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Abstract: This paper presents a numerical algorithm for determining the minimum 

dwell time constraint for switched linear 𝓗∞ fault detection filters. When applying 

switched systems, ensuring the stability is a crucial target, which can be guaranteed, 

when we switch slowly enough between the subsystems, more precisely when the 

intervals between two consecutive switching instants, called dwell time, are large 

enough. The problem formulation is based on multiple Lyapunov functions and is 

expressed through a special form of linear matrix inequalities (LMIs), which include a 

nonlinear term of the dwell time. This represents a multivariable, time dependent 

optimization problem. As a result, the task cannot be treated as a simple feasibility 

problem involving a LMI solver as it is widely used in applications of the linear control. 

To solve these special LMIs, we propose a numerical algorithm, called 𝑻𝒅-iteration, 

which combines the procedure of interval halving with an LMI solver. The algorithm 

implemented in MATLAB shows its applicability as well as suggest further benefits for 

the switched linear control and filter synthesis.   

Keywords: Switched linear system, dwell time, switched 𝓗∞ fault detection filter, 

MFARE 

1. Introduction 

Switched systems for purpose of nonlinear control have been studied 

extensively in the two past decades and useful results are now available, see e.g. 

[1], [2], [3], [4] and [5]. As it was stated by several authors e.g. (Liberzon and 

Morse in 1999, Hespana in 2004, Chen and Saif in 2004, Colaneri in 2008), the 

asymptotic stability can be ensured when we switch slowly enough between the 
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subsystems, more precisely when the intervals between two consecutive 

switching instants -called dwell time-, are large enough. This problem has been 

specially addressed in the synthesis of switched state estimator of Luenberger 

type, e.g. (Prandini in 2003, Chen and Saif in 2004) and it is also a crucial part 

in our objective of designing a switched linear  ℋ∞ fault detection filter. In 

earlier researches different methods have been proposed for determining the 

minimum dwell time, see [4], [6], [7], [8], [9] and [10].  The most commonly 

used algorithms, such as e.g. the representation based on Kronecker products 

(Geromel and Colaneri, 2006), or Logic-Based Switching Algorithms (Hespana, 

1998) are constructed using multiple Lyapunov functions and expressed in form 

of linear matrix inequalities (LMIs), see in [6], [7], [9], [10] and [11].  

Since we deal with ℋ∞ filtering, the basic Lyapunov theorem needs to be 

extended to cope with performance requirements such as the root mean square 

(RMS) property of a switched system, which corresponds to finding an upper 

bound of the minimum dwell time. To this aim, in our research we consider a 

method used by (Geromel and Colaneri, 2008) for ℋ∞ nonlinear control and we 

have adopted it to the classical ℋ∞ detection filtering problem, see in [12], [13], 

[14], [15] and [16].  More exactly, the concept of the switched ℋ∞ control in 

[7] can be associated to the switched ℋ∞ filtering problem by duality and 

sufficient stability conditions can be derived. 

LMIs are nowadays widely used powerful tools for solving complex 

optimization problem in the field of control engineering, see e.g. [17], [18], [19] 

and [20]. The commonly used advanced methods, however, refer to a LMI 

solver only accept formulation where the decision variables are included in 

linear terms. On the contrary, our problem formulated as LMIs, which include 

the term of matrix-exponential function with the dwell time, is consequently 

nonlinear. As a result, the task cannot be treated as a simple feasibility problem, 

see e.g. [17], [21] and [22]. Despite of the widespread referring to this special 

LMI formulation, however, there can’t be found any solution algorithm about it 

in the control literature. In this paper we present an algorithm to calculate the 

common minimum dwell time, assuring each specified ℋ∞ level calculated 

separately for each single filter. 

The contents of this paper are as follows. After the introduction, in Section II 

the dwell time condition for assuring stability of the switched linear ℋ∞ filter is 

presented. The main outcome is a special form of LMIs including the nonlinear 

term with the dwell time which represents a multivariable time dependent 

optimization problem. Section III presents the proposed numerical algorithm for 

the calculation of the common minimum dwell time assuring each specified ℋ∞ 

level. In Section IV the 𝑇𝑑-iteration algorithm is applied on an illustrative 

example in MATLAB. In Section V the main results are summarized and the 

paper is concluded with some final remarks. 
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2. Stability of the state estimation error dynamics involving the 

dwell time constraint 

The synthesis technique proposed below is originated from results (Geromel 

and Colaneri, 2008) with focus on the application to robust nonlinear control, 

see in [7] and [6]. We have adopted this concept to a ℋ∞ detection filtering 

problem, which will be introduced in this chapter. However, in order to improve 

the detection’s performance, we formulate our concept slightly different from 

theirs. That means, instead of calculation of the minimum dwell time assuring a 

common specified ℋ∞ level for each controller, we determine the common 

minimum dwell time to each specified ℋ∞ level calculated separately for each 

single filter.  In the following we are referring to the concept in [12], which’s 

system-description has been extended to a switched linear system. 

Extending the switched linear system representation in [6] to the concept of 

perturbed system, see in [12], the extended switched linear system subjected to 

disturbance and faults, can be represented in state space form as follows:  
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where for all 𝑡 ≥ 0 , 𝑥(𝑡) ∈ ℝ𝑛 is the state vector, 𝜉 ∈ ℝ𝑛 is the arbitrarily 

fixed initial condition,  𝑢(𝑡) ∈ ℝ𝑚 is the input vector,  𝑦(𝑡) ∈ ℝ𝑝  is the output 

vector,  𝜎(𝑡): [0, ∞) → 𝛩 is the piecewise constant switching function. 𝐴𝜎(𝑡) ∈

 ℝ𝑛𝑥𝑛, 𝐵𝜎(𝑡) ∈ ℝ𝑛𝑥𝑚 and 𝐶𝜎(𝑡) ∈ ℝ𝑝𝑥𝑛 are an appropriate matrices. Assume, 

that the pairs (𝐴𝜎(𝑡) , 𝐶𝜎(𝑡)) are observable for all 𝑡 ≥ 0. For further 

consideration denote 𝑛𝑒 the number of subsystems, 𝛩 = {1, … , 𝑛𝑒} an index set 

and 𝑞 = 1, … , 𝑛𝑒 the sequence number of the switchings. 𝐵𝜅 𝜎(𝑡)  = [𝐵𝑤,𝐿𝛥] 

denotes the worst-case input direction and κ(t) ∈  L2 [0, T] is the input function 

for all 𝑡 ∈ ℝ+ representing the worst–case effects of modelling uncertainties 

and external disturbances. The cumulative effect of a number of k faults 

appearing in known directions Li of the state space is modelled by an additive 

linear term ∑ 𝐿𝑖 𝜎(𝑡) 𝜈𝑖(𝑡) . 𝐿𝑖 ∈ ℝ𝑛𝑥𝑠 and νi(t) are the fault signatures and 

failure modes respectively. 𝜈𝑖(𝑡) are arbitrary unknown time functions for 𝑡 ≥
𝑡𝑗𝑖 , 0 ≤ 𝑡 ≤ 𝑇, where 𝑡𝑗𝑖 is the time instant when the i-th fault appears and 𝜈𝑖 =

0, if 𝑡 < 𝑡𝑗𝑖 . If 𝜈𝑖(𝑡) = 0, for every 𝑖, then the plant is assumed to be fault free. 

Assume, however, that only one fault appears in the system at a time.  

Denote 𝑡ℓ and tℓ+1 successive switching times satisfying 𝑡ℓ+1 −  𝑡ℓ  ≥  𝜏𝐷. 

Then the piecewise constant switching function between two consecutive 

switching instants as 𝜎(𝑡): [0, ∞) → 𝛩 for all 𝑡(𝑡ℓ, 𝑡ℓ+1] ensures, that the 

equilibrium point 𝑥 = 0 of the system in (1) is globally asymptotically stable. 
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The referred constant τD > 0 is called the dwell time. Consequently, when 

designing a switched system one also has to make sure, that the time difference 

between two consecutive switching instants not smaller than τD, then the 

asymptotical stability of the switched linear system is preserved, see e.g. in [1], 

[3], [4] and [7]. 

Generally interpreted, the fault detection filtering is done by estimating the 

states of the subjected system. Of course, we consider now a switched linear 

system approach, where the q-th sub-filter is selected whenever the q-th 

subsystem is active. The stability of the state estimation error dynamics may be 

a crucial part of such a design, which can be ensured when we switch slowly 

enough between the subsystems, to allow the transient effects to dissipate (Chen 

and Saif, 2004), (Prandini, 2015).  

The state estimator for the system description (1) can be represented by the 

switched system as follows. Let z𝜖 ℝp denote the output signal, then the state 

estimate can be obtained as  
 

         

  (2) 
 

 

where x̂ ∈ ℝn represents the observer state, ŷ ∈ ℝp represents the output 

estimate, and ẑ ∈ ℝp is the weighted output estimate, 𝑌𝜎(𝑡)  is a positive definite 

matrix as a solution of the optimization problem in (5) and 𝐶𝑧𝜎(𝑡)  is the 

estimation weighting.  

The equation of the state estimation error for (2) is expressed as 
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where 𝑥̃(t) and ε(t) are defined as 
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As the switching occurs within the finite set of 𝑞 ∈ 𝛩 = {1, … , 𝑛𝑒} 

subsystems, the system description in (1) and consequently in (2) and (3) can be 

simply represented by the matrices (𝐴𝑞 ,  𝐵𝑞 , 𝐵𝜅𝑞 , 𝐶𝑞 , 𝐶𝑧𝑞 , 𝐿𝑖𝑞 , 𝑌𝑞 ), 𝑞 ∈ 𝛩. 

Assume that all matrices 𝐴𝑞 , 𝑞 ∈ 𝛩 are Hurwitz. 

By duality we can associate the ℋ∞ control problem of the switched linear 

system described in [12] to our switched ℋ∞ filtering task, the synthesis of 
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which is based on the Modified Riccati Equation (MFARE), that can be 

formulated for switched linear system as  

 
2

1
0,T T T T

q q q q q z q zq q q q q q

q

A Y Y A Y C C C C Y B B 


 
      

 

 (5) 

for all 𝑞 ∈ 𝛩. In (5) 𝛾𝑞 > 0 are positive rational constants and 𝑌𝑞 ∈ 𝑅𝑛𝑥𝑛 

denote the decision variables which are positive definite matrices.  

Following the steps of the synthesis procedure in [7], the MFARE can be 

factorized in form of Riccati Equation as 
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We have to note, that the optimal gain 𝑊𝑞 is determined from the unique 

stabilizing solution to MAFARE and the matrix 𝐻𝑞 is Hurwitz for each 𝑞 ∈ 𝛩. 

 Since 𝑄𝑞 depends on the 𝛾𝑚𝑖𝑛𝑞 value, 𝑄𝑞 ≥ 0  is not guaranteed for any 𝑞 ∈ 𝛩. 

However, (6) admits a positive definite solution, since that was created by 

factorizing the MFARE. It is to note, that for solving the LMIs in (11) the 

condition 𝑄𝑞 ≥ 0 is necessary, hence, if 𝑄𝑞 ≥ 0 does not hold, 𝛾𝑞 > 𝛾𝑚𝑖𝑛𝑞 

should be chosen such that 𝑄𝑞 ≥ 0 holds. 

For any 𝜎(𝑡): [0, ∞) → 𝛩 and for all 𝑡 ∈ (𝑡ℓ, 𝑡ℓ+1] , where 𝑡ℓ+1 = 𝑡ℓ + 𝑇ℓ 

with 𝑇ℓ  ≥  𝑇𝑑 > 0  and at 𝑡 = 𝑡ℓ+1 the switching jumps to 𝜎(𝑡) = 𝑗 ∈ 𝛩, where 

the corresponding solution of the Lyapunov function along a trajectory of the 

switched filter state estimation error (2) is expressed by 

           
Τ Τ

1 1V x x x x x ,
T

q qH T H T
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where 𝑍𝑗 ∈ 𝑅𝑛𝑥𝑛 is a positive definite matrix. 
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The ℋ∞ control problem described in [7] can be associated to the ℋ∞ 

filtering problem by duality. Based on (6) and the Lyapunov function 

formulated along a trajectory of the state estimation error (10), one can derive 

time varying LMIs which can be used to obtain the common minimum dwell 

time constraint satisfying each ℋ∞ filter’s specification.  

Assume that for a given 𝑇𝑑 there exists a collection of positive definite 

matrices {𝑍1, … , 𝑍𝑛𝑒 } of compatible dimensions such that the LMIs 
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hold under the worst-case input assumption in (1) for any switching signal 

𝜎(𝑡): [0, ∞) → 𝛩 satisfying the condition 𝑇𝑑 = 𝑡ℓ+1 − 𝑡ℓ  ≥  𝑇𝑑𝑚𝑖𝑛. Then, the 

equilibrium solution of the state estimation error (2) is globally asymptotically 

stable.  

3. A numerical algorithm for determining the common minimum 

dwell time assuring each specified 𝓗∞ level 

As we have shown in the previous chapter, the problem of determining the 

minimum dwell time can be obtained by solving the set of LMIs (11). 

According to our idea, by means of combining an algorithm of interval halving 

for a fixed scalar 𝑇𝑑 the LMIs can be treated as well as solved as a feasibility 

problem and the common minimum dwell time can be calculated. Before doing 

that, the MFARE in (5) was factorized and 𝑌𝑞 ,  𝐻𝑞 and 𝑄𝑞 matrices were 

obtained for each 𝑞 ∈ 𝛩. In [16] it is explained how the MFARE can be 

formulated and solved as a LMI. Then (11) can be represented via the following 

optimization problem: 
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The main benefit of the LMI formulation is, that it defines a convex 

constraint with respect to the variable vector. For that reason, it has a convex 

feasible set which can be found guaranteed by means of convex optimization 

procedure. When using an LMI solver, however, it usually only accepts 

formulation where the decision variables are included in linear terms. 

Unfortunately the LMIs in (12), which include the term of matrix-exponential 

with the design scalar variable 𝑇𝑑, are nonlinear, consequently the task cannot 

be treated simply as a feasibility problem, see in [18], [19], [20] and [22]. To 

overcome these difficulties we implemented an algorithm called 𝑇𝑑-iteration, in 

which an interval halving method is used iteratively. The algorithm reduces 

gradually the value of the 𝑇𝑑 scalar variable until the constraints of the LMIs in 

(12) are no longer feasible, consequently any of the 𝑍𝑞 matrices, has no longer 

positive definite solutions. The 𝑇𝑑𝑚𝑖𝑛 which is so reached, is within the limits 

given by an arbitrarily small tolerance 𝜀 > 0 and is the minimum dwell time, 

such it holds that  𝑇𝑑𝑚𝑖𝑛  ≤ 𝜏𝐷.  

The algorithm for the feasibility problem of determing the common 

minimum dwell time can be formulated as follows: 

The inputs for the method are:  𝑌𝑞 ,  𝐻𝑞 and 𝑄𝑞 matrices for each 𝑞 ∈ 𝛩 which 

can be obtained from (5), and from (8), (9), respectively. 

eps is the relative accuracy of the solution, 𝑇𝑑𝑚𝑎𝑥 is the right limit of the 

interval (the left limit is zero).  

The inner variables are: a, b and i. They stand for assignation of interval and 

counting cycle respectively. The 𝑇𝑑𝑚 variable contains the value of 𝑇𝑑 at the 

end of the iteration. 

The outputs are: 𝑍𝑞 matrices 𝑞 ∈ 𝛩 are positive definite decision variables, the 

𝑇𝑑 is the step size (midpoint). 𝑇𝑑𝑚𝑖𝑛  contains the 𝑇𝑑  value when the iteration is 

finished. 

Each iteration performs the following steps: 

1. Calculate  𝑇𝑑, the midpoint of the interval, which is assigned by a and b.  

That is 𝑇𝑑 = 𝑎 + (𝑏 − 𝑎)/2 ; 
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2. Calculate the matrix exponential function 𝑒𝐻𝑞 𝑇𝑑 for the fixed 𝑇𝑑 value 

and substitute its values in (11); 

3. Solve the LMIs in (11) as a feasibility problem by the MATLAB function 

feasp [22], which returns both the scalar value of 𝑡𝑚𝑖𝑛  as a measure of 

the feasibility and the feasibility decision vector xfeas; 

4. Call the MATLAB function dec2mat which returns the solutions for 𝑍𝑞; 

5. If the feasibility criteria with fixed 𝑇𝑑  are not satisfied, that is 𝑡𝑚𝑖𝑛 ≥ 0, 
then the upper and lower bounds of interval are changed;  

Otherwise the value of 𝑇𝑑 is saved, that is 𝑇𝑑𝑚 = 𝑇𝑑 and the iteration is 

continued; 

6. Examine whether the new interval assigned by b-a reached the relative 

accuracy of the solution - called epsilon: 

 If not, the iteration is repeated;  

 If yes, the iteration is finished and the 𝑍𝑞  matrices are calculated 

based on the previous value of 𝑇𝑑.  Additionally, 𝑇𝑑𝑚𝑖𝑛 = 𝑇𝑑𝑚.  

 In the following the MATLAB script for the 𝑇𝑑-iteration an illustrative 

example is presented for solving the multivariable time dependent optimization 

problem in (12). It was implemented for synthesis of a switched linear 

ℋ∞ filter, which consits of three subsystems for purpose of demonstation.  

 

An approximate calculation of the minimum dwell time based on the 𝐿2-norm of 

the state estimator system 

 

Another, and very conservative approach is calculating the dwell time based 

on the 𝐿2-norm of the 𝐻𝑞, see in [24]. This theorem says, that for each 

subsystem 𝑞 𝜖 {1, 2, … , 𝑛𝑒} because 𝐻𝑞 is Hurwitz, there exist  𝑎𝑞 ≥ 0  and 

𝜆𝑞 > 0 such that for all 𝑞 ≥ 0, it can be written 

 

 ,q q qH t a t
e e


  (13) 

 where   ‖𝐻‖ = √𝜆𝑚𝑎𝑥(𝐻𝑇𝐻) . (14) 

 

Based on this the dwell time is given as 

 

                                                    (15) 

 

Using the similarity transformation for matrix H, that is 

 𝐻 = 𝑇𝐷𝑇−1 . (16) 
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The condition for the asymptotic stability expressed using 𝑇 can be written as: 

‖𝑒𝐻𝑡‖ ≤ ||𝑇||𝑒𝜆𝑡||𝑇−1||. (17) 

Then using the 𝑇 and 𝐷 matrices, the parameter for calculating (14) can be 

obtained as 

   𝑎 = 𝑙𝑛(‖𝑇‖‖𝑇−1‖) and  𝜆 = 𝑚𝑎𝑥1≤𝑖≤𝑛{𝜆𝑞} . (18) 

4. An illustrative example 

𝑇𝑑 – iteration algorithm 

In the following the MATLAB script, for the 𝑇𝑑-iteration an illustrative 

example is presented for solving the multivariable time dependent optimization 

problem in (12). It was implemented for the synthesis of switched linear 

ℋ∞ filter and consists of three subsystems for purpose of demonstation.  

Consider that the matrices 𝑌𝑞 , 𝐻𝑞 and 𝑄𝑞 have been formerly calculated from 

(5), (8) and (9). Note, that these calculations are not presented in this paper. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

% LMIFeaspDWT3m.m - 2018.06.25 
% Calculating the minimum dwell time assuring the specified H-inf level 
% Matrices derived from MFARE 
% Subsystem 1 
H1 = [-107.4991 15.4019 27.8936; 80.9958 -564.3523 1.9649; 0.1119 0.3748 -
8.6469]; 
Q1 = 1.0e+005 * [0.1810 -0.2182 -0.0002; -0.2182 2.7837 0.0006; -0.0002 0.0006   
0.0000]; 
Y1 = [81.6978 -17.0191 -0.1127; -17.0191 244.1844 0.2370; -0.1127 0.2370 
0.0103]; 
% Subsystem 2 
H2 = [-91.9324 20.9809 28.0690; 106.1269 -611.2837 1.5668; 0.1088 0.4258 -
8.6914]; 
Q2 = 1.0e+005 * [0.1209 -0.2449 -0.0002; -0.2449 3.0927 0.0006; -0.0002 0.0006    
0.0000]; 
Y2 = [61.5844 -18.0647 -0.1088; -18.0647 249.8336 0.2452; -0.1088 0.2452 
0.0120]; 
% Subsystem 3 
H3 = [-78.3760 25.7621 27.8720; 132.6617 -626.8514 1.9901; 0.1106 0.4382 -
8.5647]; 
Q3 = 1.0e+005 * [0.0854 -0.2658 -0.0001; -0.2658 3.1959 0.0008; -0.0001 0.0008    
0.0000]; 
Y3 = [48.0245 -19.4905 -0.1127; -19.4905 250.7915 0.2733; -0.1127 0.2733 
0.0142]; 
 

% Interval-halving  
I=eye(3); 
eps =1e-3; % the relative accuracy of the solution 
Tdmax=3;  % the upper limit of the interval 
Td=Tdmax; % the step size (midpoint) 
b=Tdmax;  % the initial upper limit of the interval  
a=0;  % the initial lower limit of the interval 
i=0;  % initialization of the step counter 
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while (b-a)>eps  % examine whether the new interval reached the relative 
accuracy 
 Td = a+(b-a)/2;   % interval-halving 
 i = i+1   % number of the iterations 
 
% calulation of the matrix exponential functions each subsytems  
 expHT1 = expm(Td*H1) 
 expHT2 = expm(Td*H2) 
 expHT3 = expm(Td*H3) 
 
 setlmis([]);      % define the system of LMI-s 
% specifying the matrix variable Zq of the LMI ss.1 
 Z1 = lmivar(1, [size(Y2, 1) 1]); 
% specifying the matrix variable Zq of the LMI ss.2 
 Z2 = lmivar(1, [size(Y2, 1) 1]);  
% specifying the matrix variable Zq of the LMI ss.3 
 Z3 = lmivar(1, [size(Y2, 1) 1]);  

% constructing the system of the LMI-s 
 % for subsystem 1 
 lmiterm([1, 1, 1, Z1], H1, 1, 's');  % LMI #1: Hq*Zq + Zq*Hq' 
 lmiterm([1, 1, 1, 0], Q1);   % LMI #1: Qq 

lmiterm([2, 1, 1, Z2], expHT1, expHT1');  % LMI #2: expHTq*Zj*expHTq' 
 lmiterm([2, 1, 1, Z3], expHT1, expHT1');  % LMI #2: expHTq*Zj*expHTq' 

lmiterm([2, 1, 1, Z1], -1, 1);   % LMI #2: -Zj 
 lmiterm([2, 1, 1, 0], Y1);   % LMI #2: Yq 

% for subsystem 2 
 lmiterm([3, 1, 1, Z2], H2, 1, 's');  % LMI #3: Hq*Zq + Zq*Hq' 
 lmiterm([3, 1, 1, 0], Q2);   % LMI #3: Qq 
 lmiterm([4, 1, 1, Z1], expHT2, expHT2');  % LMI #4: expHTq*Zj*expHTq' 
 lmiterm([4, 1, 1, Z3], expHT2, expHT2');  % LMI #4: expHTq*Zj*expHTq' 
 lmiterm([4, 1, 1, Z2], -1, 1);   % LMI #4: -Zj 
 lmiterm([4, 1, 1, 0], Y2);   % LMI #4: Yq 

% for subsystem 2 
 lmiterm([5, 1, 1, Z3], H3, 1, 's');  % LMI #5: Hq*Zq + Zq*Hq' 
 lmiterm([5, 1, 1, 0], Q3);   % LMI #5: Qq 
 lmiterm([6, 1, 1, Z1], expHT3, expHT3');  % LMI #6: expHTq*Zj*expHTq' 
 lmiterm([6, 1, 1, Z2], expHT3, expHT3');  % LMI #6: expHTq*Zj*expHTq' 
 lmiterm([6, 1, 1, Z3], -1, 1);   % LMI #6: -Zj 
 lmiterm([6, 1, 1, 0], Y3);   % LMI #6: Yq 
 
 % positivness of Zq 
 lmiterm([-7, 1, 1, Z1], 1, 1);   % LMI #7: Z1>0 
 lmiterm([-8, 1, 1, Z2], 1, 1);   % LMI #8: Z2>0 
 lmiterm([-9, 1, 1, Z3], 1, 1);   % LMI #9: Z3>0 
 
 lmis = getlmis;   % obtaining the system of LMI 
   

[tmin,xfeas] = feasp(lmis) % calling function of feasibiliy.  
 
% the solution Zq of ss. 1 corresponding to the  
 Zs1 = dec2mat(lmis,xfeas,Z1)    
% the solution Zq ss. 2 corresponding to the feasible  
 Zs2 = dec2mat(lmis,xfeas,Z2) 
% the solution Zq ss. 3 corresponding to the feasible  
 Zs3 = dec2mat(lmis,xfeas,Z3)   
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The obtained values of the feasible solutions for 𝑍𝑞 denoted by 𝑍𝑠1, 𝑍𝑠2,  𝑍𝑠3 

are shown below. The corresponding eigenvalues eig(Zq) denoted by eig(Zs1),

eig( Zs2), eig( Zs3) are shown in the row 10 of the Table 1. The positive 

eigenvalues prove the positive definiteness of Zq and the feasibility as well. 

Note that in the rows 6, 8 and 11 we did not get a feasible solution, because the 

scalar 𝑡𝑚𝑖𝑛 returned with a positive value, which means that the associated 𝑍𝑞 

pencil contains eigenvalues on or very near to the imaginary axis. Of course, 

this resulted in infeasibility. In such cases, according to the algorithm of interval 

halving, in these steps the upper - and lower bounds of an interval changed, to 

ensure a proper distance between the eigenvalues and the imaginary axis.  

 

4

1

0.4073 0.0542 0.5203

  10  * 0.0542 0.0518 0.0806 ,

0.5203 0.0806 1.8642

Zs

 
 


 
  

4

2

0.5122 0.0832 0.6322

  10  * 0.0832 0.0573 0.1137 ,

0.6322 0.1137 1.8605

Zs

 
 


 
    

 

4

3

0.6249 0.1250 0.7722

  10  * 0.1250 0.0691 0.1679 .

0.7722 0.1679 1.8750

Zs

 
 


 
    

 

  

% decision vector xfeas since tmin < 0 
% checking constraints of feasibility. That is that if % tmin < 0. 

if tmin >= 0     
 
  a = Td;   % the minimum is changed to the Td  
  else  
  b = Td;   % iteration is continued the minimum  

% is changed to the Td  
  Tdm = b;   % saving value of Td 
  end   % the iteration is continued  
  
end     % the iteration is finished 
 
Tdmin = Tdm    % the minimum dwell-time 
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Table 1: Values obtained for 𝑇𝑑  , 𝑡𝑚  and 𝑍𝑞 during the iteration 

i 𝑇𝑑 𝑡𝑚𝑖𝑛 eig. (Zs1) eig.(Zs2) eig. (Zs3) 

1 1 −0.0854       25.9263 

     83.4787 

   246.1332 

     25.2094 

     65.1757 

   251.7411 

    24.3039 

    54.9130 

  252.8941 

2 0.5000  −0.0849       25.9233 

     83.4782 

   246.1332 

     25.2067 

     65.1749 

   251.7411 

    24.3024 

    54.9119 

  252.8940 

3 0.2500  −0.0529      25.7108 

     83.4469 

   246.1329 

     25.0205 

     65.1218 

   251.7407 

    24.1738 

    54.8301 

  252.8934 

4 0.1250  −0.4185  63.3241 

   100.7714 

   246.4629 

     52.9620 

     95.4908 

   252.1020 

    44.0826 

    99.2161 

  253.4098 

5 0.0625 −0.5410       68.0075 

   111.0561 

   246.6869 

     54.9368 

   107.9080 

   252.3338 

    45.0798 

  111.5681 

  253.6986 

6 0.0313 0.0146  104 ∗ 

      0.0000 

      0.0219 

      3.5277 

104 ∗ 

      0.0000 

      0.0115 

      3.0118 

104 ∗ 

      0.0000 

      0.0073 

      2.1199 

7 0.0469 −0.7438      65.5712 

  108.0716 

  246.8438 

    53.7206 

  104.2321 

  252.4862 

    44.1185 

  107.6819 

  253.8765 

8 0.0391 0.0128  104 ∗ 

      0.0000 

      0.0177 

      3.8775 

104 ∗ 

      0.0000 

      0.0098 

      3.0578 

104 ∗ 

      0.0000 

      0.0114 

      3.2479 

9 0.0430 −0.6534      63.1824 

  105.1323 

  246.8925 

    52.4740 

  100.2198 

  252.5290 

    43.2152 

  103.1864 

  253.9147 

10 0.0410  −9.7372  104 ∗ 

0.0437 

 0.2442 

 2.0353 

104 ∗ 

      0.0426 

      0.2679 

      2.1196 

104 ∗ 

      0.0423 

      0.2640 

      2.2627 

11 0.0400  0.0126  104 ∗ 

0.0000 

0.0243 

6.2884 

104 ∗ 

      0.0000 

      0.0128 

      5.7631 

104 ∗ 

      0.0000 

      0.0040 

      1.0035 

The iteration ran till the new interval assigned by b-a reached the pre-

specified relative accuracy of the solution 𝑒𝑝𝑠 = 0.001. Performed the 𝑇𝑑 –

iteration and repeated it 10-times the 𝑇𝑑𝑚𝑖𝑛  =  0.0410s is obtained. The 

computational cost is primarily dependant on solving the 𝑞 independent LMIs 
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plus the iteration. We have seen, that despite of the multivariable time 

dependent optimization problem, combination of an algorithm interval halving 

with an LMI solver to determine the common minimum dwell time could be 

efficiently applied. A variation of the measures for the feasibility 𝑡𝑚𝑖𝑛  during 

the iteration is shown in Fig. 1. 

 

Figure 1:  The variation of 𝑡𝑚𝑖𝑛  during the iteration 

 

An approximative calculation of the minimum dwell time based on the 𝐿2-norm 

of the state estimator system 

For purpose of comparison we applied the calculation of the minimum dwell 

time based on the 𝐿2-norm of the state estimator system on the example. It is to 

note, that as it was introduced in the Chapter 3, this approach may lead to a 

conservative result. 

The similarity transformation (16) has been computed by the MATLAB 

function [𝑇, 𝐷] = 𝑒𝑖𝑔 (𝐻), see in [25], which returned the matrices 𝑇 and 𝐷. 

From the calculation in (15), the worst-case condition for the minimum dwell 

time is given by 𝜏𝐷∗  > 0.055 sec. The corresponding parameters in (18) were 

𝑎 = 0.467 and 𝜆 = −8.474. 

5. Conclusion  

This paper was concerned with a numerical algorithm for determining the 

minimum dwell time constraint for switched linear ℋ∞ fault detection filters. 



18 Zs. Horváth, A. Edelmayer 

 

  

Despite the multivariable time dependent optimization problem, by means of 

the 𝑇𝑑-iteration the common minimum dwell time assuring each specified 

ℋ∞ level of each single filter could be determined. The case study implemented 

in MATLAB resulted in positive definite solutions for 𝑍𝑞  and also in the 

corresponding minimum dwell time 𝑇𝑑𝑚𝑖𝑛 =  0.0410 s. The results indicate 

that the frequency of changing the switching signal sequence should be lower 

than 24.39 Hz to ensure the robust stability of the state estimation error between 

the switching instants.  Additionally, the dwell time was approximately 

calculated based on the 𝐿2-norm of 𝐻𝑞. As it was shown, smaller value could be 

reached using the 𝑇𝑑-iteration, than from the approach based on the 𝐿2-norm of 

𝐻𝑞. Of course, the latter is only a very conservative approach. On the other hand 

the 𝑻𝒅-iteration has to face with successive numerical computation of the 

quadratic matrix inequalities resulted in a proportional computation cost. We 

have found the solution after running the code in MATLAB after 0.5 second 

CPU time on a PC with Intel® Celeron® CPU B815 (1.60 GHz). 

We think, that the technique of the 𝑇𝑑-iteration offers further benefits from 

the point of view the designer.  Apart from the advantage that a variety of 

design specifications and constraints can be expressed through LMI-s, we 

assume, due to the combination with the interval halving algorithm, it gives 

more flexibility to examine the solution during the entire design process. For 

example, it is easy to analyse the impact of the 𝑇𝑑  value on the number of 

iteration steps or to analyse the impact of the variation of the relative accuracy 

of the solution. One can easily perform experiments and get answers e.g. to the 

following questions: How does the iteration converge? How do the eigenvalues 

of the decision variable change? How close are they to the imaginary axis? 

Issues with such explicit conditions can be easily examined, step by step during 

the iterations, which can also be useful for better understanding the nature of 

switched systems.  
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