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Abstract: This paper presents a model predictive control (MPC) for a differential-drive 

mobile robot (DDMR) based on the dynamic model. The robot’s mathematical model is 

nonlinear, which is why an input–output linearization technique is used, and, based on the 

obtained linear model, an MPC was developed. The predictive control law gains were acquired by 

minimizing a quadratic criterion. In addition, to enable better tuning of the obtained predictive 

controller gains, torques and settling time graphs were used. To show the efficiency of the 

proposed approach, some simulation results are provided. 

Keywords: mobile base; dynamic model; nonlinear control; model predictive 

control; input-output linearization. 

1. Related works 

In general, the control of mobile robots poses a very strong challenge among 

the robot control community. Today, several studies are still ongoing, especially 

in aeronautical space exploration, the inspection of nuclear power plants, and 

automated agriculture, motivating the increasing interest in mobile robotics [1]. 

Such applications need to find an adequate control law for mobile robots after 

taking into consideration all the possible constraints. For control purposes, 

many approaches are available in the literature; for example, Guechi et al. [2] 

developed predictive control dynamics for a two-link manipulator robot. The 

idea consists of linearizing the nonlinear dynamic model of the robot through 

feedback linearization, and, based on the obtained linear model, an MPC was 

developed by assuming the outputs of the predictive controller as constant in the 

prediction horizon interval. A similar idea was exploited by Belda et al. [3] but 

with a different model presentation; as they designed a model predictive control 

(MPC) for an autonomous mobile robot system with a 5-DOF manipulator arm. 
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Based on the manipulator robot dynamic model, the nonlinear state space model 

is converted into a linear model by considering the time-varying matrices as 

constants within one prediction horizon. Another application of [3] was 

intended for mobile platforms; Kamel et al. [4] applied a combination of linear 

model predictive control and input–output feedback linearization for a team of 

wheeled mobile robots to accomplish a formation task. The time-variant matrix 

of the state space model was considered as a constant matrix between the 

prediction intervals. Guechi et al. [5] did a comparative study between a MPC 

and Linear Quadratic (LQ) optimal control of a two-link robot arm, and the 

simulation results showed that the proposed MPC gave a better system 

performance then the LQ optimal control approach. Elkhateeb [6] developed a 

novel tuning methodology of a PID controller for trajectory tracking of a 

manipulator robot. The optimal gains of the PID controller are obtained by 

using a dynamic inertia weight artificial bee colony optimization algorithm. 

Mendili et al. [7], [8] presented two papers, the first of which was a predictive 

controller of a holonomic omnidirectional mobile robot. The predictive control 

law was obtained by using a state space model, which is based on the robot 

dynamic model. The simulation results illustrated the effectiveness of the 

control law joined with the dynamic model. Meanwhile, the second paper was 

an application of the model predictive control to solve the problem of the 

trajectory tracking and path following of an omnidirectional mobile robot. Two 

different models were considered: the kinematic and the dynamic model. The 

results showed the effectiveness of the dynamic model in comparison with the 

kinematic one in tracking the trajectory and path without posture. To achieve 

better path tracking for a wheeled mobile robot (WMR), Maniatopoulos et al. 

[9] developed an MPC-based solution to the problem of navigating a non-

holonomic mobile robot while maintaining visibility. The proposed approach 

combines the convergence properties of a dipolar vector field along with a 

constrained nonlinear MPC formulation using recentered barrier functions, 

which take into account the visibility constraints and the saturation of control 

inputs. The control strategy falls into the class of dual-mode MPC schemes. 

That is, the system trajectories are forced by the model predictive controller into 

a suitably defined terminal region containing the goal configuration. In this 

region, the trajectories resulting from tracking the dipolar vector field by 

construction do not violate the visibility constraints. To achieve better path 

tracking for a wheeled mobile robot (WMR), Sinaeefar et al. [10] developed an 

adaptive fuzzy nonlinear model predictive control (NMPC). The proposed 

controller solves the integrated kinematic and dynamic tracking problem in the 

presence of both parametric and non-parametric uncertainties. Furthermore, a 

fuzzy system, the parameters of which are updated online by a gradient descent 

algorithm, is employed. While this fuzzy system can provide an appropriate 
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model for the robot, it can also deal with any changes in robot parameters. 

Mazur [11] presented a general solution to the path-following problem for 

mobile manipulators with a non-holonomic mobile platform. New proposed 

control algorithms – for mobile manipulators with fully known dynamics or 

with parametric uncertainty in the dynamics – take into consideration the 

kinematics as well as the dynamics of the non-holonomic mobile manipulator. 

The convergence of the control algorithms was proved using LaSalle’s 

invariance principle. Ostafew et al. [12] developed a learning-based nonlinear 

model predictive control algorithm for a path-repeating mobile robot 

negotiating large-scale, GPS-denied outdoor environments. The disturbance is 

modelled as a Gaussian process based on observed disturbances as a function of 

relevant variables, such as the system state and input. Localization for the 

controller is provided by an on-board visual teach and repeat mapping and 

navigation system. Two experiments on two significantly different robots 

demonstrated the system’s ability to handle unmodelled terrain and robot 

dynamics and a speed scheduler based on previous experience to address the 

classic exploration vs. exploitation trade-off, balancing speed and path-tracking 

errors. Mitrovic et al. [13] presented a new methodology for the avoidance of 

one or more obstacles for the navigation of a differential-drive mobile robot. 

The approach is based on fuzzy logic with virtual fuzzy magnets and represents 

a reactive controller for navigation through an unknown environment. The 

relative parameters of the obstacle in the robot’s way are determined at the 

preprocessing stage, and the algorithm is therefore applicable to obstacles of 

different sizes. The algorithm, designed to avoid a single stationary obstacle, 

was generalized and successfully applied in a multiple-obstacle navigation 

scenario. The efficiency of the algorithm was illustrated by computer 

simulations using the kinematic model of a mobile robot. 

This paper proposes a novel approach to controlling a differential-drive 

mobile robot. The control strategy of this approach is to linearize the DDMR 

dynamic model by using an input–output linearization control in the first step; 

then, the second step is to develop an MPC for the obtained linear model by 

minimizing a quadratic criterion.  

This paper is organized as follows. In the second section, we provide a 

description of the DDMR and its different models. In the third section, the 

control strategy for the DDMR from an initial position up to a final position 

using a model predictive control (MPC) is presented. The simulation results are 

presented in the fourth section. 
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2. Differential drive mobile robot models 

 A differential drive mobile robot can be presented as depicted in Fig.1. 

 

Figure 1: Schematic representation of a DDMR robot. 

A. Coordinate systems 

 To describe the mobile robot’s position, we have defined two coordinate 

systems:  

A.1. Global coordinate system: This coordinate system is a global frame which 

is fixed in the environment in which the DDMR moves in. and is denoted as 

 ,g gX Y .  

A.2. Robot coordinate system: This coordinate system is a local frame attached 

to the DDMR, and thus, moving with it. And is denoted as ,r rX Y .  

 The two defined frames are shown in Fig.1 the origin of the robot frame is 

defined to be the mid-point A on the axis between the wheels. The center of 

mass C of the robot is assumed to be on the axis of symmetry, at a distance d 

from the origin A. 
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 The mobile robot position and orientation in the global Frame can be defined 

as: 

 
Tg

a aq x y   (1) 

B. Kinematic constraints of DDMR 

 The DDMR motion is characterized by the non-holonomic constraints 

equations, which are based on the following assumptions [14]: 

 

Figure 2: Rolling motion constraints. 

- No lateral slip:   

 cos sin 0a ax y      (2) 

- Pure rolling:  
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where: R  and L  are the right and left wheels angular velocities respectively, R 

is the wheels’ radius, L is the distance between the driving wheels and the axis 

of symmetry and d is the distance between the points A and C. 

Taking (4) into account, (3)becomes the following: 
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The constraint equations (2) and (4) can be presented as follow:  
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   0q q    (6) 

where:   

sin cos 0 0 0
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  (7) 

 
T

a a R Lq x y         (8) 

C. Kinematic model           

Kinematic modelling is the study of the motion of mechanical systems 

without considering the forces that affect the motion. 

We can calculate the linear and angular velocities for the driving wheels in 

the robot frame as below: 

 ,
2 2

pR pL pR pLv v v v
v w

L

 
    (9) 

where pRv and pLv  Are the right and left linear velocities of the contact point P. 

Therefore, the platform centre A velocities in the robot and global frames are 

as follows: 
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D. Dynamic model 

Dynamics is the study of mechanical system motion taking into 

consideration the different forces that affect it. The dynamic model of the 

DDMR is essential for simulation analysis of its motion and for the design of 

various motion control algorithms using the Lagrange formula: 
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F q

dt q q


  
   

  
  (12) 

where L=T-V, T is the kinematic energy, V is the potential energy of the mobile 

platform, iq are the generalized coordinates, F is the generalized force vector, 

 is the constraint matrix, and   is the Lagrange multiplier vector associated 

with the constraints. In addition, knowing the DDMR kinetic energy, which is 

the sum of cT , the kinetic energy of the robot platform without wheels, plus 

wRT , wLT , the kinetic energy of the wheels, note that their formulas are as 

follows[14]: 
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where 
cm  and 

cI  are the mass and the moment of inertia of the platform 

without the driving wheels, respectively, 
wm  and 

wI  are the mass and the 

moment of inertia of each driving wheel plus the rotor of its motor. 

 The dynamic model of the non-holonomic DDMR with n generalized 

coordinates  1 2, ,..., nq q q  and subject to m constraints can be described by the 

following equation of motion [15]:  

      , ( ) TM q q V q q q B q q       (14) 

 M q  : the inertia moment matrix, symmetric positive definite matrix. 

 ,V q q : the Coriolis and centrifugal matrix. 

( )B q : input matrix.  

 : input vector. 

In addition:  
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0 0 0 1 0
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T
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Note that: 

 
2 22 , 2 2T c w c c w mm m m I I m d m L I        (18) 

 For the purpose of control and simulation and because the Lagrange 

multipliers i  are unknown, it is more convenient to eliminate the constraint 

term   T
q  in (14). Furthermore, since the constrained velocity is always in 

the null space of  q , it is possible to define  2mn  velocities   ][ 21  t , 

such that [15]: 

    q S q t   (19) 

 We can verify that  qS  is also the null space of the constraint matrix  q , 

which means:     0 qqS ; then, it is easy to verify that: 
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 Therefore based on  qS  matrix choice, and the state variable 

 
T

a a R Lq x y     we have   [ ]R Lt   . By differentiating (19) and 

substituting the expression of  q into (14) and multiplying it by
TS , the dynamic 

model equation is as follow [14]: 

 M V B        (21) 
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  (22) 

(21) shows that the DDMR dynamic model is a function only of the right and 

left wheel angular velocities ( , )R L  , the robot angular velocity  and the 

driving motor torques ( , )R L  . 

3. Control algorithm 

 In this part, a predictive control law for a differential-drive mobile robot is 

developed. First, we consider the nonlinear dynamic model given by (21) Then, 

we convert the nonlinear dynamic model into a completely linear model on 

which the linear control approach is applied. Once the linear model has been 

obtained, a model predictive control will be designed in the second step [15]. 

3.A Input-output linearization 

 Let consider the state space vector below:  

 [ ] [ , , , , , , ]T T T T

c c R L R Rx q x y         (23) 

We can write the state space dynamic model as follows: 
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  (24) 

We can rewrite the above state space equation as follow: 

    x f x g x u    (25) 

where: 
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From (25), we could assume a new input u which could linearize(24), but 

the challenge now is to find another equation that links the new input u with the 

robot’s position in such a way that we can compute the wheels’ torques based 

on this new input. 

Let us suppose    
T

c cy q x y    is the output vector that we need to 

control, as shown in Fig. 2.  
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  (27) 

,a a

c cx y  are the coordinates of point C in the robot frame. Therefore:  

              [ ] [ ]f fy q J S q t J S q t q t
t q

        
 

 (28) 

 : 2x2 decoupling matrix, such as
11 12

21 22

  
   

  
,  

where: 
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The second derivate of (28), is obtained as follows:  

 y        (30) 

As developed in [15], to make Eq. (30) linear we have to do the following 

substitution: 
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y v

u





  (31) 

which is the I/O feedback linearisation, therefore the second input u will be:  

 1( )v u u v           (32) 

By substituting the second input u of the Eq.(32) into Eq. (21), we can 

compute the DDMR wheels’ torques as follows: 

 VMu     (33) 

Now we need to find out the variable v , note that: 

 
1

2

c

c

x v
y

y v

   
    

  
  (34) 

where: 1 2[ , ]v v v is the synthetic control vector. This will be the subject of the 

following subsection. 

3.B Model Predictive Control law 

Following the I/O feedback linearization, let us apply the model predictive 

control to compute the first input 
1v , where iv is the synthetic control vector. 

Now let us develop the predictive control law for the cx  coordinate, which will 

be similar to the cy  coordinate. 

 

   

   

   

1 2

2 1

1

x t x t

x t v t
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  (35) 

where:    
T T

1 2 c cx x x x  , 1v is the synthetic control of the cx variable, 

while ( ) ( )cz t x t is the output signal. 

Let consider that 1( )v t v is constant in the time interval [t t + h] [16-18] 

where h is the prediction horizon time, and by using the Eq.(35), we can 

formulate the prediction model as follows: 

 2

1

1
( ) ( ) ( )

2
c c cx t h v h x t h x t      (36) 
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We want to minimize not only the articulation deviation error but also the 

energy needed by the manipulator arm to reach the final position, which is why 

we choose the following cost function: 

 2 2

1 ( )
t h

t
J e t h v dt



      (37) 

where: 
1( ) ( )cd ce t h x x t h     is the prediction error and cdx is the desired 

value generated by the referenced trajectory. The horizon time h and the weight 

factor ρ are both positive parameters to be computed later.  

By replacing the predicted value of ( )cx t h given by (36) into (37), 

therefore the criterion J become:  
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Therefore:  
1

min
v

J with subject to 0h   and 0    

 1 1 2( ) ( (t) ( )) ( )cd c cv t k x x t k x t      (39) 

where the predictive control law gains are :
1 3

2

4

h
k

h 
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2

2 3

2

4

h
k

h 



. 

The block diagram of the closed-loop system can be presented as shown in 

Fig. 3. 

 

Figure 3: Closed-loop system. 
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 Regarding the response of the equivalent system, we want it to adopt similar 

behavior to the second-order system:
2

0

2 2

0 02

w

p w p w 
, where  and 0w  are 

respectively the damping factor and the natural frequency.  

 The closed loop transfer function of the system shown in Fig. 3 is given by: 
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we can verify that: 
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  (41) 

Therefore: 

  2

3

0 0

2
, 1 2h

w w

 
      (42) 

The weight factor 0  ; therefore, from Eq.(42), as the damping factor   

must be less than 1 2  to obtain good damping, we have to choose   as near 

as possible to 1 2 ; let us suppose 0.999 2  . 

We want to find the h and  values in such a way that our system fulfills the 

following conditions: 

 150 , 1,2.i Nm i    and 5% 1rT s   (43) 

with: 

 
2

5%

0

ln(0.05 1 )

w
rT






 
  [19] (44) 

Hence, we calculate and draw the maximum and minimum torque values (for 

each driving wheel) and the settling time values for several values of 0w  (from 

1 rad/s to 10 rad/s), with a Matlab script obtained from the graphs below. 

From Fig. 4, to have the maximum wheel torque less than or equal to 150 

Nm, the natural frequency 0w should be less than or equal to 9 rad/s. From Fig. 

5, to have the minimum wheel torque greater than or equal to 150 Nm, the 

natural frequency 0w should be less than or equal to 9 rad/s. In addition, from 
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Fig. 6, to have a settling time 5%rT   less than or equal to 1 s, the natural 

frequency 0w should be greater than or equal to 4.8 rad/s. Finally, the natural 

frequency 0w  should verify the following inequality: 

 04.8 / 9 /rd s w rd s    (45) 

Let us take 0 9w  rad/s, which means that 0.157h  s, 
61.9 .10   and the 

predictor control law gains values are 1k 72.26  and 2k 12 . 

 

Figure 4: Max. torque maxi . 
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Figure 5: Max. torque mini . 

 

Figure 6: Max. torque 5%rT  . 
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4. Simulation results 

To show the suitability of our tinning parameters, k1 and k2, let us consider 

 1cm kg and  21cI Nm  the mass and the moment of inertia of the 

platform without the driving wheels.  0.1wm kg and  20.1wI Nm :the mass 

and the moment of inertia of each driving wheel plus the rotor of its motor. 

 20.1mI Nm : the moment of inertia of each wheel and the motor rotor. 

For trajectory generation, we show that the DDMR moves from an initial 

point (1,1)initP  to a desired position (40,60)disP   during a time period of 60 s, 

following a short distance, which will be a straight line; note that we suppose 

that there is no obstacle between initP and disP . 

  

Figure 7: Desired and real Xc. 
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Figure 8: Desired and real Yc. 

 

Figure 9: Desired and real trajectory. 



 Model Predictive Control of a Differential-Drive Mobile Robot 37 

 

 

Figure 10: Desired and real trajectory (PD). 

 

Figure 11: Trajectory tracking error. 



38 S. Bouzoualegh, E.-H. Guechi and R. Kelaiaia 

 

  

 

Figure 12: DDMR Synthetic control. 

 

Figure 13: Wheels’ driving torques. 
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Figure 14: DDMR trajectory simulation. 

 Fig.7, 8 and 9 represent the trajectory of the Xc and Yc coordinates of the 

DDMR, from the initial to the final position; we notice fast asymptotic 

convergence of the two coordinates without oscillations comparing with Fig. 

10, Yoshio and Xiaoping work [15], and the imposed settling time 5%rT   limit 

(less than 1s) is respected. Fig.11 shows the convergence of the trajectory 

tracking error towards a very small value. using the proposed control approach. 

In Fig.12 the DDMR synthetic controls 1 2,v v given by (39) are shown. As we 

can notice, the synthetic controls do converge almost to zero. Fig.13 shows that 

the DDMR torques 1 2,   that can be obtained from the synthetic controls using 

(33), respect the imposed torque limitations max 150i  . The Fig. 14, shows that 

the DDMR follows the desired trajectory rapidly without any overshoot or 

oscillations. 

5. Conclusion 

The present article proposes a model predictive control for a DDMR. The 

control strategy started with an input–output linearization technique to linearize 

the nonlinear dynamic model of the DDMR, then, based on the obtained linear 
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model, a predictive control law was developed. The prediction horizon time h 

and the weight factor ρ were tuned based on torques and settling time graphics 

analysis; the simulation results showed that we could find a trade-off between 

the settling time and the energy required for the mobile robot to follow the 

desired trajectory. In addition, the proposed approach produces a better system 

performance than the PD control technique proposed by Yoshio and Xiaoping 

[15]. Future work aims to apply this control law in discrete form, to a mobile 

manipulator robot with a high degree of freedom and challenge the obtained 

control law to follow a more complicated predefined trajectory. After that, the 

validation of the proposed approach on a real robot is envisaged. 
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