related to a process called cell 

proliferation during which a biological cell replicates itself periodically. This 

could be modeled as a single-step transition with probability Δ𝑡𝑝/𝜏𝑖, which 

correctly reproduces the mean growth rate of the overall population. However, 

the inter-replication times of 𝑖 follow an exponential distribution, which is 

biologically not plausible as it can be seen in Fig. 1. 

 To make a simple yet reasonable model of cell duplication we use the 

multistage concept proposed in [11] by splitting the cell cycle into 𝑘 independent 

exponentially distributed stages. Then, the time to progress through these stages 

is exponentially distributed, therefore, if the transition rates between stages are 

identical, the cumulated progression time is Erlang distributed with scale 

parameter 𝜏𝑖/𝑘 and shape parameter 𝑘. Fig. 1 shows that experimentally observed 

cell cycle times (the time difference between successful duplications of a cell) 

can be better described using this concept. By choosing appropriate values for 𝜏 
and 𝑘 various cell types can be described accurately. 

 In the simulations, when agent 𝑖 finishes the progression through its cell cycle 

(𝑚𝑖 = 𝑘) it undergoes a replication trial as described in the next paragraph. 

 

The aggressivity value 𝛼𝑖 influences this process by defining the probability of 

the following scenarios. 
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(S1) Agent 𝑖 may replicate into an empty neighboring site with probability 

1 − 𝛼𝑖. 
(S2) Agent 𝑖 replicates unconditionally with probability 𝛼𝑖 by 

determining the direction which belongs to the minimal number of 

other agents which are needed to be shifted by one site to make an 

empty site for replication. 

During this trial process, 𝑖 may be copied to a randomly selected neighboring site. 

If the selected site is empty or becomes empty after a shifting procedure described 

as (S2), then a duplicate of 𝑖 is placed into that site, otherwise the trial is repeated 

after Δ𝑡𝑝 simulation time. 

 

Figure 1: Distribution of experimentally observed duplication times in A549 (left) and BEAS-2B 

(right) cell cultures reproduced from the data available in [10]. Note the poor agreement between 

the best-fit exponential distribution (𝜆𝐴549 =
1

20.1
 and 𝜆BEAS-2B =

1

25.0
, blue dashed line) and the 

observed data. Fitting a gamma distribution (or specifically, Erlang distribution, red solid line) 

describes the data more accurately. 

D. Diffusion-decay model 

 To describe the chemical processes in the environment of biological cells (the 

so-called microenvironment) we numerically solve partial differential equations 

similar to [12]. Processes including diffusion, decay and concentration 

modifications caused by agents (e.g. vasculature or agent uptake and secretion) 

of chemical compound 𝜌𝑗 are governed by  

 
∂𝜌𝑗

∂𝑡
= 𝐷𝑗∇

2𝜌𝑗 − 𝜆𝑗𝜌𝑗⏟        
diffusion and decay

  + ∑agent 𝑖 𝟏𝑖(𝐱)[𝑆𝑗
𝑖[𝜌𝑗

∗ − 𝜌𝑗] − 𝑈𝑗
𝑖𝜌𝑗]⏟                      

agent secretions and uptakes

 (2) 

on Ω ⊂ 𝑹3 with no-flux boundary conditions and 𝜌𝑗(𝐱, 𝑡) = 𝑓𝑗 in Ω. The first 

term is responsible for the diffusion and the natural decay of compound 𝑗, while 

the second term modifies 𝜌𝑗 in 𝐱 ∈ Ω only if 𝐱 is overlayed by agent 𝑖. Symbol 
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𝜌𝑗
∗ denotes the concentration at which compound 𝑗 saturates. A detailed 

description of how this PDE model works can be found in [12]. Note, that both 

coefficients 𝑆 and 𝑈 can be chosen arbitrary and independently from 𝑖 and 𝑗, 
therefore it is possible to define agents that only alter some of the concentrations 

of compounds in the microenvironment. 

E. Time scales and implementation 

 The simulation of the model is a sequence of calculations and transitions for 

each 𝑡 ∈ [0, 𝑇max]. The following time units are used. 

(i) Δ𝑡: defines the base time step of the simulation. Numerical calculations 

for mass transport discussed in Sec. 2D are based on Δ𝑡. The magnitude 

of this unit ranges from milliseconds to seconds. 

(ii) Δ𝑡𝑚: defines the time step of motility trials. When 𝑡 ≡ 0(mod Δ𝑡𝑚) a 

motility trial is performed on all agents as detailed in Sec. 2B. The 

magnitude of this unit ranges from seconds to minutes. 

(iii) Δ𝑡𝑝: defines the time step of proliferation trials. When 𝑡 ≡ 0(mod Δ𝑡𝑝) 
a replication trial is performed on all agents that has reached the end of 

the cell cycle as detailed in Sec. 2C. The magnitude of this unit ranges 

on a few minutes.  

The model was implemented in C# using the standard framework packages. 

Simulation states were stored regularly on the local disk, and snapshot images 

were rendered using Mayavi data visualizer [13]. Numerical approximation of the 

solution was obtained by a finite difference discretization of (2) using a 

parallelized FTCS explicit method. This generally used scheme provides a good 

trade-off between accuracy and programming effort [14]. 

3. Results 

A. The effect of motility on growth characteristics 

 In the absence of chemoattractants or other signals, isolated biological cells 

have been observed to perform a random walk [15]. This behavior can be easily 

reproduced by the model detailed in Sec. 2B. However, agent’s characteristic 

velocity 𝜈 not only influences the movement of the detached agents, but also has 

an effect on spheroid growth. 

 Multiple simulations were executed, starting from one agent placed in the 

center of the simulation space. No chemical compounds were defined, therefore 

spatially isolated agents did not influence each others’ behavior. When an agent 
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replicated, the descendant inherited all parameter values from its ancestor, hence, 

the values did not change during the simulation. 

 Fig. 2 shows representative images of how different values of 𝜈 alter the 

diameter and regularity of a growing spheroid. All relevant parameters of the 

agents are given in the caption of the figure. As expected, low motility values 

(𝜈 ≈ 0  µmh-1) produce regularly shaped spheroids with sharp surface limits, 

while high motility (𝜈 ≫ 0  µmh-1) results in a more diffuse border and scattered 

shape. Furthermore, the calculated growth rate of the spheroid also becomes 

larger due to the increased number of empty sites inside the spheroid. 

B. The effect of duplication aggressivity on growth characteristics 

 Most healthy cells are only able to replicate themselves if there is enough 

empty space in their surrounding environment. On the contrary, cancer cells are 

often characterized by the loss of ability to stop proliferation even in a fully 

occupied environment. To capture this behavior, we introduced the model 

parameter 𝛼 which describes the “aggressivity” of an agent during duplication. 

 When agent 𝑖 is marked for replication, it randomly selects a strategy 

depending on 𝛼 as described in Sec. 2C. By correctly choosing the value of 𝛼, it 

is possible to simulate tumor spheroids growing at different rates, even if the 

agents have the same 𝜏 mean duplication times. Low values of 𝛼 lead to a power-

law-like kinetics, when the diameter of the spheroid grows linearly, hence the 

number of agents 𝑁 ∝ 𝑡3. This is because only agents on the surface of the 

growing spheroid can replicate due to insufficient space inside. 

 To test the behavior of our model regarding to parameter α, we started 

simulations from only one agent, and their parameters were inherited without 

modification on duplication as described in Sec. 3A. 

 We found that using high values of the parameter (𝛼 ≈ 1) the number of 

agents grows exponentially, and newly created agents are distributed uniformly 

inside the spheroid as it can be seen in Fig. 3. Parameters of the agents as well as 

their approximate number can be found in the caption of the figure. 

C. Microenvironment-coupled state transitions of the agents 

We simulated the oxygen consumption of a tumor spheroid grown in an 

oxygen-rich environment. As it was presented in [16], solid tumors form distinct 

layers of cells from their surface to inner regions. The limited availability of 

oxygen causes cell hypoxia followed by necrosis (a type of cell death) in the core 

of the spheroid. Biological experiments confirmed the relationship between the 

thickness of the oxygen-rich outer layer called the viable rim and the diameter of 

the tumor spheroid. 
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(a) Without motility (𝜈 = 0  µmh-1) the growing spheroid forms a dense ball with a well-defined 

sharp boundary, but the diameter of the spheroid increases slowly because only the agents on the 

surface are able to duplicate. 

 

    

(b) With moderate motility (𝜈 = 5  µmh-1) the growth rate of the diameter is clearly increased 

without the spheroid becoming significantly irregular or scattered. This is mainly because the 

diameter of the spheroid grows on the same magnitude as the traversable path of the agents via 

diffusion-like random motion. 

 

    

(c) High motility (𝜈 = 20  µmh-1) results in a sparse, less regular cluster with scattered border. In 

this situation, agents are able to travel longer paths between two successive duplication events. 

Figure 2: The effect of different values of 𝜈 on a growing spheroid started from a single agent. 

Density diagrams on the left show the proportion of occupied sites at a given distance from the 

center of mass of the cell cluster. Narrow, continuous, steep-tailed plots belong to dense, regular 

spheroids. Note, that colors of the spheroids on the right correspond to the density diagram. 

Parameters used for the simulation: 𝜏 = 24  hours, 𝑘 = 12, Δ𝑡𝑝 = 15  min, 𝛼 = 0. 
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(a) Normal duplication strategy (𝛼 = 0): the 

duplication process is executed only if a 

randomly selected neighbor site is empty. 

Only the agents on the surface of the spheroid 

are able to perform duplication. 

(b) Aggressive duplication strategy (𝛼 = 1): 

the duplication process is always executed, 

even if all neighboring sites are occupied. 

Agents inside the spheroid also duplicate by 

pushing another agent toward the surface. 

 

 

(c) Size of simulated tumor spheroids using different duplication strategies. Using 𝛼 ≈ 0 an initial 

exponential phase is followed by a linear phase – i.e., the diameter of the tumor spheroid grows 

linearly. This phase can be well-described with a power law tumor growth model. When 𝛼 ≈ 1 the 

number of agents in the spheroid keeps growing exponentially even after the initial phase. 

Figure 3: Cross-section of the simulated tumor spheroids and their growth curves using different 

duplication strategies. Simulations were started from one agent and stopped at 𝑇max = 19 days. For 

cross-section images we selected a time point, when approximately 4000 agents were present. 

Agent colors are related to the time passed since the last duplication event of the agent. Parameters 

used for the simulation: 𝜏 = 24  h, 𝑘 = 12, Δ𝑡𝑝 = 15  min, 𝜈 = 0  µmh-1, 𝛼 = 0 and 𝛼 = 1. 
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First, we generated a two-dimensional circular set of cell agents with diameter 

𝑑, as a model of a slice of the whole tumor spheroid. We assumed that the oxygen 

concentration in the surrounding environment is constant during the experiment, 

therefore we marked all non-cell nodes as oxygen sources. This means, that 

oxygen concentration on these outer grid points was constantly 𝜌O2,normal. When 

an agent is present on a certain grid point, it acts as a sink of oxygen, therefore 

oxygen concentration reduces according to (2), however, oxygen concentration 

may also increase due to diffusion from outer regions. 

When the oxygen concentration on an inner grid point inside the spheroid falls 

below 𝜌O2,critical the corresponding cell agent (if the site is occupied) changes its 

type and becomes necrotic. Necrotic type agents are unable to move or duplicate, 

and the transition is irreversible. As a consequence of these two counter-

directional processes – oxygen consumption of agents and diffusion from outer 

regions – a necrotic region starts to grow in the core of the spheroid. As the 

diameter of the spheroid increases, so does the necrotic region, but the thickness 

of the viable rim decreases, just as it was observed in real experiments. 

Multiple simulations were executed with the same parameter set to average 

stochastic effects. Results of each simulation were evaluated by 

(i) determining the convex hull of both the whole spheroid (𝐻0) and the 

necrotic region (𝐻𝑛) at a given time, 

(ii) calculating the mean distance 𝑟0 and 𝑟𝑛 between the mass of center of 

the spheroid and the points in 𝐻0 and 𝐻𝑛, respectively,  

(iii) calculating the viable rim thickness as 𝑟𝑐 = 𝑟0 − 𝑟𝑛. 

We found a qualitative accordance with the model presented in [16], meaning 

that the viable rim thickness decreases as the diameter of the spheroid increases 

(see quantitative results in Fig. 4c). The exact parameter values of the agents as 

well as the relevant coefficients of the mass-transport model can be found in the 

caption of the figure. 
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(a) Image of a tumor spheroid cross-section. 

Proliferating (living) cells are shown as green 

particles near the spheroid boundary marked 

by a red line. The hypoxic core boundary is 

shown by the blue line. (Photo by Grimes et al. 

[16] licensed under the terms of Creative 

Commons Attribution License.) 

(b) Representative image of a simulation. Pink 

dots represent living agents, black dots show 

necrotic (dead) agents. Note the color-scaled 

section planes showing oxygen concentration 

of the microenvironment. 

 

 

(c) The thickness of the viable rim of a tumor spheroid depends on its radius. The dashed line shows 

the predicted value of the viable rim using the model of Grimes et al. with 𝑟𝑙 = 130  µm. In 

agreement with the prediction the best linear fit of simulation data shows a clear decreasing 

tendency as the spheroid diameter grows. Simulation data shows mean±SD. 

Figure 4: The effect of oxygen consumption of cells in a tumor spheroid. Low oxygen level leads 

to necrosis in the core of a growing spheroid. Parameters used for the simulation: 𝜏 = 24  h, 𝑘 =
12, Δ𝑡𝑝 = 15  min, 𝜈 = 0  µmh-1, 𝛼 = 0. In (2) we set 𝜌O2,normal = 0.264, 𝜌O2,critical = 0.2, 𝐷O2 =

6 × 10−8m2h-1, 𝑈O2
cancercell = 0.1 min-1, 𝜆O2 = 0.01 𝑈O2

cancercell and Δ𝑡 = 500  ms according to 

literature data [17]. 
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4. Conclusion 

This paper presented an on-lattice computational model of solid tumors in 

which individual units (so-called agents) are coupled to their microenvironment. 

Features of agents like motility, proliferation potential or sensitivity to different 

compounds from the microenvironment can be set independently. The simplicity 

of the model makes it possible to simulate a few mm3 of tissue on a standard 

desktop workstation or laptop computer, in reasonable time. 

The effects of different values of agents’ motility and aggressivity parameters 

were tested along with their microenvironment-coupled behavior. In agreement 

with experimental observations we found that both the motility and the aggressive 

proliferation influences the size and the shape of a growing solid tumor. It is also 

have to be mentioned, that high motility or aggressive duplication strategy of the 

agents makes the simulation slightly slower, especially for large and dense 

clusters. This effect could be compensated by a selection heuristic we recently 

presented for an off-lattice agent based model [18]. 

Simulation results of the development of a well-oxygenated viable rim in 

tumor spheroids show good qualitative match to real biological observations, 

however, optimal parameters of the model must be determined to achieve 

quantitative match as well. 

We think that this computational model can be a suitable tool for scientists to 

give valuable insights into emergent behavior of complex biological systems. 

Supplementary information 

Additional data including source codes, simulation data and animations are 

available at https://bitbucket.org/kissdanieldezso/onlatticets. 
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