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Abstract: In gas turbine process, the axial compressor is subjected to aerodynamic 

instabilities because of rotating stall and surge associated with bifurcation nonlinear 

behaviour. This paper presents a Genetic Algorithm and Particle Swarm Optimization 

(GA/PSO) of robust sliding mode controller in order to deal with this transaction between 

compressor characteristics, uncertainties and bifurcation behaviour. Firstly, robust theory 

based equivalent sliding mode control is developed via linear matrix inequality approach to 

achieve a robust sliding surface, then the GA/PSO optimization is introduced to find the 

optimal switching controller parameters with the aim of driving the variable speed axial 

compressor (VSAC) to the optimal operating point with minimum control effort. Since the 

impossibility of finding the model uncertainties and system characteristics, the adaptive design 

widely considered to be the most used strategy to deal with these problems.   Simulation tests 

were conducted to confirm the effectiveness of the proposed controllers.  

Keywords: aerodynamic instabilities, variable speed axial compressor (VSAC), sliding mode 

control (SMC), adaptive robust control, genetic algorithm (GA), particle swarm optimization 

(PSO).  

1. Introduction 

The increased performances are potentially achievable with modern gas 

turbines operating close to the maximum pressure rise, and under physical 

constraints [1]. This characteristic makes it very required in critical industries 

such as jet-engine, power generation and petrochemical. The gas turbine is 

however subjected to nonlinear phenomena of different nature: aerodynamic 

(pumping and rotating stall), aero-elasticity (the float) and combustion, that do 

not allow proper operation [2]. The gas turbine suffers from two types of 

aerodynamic instabilities, namely rotating stall and surge, which are closely 
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related to the limitations of their efficiency and performance [2]. Rotating stall is 

a non-axisymmetric perturbation that travels around the annulus of the axial 

compressor while surge is a large axial oscillation of flow [2]. 

In 1997, Gravdahl and Egeland developed a model and investigated surge and 

speed control. For the first time, the model developed by Gravdahl for axial 

compressors considered the B-parameter (proportional to the speed of the 

compressor) as a state and included higher harmonics of rotating stall as well [3]. 

Contrary to Gravdahl’s variable speed model, the Moore-Greitzer original model 

does not imply any rotating stall development, since the working point is situated 

at an adequate margin from the surge line [4]. This temporary stall development 

and pressure drop can cause trouble for the normal turbo machines’ operation. 

Furthermore, including model uncertainties (the precise estimation of model 

parameters, especially in the unstable area, being difficult) and external 

perturbations make the problem even more challenging [3], [4]. Finally, the 

squared amplitude of stall modes used as state variables are experimentally 

difficult to measure and full-state feedback cannot be considered in control 

design. In order to overcome this issue, throttle valve and Close-Coupled Valve 

(CCV) actuation are used to guarantee the stability, and a drive torque is applied 

to increase the speed of the rotor. The CCV is considered to be one of the most 

promising actuation methods [5]. The investigation on the model dynamics makes 

the Robust Sliding Mode controller (RSMC) the favorite control strategy. It is well 

known for its high accuracy, fast dynamic response, stability, the simplicity of 

implementation, and robustness for changes in uncertainties and external 

disturbances for dynamic systems [6]. But in real conditions, the prior knowledge 

on the upper bound of the disturbances and the high frequency switching known as 

chattering will reduce the system’s robustness, and can excite unwanted dynamics 

that risk to damage or even destroy the system studied [6]. Also, the matched 

condition and affine form of the control law can’t be guaranteed for all steady states 

especially for highly uncertain, nonlinear and complex systems. Adaptive control 

law could lead to a stable closed-loop system and the deviation from the sliding 

surface is bounded [7]. 

Motivation of this work comes from the fact that other past-proposed 

controllers usually devoted efforts on stabilizing axial compressors are based on 

the constant speed assumption, and even if the reported achievements [6], [7], 

[8], [9], [10], [11], [12], [13] investigate the variable speed model in close loop 

control, they propose some conservative assumptions that make the controller 

efficient in a very restricted operating range, as reported in [2], [5], [14]. The 

Gravdahl-England based models are used in order to design such controllers; 

however, they are idealized models for variable speed axial compressor (VSAC) 

systems. Therefore, they never represent the nature perfectly. From the other 

point of view, in real conditions, the prior knowledge of disturbance and 
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uncertainty becomes difficult. Thus, designing a control system in which 

information about disturbance, uncertainty, and dynamics of the system is used 

cannot be satisfactory for real applications. To accomplish the mentioned 

motivation, a Linear Matrix Inequality (LMI) optimization is used to design the 

equivalent control to guarantee the asymptotic stability regarding the speed 

transition behaviour, and GA/PSO optimized switching control is developed to 

tackle the system uncertainties, perturbations, and high-frequency behaviour of 

the controller with an efficient and effective constraint-handling. The proposed 

intelligent control system is developed and utilized to control rotating stall, surge 

and speed in axial compressors, without the need of prior knowledge on system 

uncertainties and perturbations. The outline of this paper is as follows. The 

variable speed axial compressor is presented in Section 2. Section 3 shows robust 

approach design. Section 4 describes the genetic algorithm and particle swarm 

optimization adaptive base on robust SMC. Section 5 shows the simulations 

results. Section 6 concludes with a summary and discussion.  

2. The model 

The compression process studied in this paper involves an intake duct, inlet 

guide vanes IGV, a variable speed axial compressor, the exit duct, plenum volume 

(turbine), varying area throttle valve, varying area close-coupled valve (Fig. 1). 

The throttle can be viewed as a streamlined model of a turbine [2].  

 
Figure 1: Schematic of the system showing non-dimensional lengths [2]. 

 

Gravdahl developed a model for the axial compressor, the exit duct, plenum 

volume (turbine), varying area throttle valve, varying area close-coupled valve 
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(Fig. 1). The throttle can be viewed as a streamlined model of a turbine [2]. 

Gravdahl developed a model for variable speed axial compressors and considered 

the speed of the rotor as a state variable [2]. Later, Zaiet et al. [8] modified the 

model to include the pressure drop over a CCV and to make it suitable for control 

applications. The states ,   and U denote respectively the annulus averaged 

mass flow coefficient, the non-dimensional plenum pressure, and the speed of the 

rotor (m/s). 
R

tU
t dd   is a non-dimensional time, where td  is the dimensional 

time, R is the mean compressor radius, and dU  is the desired speed. 1J  is the 

squared amplitude of the first harmonic of the rotating stall [5]. The actuators’ 

forces are input variables 1u , 2u  and 3u defined respectively as: the pressure drop 

over CCV, the throttle gain, and the non-dimensional drive torque being used to 

increase the speed. At an operating point (Φ0=0.55, Ψ0=0.66, U0=9.617), the 

dynamic model can be given in the form of state-space equations in error 

coordinates (see [1], [2] for more details). The model which only includes the 

first harmonic of the rotating stall and comprises actuator forces is given in the 

following equations: 
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𝑑𝑈(𝑡)

𝑑𝜁
= Λ1(𝑈(𝑡) + 𝑈0)2𝑢3(𝑡) − Λ1(𝑈(𝑡) + 𝑈0)2𝑐(𝜙(𝑡) + Φ0)2 

In the above equations: 

𝐼𝑐(𝑡) = 𝑙𝑖 + 𝑙𝐸

𝑈𝑑

𝑈(𝑡)
+

1

𝑎
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𝜇𝑊

3𝑎𝐻
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3𝐻𝑏
 

The definition of the remaining model parameters H, W, 0c , v  , 1 , 2 , m, 

b,  , a, 

)(

1
1

tlc
 , 

 Watm

aH

U )(1

3
2


  which are all positive non-zero para-

meters, can be found in [4], [5]. To investigate the effect of the uncertainties, we 

introduce ΔΨ and ΔΦ  in the model. ΔΦ consists of two terms: Φd(t) is a time 

varying mass flow disturbance and  introduces a constant or slow varying 

uncertainty in the throttle characteristic. Similarly,  ΔΨ consists of two terms: Ψd(t) 

is a time varying pressure disturbance and dΨ  can be considered as a constant or 

slow varying uncertainty in the compressor map. Furthermore, it is supposed that 

these uncertain terms are bounded. 

3. Robust design approach 

Let us consider the model (1, 2, 3, 4) with (5) as a MIMO norm bounded form 

[15-20]: 

 
)()(

))()(()())(()(

txty

ttutxttx x





C

BAA

 

(6) 

From the state variables x=(J1,ϕ,ψ,U) R4 taking  y=(ϕ,ψ,U)R3 as a smooth  

measurable output vector. In spite of the fact that 1J  is the fourth state variable, 

it cannot be measured; moreover its nature as a perturbation conveys the idea that 

it can be considered as an uncertain term. This approach simplifies the control 

design and makes the proposed control method pertinent [4]. In (6), A and B are 

respectively the state and control matrix of the system at the operating point 

considered the origin (ϕ0, ψ0, U0) [18-20]. Here, ΔA(t)= f1(ϕ0,ψ0,U) is the 

uncertainty in the dynamic matrix corresponding to the variable speed behavior, 

Δx(t)=f2(J1,ϕ,ψ,U) are the model uncertainties, external disturbance and 

(4) 

(5) 
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perturbations with unknown bound. Our objective is to stabilize the efficient 

operating point (J1=0, ϕ=0.5, ψ=0.66) for two different speeds, low speed 

(Ud=40 m/s ) and high speed (Ud=150 m/s ). 

Assumption 1: f1(ϕ,ψ,U) and f2(J1,ϕ,ψ,U) are continuous and bounded 

polynomial functions of uncertainties, disturbances and J1. Due to the 

boundedness of J1, ϕ and U assumption 1 is satisfied as reported in [2], [5]. 

A. Reformulating the problem to equivalent sliding mode control 

Consider the following linear continuous sliding function [15]: 

 )()()( txtxt T

x  PBS  (7) 

where 
33xRS and 

33xRP is symmetric positive definite matrix. From (6) and 

(7), the equivalent control law may be obtained as: 

 
)()()( 1 txtueq  

ASBS
 

(8) 

with PBS  T
and BS   is non-singular. It should be remarked that the 

obtained control law contains some uncertain terms, which can be deduced from 

the non-linear system. The non-linear part of controller called switching control, 

will be taken as [15]: 

 
))(()()()()( 0

1 tsigntutu xfswitchingnl   
BSBS

 
(9) 

where fx t  )(  and 0  is a positive number [15]. The Lyapunov function has 

been selected as [15], [16]: 
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(10) 

From equations (8), (9) and (10), when t0 (with t0=0), there exists a sliding 

surface 0)()(  txtx S , i.e. 0)()(  ttx TT
S , the following expressions are 

obtained:  

 
)())(()()( 0 ttsignt xxfx  BSBS 

 
(11) 

 
)()()()()()( 00 tttttV xxxxfx   BSBS

 
(12) 
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As proved in [15], [23], the reachability condition is satisfied if 00   and 

)(tx is bounded. 

B. Auxiliary feedback and stability analysis 

To solve this problem, the sliding mode controller will be designed with a 

feedback as follows: 

 
)()()()()( tututtxtu nleq  K

 
(13) 

where )()()()( tututxt nleq  K . 

K is chosen to get a )()(
~

ttA AABKAA   stable in closed loop 

[15], [21]. Selecting the Lyapunov function as )()()( tPxtxtV T [22], the time 

derivative of the selected function is:  
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(14) 

For 0tt  , the sliding variable 0)()(  txt T
x PB  which implies 

0))()(()(2  tttx x

T
BP . 

Theorem 1: The uncertain sliding dynamics in (14) is asymptotically stable in 

closed loop with a state feedback, for Lyapunov function candidate 

)()()( txtxtV
T

 P , if there exists a symmetric matrix 0P , satisfying the 

following LMI: 
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(15) 

with 
1 PQ . The closed loop system matrix has its eigenvalues strictly on the 

left hand side of the line , in complex s-plan.  

  



 GA/PSO Robust Sliding Mode Control of Aerodynamics in Gas Turbine 49 

 

C. Robust control design 

The equation (15) is non-linear matrix inequality, difficult to solve being non 

convex. It can be solved by increasing  in order to shift the eigenvalues of 

KBAA  )(t progressively toward the region that guarantees the stability.  

However, in order to make the controller more robust against the model 

uncertainties and non-linearity, we will propose robust design [24], [25]. 

Consider the uncertain matrix NΔMA  )()( tt , where M  and N are 

known, and )(tΔ  is an unknown matrix satisfying Itt T  )()( ΔΔ  [26]. Note that 

this congruence transformation does not change the definiteness of  tΔ . 

Theorem 2: The uncertain sliding dynamic in (15) can be robustly stabilized if 

there exists 0T
Q , 0K  and 0  satisfying the following LMI: 
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(16) 

Proof: by replacing A  by NΔM  )(t in (15), it yields  

 0
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(17) 

with the assumption ItItt T  )()()( ΔΔΔ , as given in [25] and [26], it 

follows that: 
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with 01  , the inequality (17) is satisfied if the following equation is satisfied: 
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(19) 

Using Schur complement, we can put (19) in the form (16) as desired. The 

proposed robust Sliding Mode Controller (SMC) can be constructed similar to 

the previous algorithm by replacing (15) by (16) [27].  

 

D. Chattering reduction 

The sliding mode control law of (13), with LMI constraints (19) guarantees 

the asymptotic stability of 0)( tx  in error coordinates, eliminating the effect of 

uncertainties and perturbations on system state variables. In order to restrain the 

chattering phenomena, a continuous function )(tk x can be chosen instead of 
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discontinuous function ))(( tsign x  [23], [28], [29]. The nonlinear part of the 

controller can be expressed as:  

 
)()()()( 0

1 tktu xfnl   
BSBS

 
(20) 

with 0k . 

4. GA/PSO robust design approach 

From theoretical point of view, the proposed controller can be considered as 

an optimization of a robust sliding mode controller. The optimization of the 

controller parameter has a vital role in the design of such a sliding mode 

controller. A properly optimized controller tries to minimize an appropriate 

objective function of the system and it assures the process output to track the 

desired target as well as to reduce the effect of perturbations affecting the system. 

To optimize a sliding mode controller, there is not any method that has been 

specified in the literature survey [30]. In the present work, GA and PSO are used 

to optimize the controller parameters. 

 

A. The proposed Algorithm 

The steps involved in the proposed GA/PSO Robust sliding mode control 

algorithm are: 

Phase A (previous sections) - Robust sliding mode control: 

Step1: Design of the dynamic control based on equivalent and switching control, 

as illustrated in equations (8) and (9). 

Step2: Ensure the asymptotic stability of the proposed controller, as illustrated in 

equations (12) and (14). 

Step3: After designing the robust sliding surface, the system dynamic will be 

driven onto the sliding surface, and remain on it. The resulting problem in (14) 

can be transformed to Linear Matrix Inequality (LMI) optimization in equation 

(16). These resulting optimization problems can be solved numerically very 

efficiently using developed interior-point methods implemented in MATLAB 

software. 

Phase B (current Section) - Optimization of robust sliding mode control: 

Step4: In the conventional robust sling mode control, it is primordial to have the 

information about the uncertainties, in order to design a control law with 

switching part dominating the effect of perturbations [29]. To overcome this, in 

this section we propose to optimize the parameters of robust sliding mode control 
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using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) based on 

using equations (12) and (20), and on the block diagram in Fig. 2. 

 

 

Figure 2: The block diagram of proposed control. 

 
 The objective function comprises robust performance and stability criterion 

which is required to optimize the use of switching control efforts. The objective 

function is given by equation (21). 
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(21) 

In equation (21), the constraint (a) is required to generate a robust stability 

bound for the given model specifications and amount of plant uncertainties by 

using compressor map curve and throttle dynamic. The reachability condition (a) 

is a feasible optimization )()()()()(
2
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tk x  is a positive definite function [15], [19]. Then, with the 
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flexibility of the GA and PSO algorithms, these numerical bounds can be used 

directly in an online optimization of decision variables f , 0  and k  is a positive 

constant as an adaptive gain. 

 B. Genetic Algorithm Optimization (GA) 

The genetic algorithm is a heuristic approach to solving a non-linear 

optimization problem, which is essentially based on the theory of natural 

selection, the process that drives biological evolution [31]. In all global search 

problem, there is an optimization problem of maximizing or minimizing an 

objective function for a given space of arbitrary dimension [32-34]. In this paper 

the objective function is the equation (21), where f, 0 are decision variables. The 

flowchart in Fig. 3 explains the process in brief. The implementation of the GA 

is based on the following fundamental initializations: chromosome 

representation, selection function, the genetic operators, initialization, 

termination and evaluation function. A variety of constraints-handling methods 

for genetic algorithms have been developed in the last decades. Most of them can 

be classified into two main types of concepts: penalty function and multi-

objective optimization concept [34], [35]. In this work, the used concept to 

constraints-handling is the penalty function.  

C. Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is a derivative-free global optimum 

solver. It is inspired by the surprisingly organized behavior of large groups of 

simple animals, such as flocks of birds, schools of fish, or swarms of locusts [36]. 

The nonlinear optimization is illustrated in equation (21), where f, 0 are decision 

variables. The flowchart in Fig. 4 explains the process in brief. The individual 

creatures, or “particles”, in this algorithm are primitive, knowing only four simple 

things, their own current location in the search space and fitness value, their 

previous personal best location, and the overall best location found by all the 

particles in the “swarm”. There are no gradients or Hessians to calculate. Each 

particle continually adjusts its speed and trajectory in the search space based on 

this information, moving closer towards the global optimum with each iteration. 

As seen in nature, this computational swarm displays a remarkable level of 

coherence and coordination despite the simplicity of its individual particles. 

While the particles in the PSO algorithm are searching the space, each particle 

remembers two positions. The first is the position of the best point the particle 

has found (self- best), while the second is the position of the best point found 

among all particles (group-best). Let X and V represent the particle position and 

velocities in the given search space, respectively. Therefore, the i-th particle is 
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represented as ),........( 1 imii xxX  , in the m-di-mensional search space. The 

previous position of the i-th particle is recorded and represented as 

),........(
1 tmt bestpbestpbestp jjj  . The index of the best particle among all the 

particles in the group is represented by pbestj . The rate of the velocity for particle 

i is represented as ),........( 1 inii vvV  . The modified velocity and position of each 

particle can be calculated using the current velocity and distance from pbestJ  and 

gbestJ  use the following equations: 

 )(

)(
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(23) 

Where K1 and K2 are two positive constants, rand1 and rand2 are random 

numbers in the range [0,1], and pQ  is the inertia weight. 
t

iX  represents the 

current position of the i-th particle and 
t

iV  is its current velocity. The positions 

of the particles are updated using Equation (23), where 
1t

iX  is the new position 

of the i-th particle of m-dimensional search space, where “iter” is the iteration 

count [37]. Particle swarm optimization is guided by the quality of its candidate 

solutions. Consequently, an obvious solution to constraint handling is to penalize 

the fitness of infeasible methods. Penalty method (penalty functions) is easy to 

implement, and shows an improvement of the approximation of optima with 

active constraints [36], [38]. The weight pQ  is updated using the following 

equation: 

 
iter

iter

QQ
QQ

c

pp

pp 






 


max

minmax

max  
(24) 

The parameters used for GA and PSO performed in the present study are given 

in Table 1 and Table 2. 
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Figure 3: Flowchart of Genetic Algorithm Optimization (GA). 
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Figure 4: Flowchart of Particle Swarm Optimization (PSO). 

 

Table 1:  GA Parameters used in the simulation 
 

Parameter Value 

Population size 40 

Maximum number of generations 50 

Type of selection Roulette wheel 

Type of crossover Intermediate 

Fitness function Equation (21) 

Constraints-handling methods Penalty function 

Type of mutation adapt feasible 

Crossover Ration 0.8 
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Table 2: PSO Parameters used in the simulation 
 

Parameter Value 

Maximum iteration 50 

Population size 40 

Dimension 2 

Value of K2 2.0 

Maximum weight 0.90 

Minimum weight 0.40 

Fitness function Equation (21) 

5. Numerical simulation 

For simulation purposes it is considered the compressor model of Gravdahl as 

given in equations (1) to (5), with numerical values are given in Table 3 [2], [5].  

 
Table 3: Model parameters used in simulation 

Parameter Value Parameter Value Parameter Value Parameter Value 

W 0.25 a  0.3 b 96.16 dΨ 0.02 

H 0.18 li 1.75 m 1.75 Λ1 2.168e-4 

µ 0.01 dΦ −0.05 lE 3 Λ2 0.0189 

ρ1 0<ρ1<1 ρ2 0<ρ2<1 c 0.7 γv 1 

 

The aim of this simulation is demonstrating the effectiveness and the 

robustness of the proposed controllers in preventing the compressor from 

developing temporary rotating stall (J1>0), and pressure drop under the following 

critical operating conditions:  

1- Constrained Throttle valve opening (u2 >0): It is interesting to note that in 

[2], [4], [5], [14] it is reported that the saturated effort of the throttle valves can 

cause a temporary rotating stall. 

2- Speed Transition: As reported in [2], [4], [5], [14], when speed varies at an 

efficient operating point (0.5,0.66) temporary stall developments can lead to a 

fully developed rotating stall.  

3-Pertubations: Previously reported results in [1], [2], [5] show that pressure and 

flow external perturbations can destroy the stability of compressors at an efficient 

operating point (0.5, 0.66) and lead to fully developed rotating stall or deep surge 
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depending on the speed of the rotor (i.e. for low speeds the system goes to rotating 

stall and for high speeds it develops deep surge). Two types of perturbations are 

applied to the system denoted by Φd(t)=Ψd(t)=0.01sin(0.2t), they are considered as 

mass flow and pressure disturbances respectively and, dΦ, dΨ represent the 

uncertainty of the compressor map and throttle characteristic. At t=1000 a higher 

perturbation magnitude Φd(t)=Ψd(t)=0.1sin(0.2t) is applied to system to check the 

robust and adaptive behaviour of the three proposed controllers. The simulation 

numerical values are given in Table 3 [2], [5]. 

In TEST 1, perturbations are applied and constrains are considered. A low 

desired speed Ud =40 m/s of the turbine is considered. In TEST 2, perturbations 

are applied and constrains are considered. A high desired speed   Ud =150 m/s of 

the turbine is considered. In order to illustrate the advantage of the proposed 

robust sliding mode controller without optimization (RSMC), Genetic Algorithm 

optimized robust sliding mode controller (RGASMC), and particle swarm 

optimized robust sliding mode controller (RPSOSMC) a comparative simulation 

is carried out using Matlab software. 

 

Figure 5: Closed loop system map TEST1. 
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Figure 6: Closed loop system map TEST 2. 

 

For the tests TEST1 and TEST2, Fig. 5 and Fig. 6 show the variables Φ and 

Ψ in the phase space along with compressor map and stall characteristic. The 

system starts from an effective initial operating point (OP) at the top of the 

compressor map. At t=0, the controller is activated and closes the loop. 

Examining Fig. 5 and Fig. 6, we found that, the proposed controllers effectively 

stabilize the compression system at the efficient point OP and prevent it from 

developing a steady rotating stall due to the speed variation, thus limiting the 

throttle valve opening coefficient which must always be positive. 
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Figure 7: Output dynamic in closed loop TEST 1. 
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Figure 8: Output dynamic in closed loop TEST 2. 

In Fig. 7 and Fig. 8, we found that the RGASMC and RPSOSMC controllers 

make the compressor operating close to his efficient OP (Φ,Ψ)=(0.5,0.66) despite 

the existence of uncertainties, and perturbation (negligible variation). The robust 

sliding mode controller (RSMC) can’t reject the effect of the perturbation. This 

can be explained by the need of the prior knowledge of the upper bound of the 

perturbations and uncertainties, governed by |Δx|f. Compared to (RSMC) and 

many control strategies proposed in the previous literature, one advantage of the 

proposed GA and PSO controllers designed in this paper is their ability to be 

applied in real applications without a need to a prior knowledge on perturbations 

and uncertainties. 
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Figure 9: Control efforts dynamic in closed loop TEST 1. 

In Fig. 9 and Fig. 10, we have noted a variation in throttle actuator, despite that 

the system still reaches its stable OP, where the pressure is high enough for 

normal operation of the gas turbine. 

 

Figure 10: Control efforts’ dynamic in closed loop TEST 2. 
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The throttle gain decrease is caused by the high level of perturbation on the 

pressure rate, which is a consequence of the low speed of the turbine during the 

starting phase (9.617 m/s). The throttle valve immediately damps out rotating 

stall as illustrated in [10], it should be turned down in order to add some resistance 

to the compression system when the flow change is positive and the pressure 

change rises is not negative. It can be seen that the throttle gain for the three 

controllers is still positive and lower than one 0 < u2<1. 

 

Figure 11: The first harmonic of rotating stall TEST 1. 

 

Figure 12: The first harmonic of rotating stall TEST 2. 
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Fig. 11 and Fig. 12 show the effectiveness of the proposed control law 

regarding the rotating stall control. It can be noticed that, even though the 

cumulative computational time increases linearly with the number of generations 

for both PSO and GA, the computational time for GA is low compared to the PSO 

optimization algorithm. 

6. Conclusion 

This paper has presented a GA and PSO adaptive sliding mode controller 

design based on linear matrix inequality. The proposed approach is applied to the 

gas turbine, which is a variable speed system, by its nature. This turbine suffers 

from temporarily developed instabilities which may lead to a steady and fully 

developed rotating stall or surge. The used model reveals significantly the impact 

of speed transitions (measurable output) and throttle gain (control effort) on the 

stability of the compression system. The addition of model uncertainties and 

external perturbations and impossibility to have a full feedback control (rotating 

stall is not measurable) constitute a challenging issue. The proposed controllers 

do not require precise knowledge of the compressor map, an upper bound of the 

uncertainties and perturbations, and do not use a full-state feedback. Time-

domain simulations have demonstrated that RGASMC and RPSOSMC 

controllers are still stable, close to desired performances and are damping out 

system instabilities including surge and rotating stall. 

 

Appendix: Nomenclature of the model variables: 

 

 : Annulus averaged mass flow 

coefficient  

 : Plenum pressure rise coefficient 

1J : The first mode squared amplitude 

of rotating stall  

U : Rotor tangential velocity at mean 

radius  

dU : Desired constant velocity  

T : Throttle Gain 

v : Close Coupled valve gain  

t : Non-dimensional time 

dt : Dimensional time 

0U : compressor initial velocity 

 dd , : Mass flow and pressure 

uncertainty 

dd  , : Time varying and mass flow 

pressure disturbance  

R : mean compressor radius 

 c
: Compressor characteristic 

 s
: Stall characteristic 

H : semi-height of the compressor 

characteristic 

W : semi-width of the compressor 

characteristic 

0c : shut-off value of the comp-

ressor characteristic 
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cl , il , El : Effective flow passage non-

dimensional length of the compressor, 

Inlet duct and exit duct respectively. 

m : Compressor duct flow parameter 

c: Coefficient of compressor torque. 
a : Reciprocal time lag parameter of the 

blade passage 

sa : Sonic velocity 

 : Viscosity  

21, : Constants in Greitzer model  

b : Constant in Greitzer model 
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