Simple utilization of lactic acid whey in dairy processing

Open access

Abstract

The use of ultra-filtered lactic acid whey retentate was investigated for the making of sour cream. The utilization of lactic acid whey is limited due to its special properties, so the logical utilization way is to use it in fermented products. First, we concentrated lactic acid whey collected from cottage cheese making by ultrafiltration (UF), then UF Whey Retentate (UFWR) was added (by 2, 5, and 10%) into fat standardized cream for sour cream making. We investigated the texture and sensory properties of the sour cream samples compared with the industrial products. Generally, we can state that the use of small portion of UF whey retentate did not result noticeable changes and did not reduce the sensory value of sour creams. Higher UF whey retentate addition improved some texture properties of experimental samples, but the summarized evaluation of UFWR addition was not unequivocal. Control samples showed better results. Based on our results, the sample, which contained 5% UF whey retentate, had good texture and acceptable sensory properties. Furthermore, more than 5% UF lactic acid whey retentate (coming from our own ultrafiltration process) resulted remarkably worse sensory properties than the other samples. Further investigation is needed to find the optimal composition and sensory properties of UFWR. Furthermore, we have to perform technological investigation to reach a higher concentration factor using pre-treatment of whey and to avoid the precipitation of whey proteins during the high temperature pasteurization of cream, cream mixed with UFWR or diafiltered whey retentate. We guess that the use of one-stage diafiltration would already decrease the unfavourable sensory properties of lactic acid whey retentate.

[1] T. Malkovic, Process turns waste whey into profitable products. ScienceNetwork Wa; http://phys.org/news/2015-10-whey-profitableproducts.html (October 27, 2015).

[2] F. Squadrito, D. Altavilla, G. Squadrito, A. Saitta, D. Cucinotta, L. Minutoli, B. Deodato, M. Ferlito, G. M. Campo, A. Bova, A. P. Caputi, Genistein supplementation and estrogen replacement therapy improve endothelial dysfunction induced by ovariectomy in rats, Cardiovasc. Res., 45. (2000) 454–462.

[3] E. Ha, M. B. Zemel, Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people, J. Nutr. Biochem., 14. (2003) 251–258.

[4] S. J. Bhathena, M. T. Velasquez, Beneficial role of dietary phytoestrogens in obesity and diabetes, Am. J. Clin. Nutr., 76. (2002) 1191–1201.

[5] L. Seppo, T. Jauhiainen, T. Poussa, R. Korpela, A fermented milk high in bioactive peptides has a blood pressure lowering eéct in hypertensive subjects, Am. J. Clin. Nutr., 77. (2003) 326–330.

[6] A. Hayes, P. J. Cribb, Effect of whey protein isolate on strength, body composition and muscle hypertrophy during resistance training, Curr. Opin. Clin. Nutr. Metab. Care, 11. (2008) 40–44.

[7] P. Fanti, R. Asmis, T. J. Stephenson, B. P. Sawaya, A. A. Franke, Positive effect of dietary soy in ESRD patients with systemic inflammation and correlation between blood levels of the soy isoflavones and the acute-phase reactants, Nephrol. Dial. Transplant., 21. (2006) 2239–2246.

[8] Q. Chen, R. A. Reimer, Dairy protein and leucine alter GLP-1 release and mRNA of genes involved in intestinal lipid metabolism in vitro, Nutrition, 25. (2009) 340–349.

[9] A. Tahavorgar, M. Vafa, F. Shidfar, M. Gohari, I. Heydari, Beneficial effects of whey protein preloads on some cardiovascular diseases risk factors of overweight and obese men are stronger than soy protein preloads – A randomized clinical trial. J. of Nutrition & Int. Met., 2. (2015) 69–75.

[10] J. G. Brennan, A. S., Grandison, M. J. Lewis, Separations in food processing. In: J. G. Brennan (ed.), Food Processing Handbook, Wiley-VCH, Weinheim. (2006) 429–511.

[11] P. Walstra, J. T. M. Wouters, T. J. Geurts, Dairy Science and Technology. Taylor & Francis, 6000 Broken Sound Parkway NW, suite 300 Boca Raton, FL 33482–2742. (2006).

[12] A. Román, J. Wang, J. Csanádi, C. Hodúr, Gy. Vatai, Partial demineralization and concentration of acid whey by nanofiltration combined with diafiltration. Desalination, 241. (2009) 288–295.

[13] C. Hodúr, Sz. Kertész, J. Csanádi, G. Szabó, Comparison of 3DTA and VSEP systems during the ultrafiltration of sweet whey. Desal. and Water Treatm., 10. (2010) 265–271.

[14] Sz. Szélpál, Zs. Kohány, E. Fogarassy, J. Csanádi, Gy. Vatai, C. Hodúr, Assaying of the filtration parameters of whey by different filtration systems. Acta Technica Corviniensis – Bulletin of Engineering, 7. (2014) 127–31.

[15] E. Schwinden Prudencio, C. M. O. Müller, C. B. Fritzen-Freire, R. D. M. Castanho Amboni, J. C. Cunha Petrus, Effect of whey nanofiltration process combined with diafiltration on the rheological and physicochemical properties of ricotta cheese. Food Res. Int., 56. (2014) 92–99.

[16] G. Q. Chen, F. I. I. Eschbach, M. Weeks, S. L. Gras, S. E. Kentish, Removal of lactic acid from acid whey using electrodialysis. Sep. and Pur. Techn., 158. (2016) 230–237.

[17] Sz. Kertész, A. Szép, J. Csanádi, G. Szabó, C. Hodúr, Comparison between stirred and vibrated UF modules, Desal. and Water Treatm., 14. (2010) 239–245.

[18] N. C. Gajendragadkar, P. R. Gogate, Intensiéd recovery of valuable products from whey by use of ultrasound in processing steps - A review. Ultrasonics Sonochem., 32. (2016) 102–118.

[19] M. C. Almecija, A. Guadix, A. Martinez-Ferez, P. Gonzalez-Tello, E. M. Guadix, A ux enhancing pretreatment for the ultrafiltration of acid whey. Desalination, 245. (2009) 737–742.

[20] M-J. Corbatón-Báguena, S. álvarez-Blanco, M-C. Vincent-Vela, E. Ortega-Navarro, V. Pérez-Herranz, Application of electric fields to clean ultrafiltration membranes fouled with whey model solutions. Sep. and Pur. Techn., 159. (2016) 92–99.

[21] A. Román, J. Wang, J. Csanádi, C. Hodúr, Gy. Vatai, Experimental investigation of the sweet whey concentration by nanofiltration. Food and Bioprocess Techn., 4. (2011) 702–709.

[22] J. Chandrapala, M. C. Duke, S. R. Gray, M. Weeks, M. Palmer, T. Vasiljevic, Nanofiltration and nanodiafiltration of acid whey as a function of pH and temperature. Sep. and Pur. Techn., 160. (2016) 18–27.

[23] C. Baldasso, T. C. Barros, I. C. Tessaro Baldasso, Concentration and purification of whey proteins by ultrafiltration. Desalination, 278. (2011) 381–386.

[24] F. Arrutia, R. Rubio, F. A. Riera, Production and membrane fractionation of bioactive peptides from a whey protein retentate. J. of Food Eng. (article in press), (2016) 1–9.

[25] B. Lemmer, K. Keçeci, Sz. Kertész, Zs. László, C. Hodúr, Szonikációval segfifitett enzim-visszanyerés. Membrántechnika és Ipari Biotechnológia, 6. (2015) 42–51.

[26] K. Keçeci, B. Lemmer, Sz. Kertész, G. Keszthelyi-Szabó, Zs. László, C. Hodúr, The effect of the implementation of ultrasound in enzyme separation. Review of Faculty of Engineering. Analecta Technica Szegedi- nensia (online), 9. (2015) 34–41.

[27] B. Wojtyniak, J. Kołodziejczyk, D. Szaniawska, Production of lactic acid by ultrafiltration of fermented whey obtained in bioreactor equipped with ZOSS membrane. Chemical Eng. J. (article in press) (2016).

[28] K. Ruttarattanamongkol, M. Nor Afizah Syed, S. H. Rizvi, Stability and rheological properties of corn oil and butter oil emulsions stabilized with texturized whey proteins by supercritical fluid extrusion. J. of Food Eng., 166. (2015) 139–147.

[29] C. Sun, T. Wu, R. Liu, B. Liang, Z. Tian, E. Zhang, M. Zhang, Effects of superfine grinding and microparticulation on the surface hydrophobicity of whey protein retentate and its relation to emulsions stability. Food Hydrocolloids, 51. (2015) 512–518.

[30] L. P. Martínez-Padilla, V. García-Mena, N. B. Casas-Alencáster, M. G. Sosa-Herrera, Foaming properties of skim milk powder fortified with milk proteins. Int. Dairy J., 36. (2014) 21–28.

[31] T. T. Le, S. D. Nielsen, N. S. Villumsen, G. H. Kristiansen, L. R. Nielsen, S. B. Nielsen, M. Hammershoj, L. B. Larsen, Using proteomics to characterise storage-induced aggregates in acidic whey protein isolate drinks. Int. Dairy J. (article in press), (2016) 1–8.

[32] I. R. Amado, J. A. Vázquez, L. Pastrana, J. A. Teixeira, Cheese whey: A cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus. Food Chem., 198. (2016) 54–61.

[33] M. Wronkowska, M. Jadacka, M. Soral-Smietana, L. Zander, F. Dajnowiec, P. Banaszczyk, T. Jelinski, B. Szmatowicz, Acid whey retentated by ultrafiltration a tool for modeling bread properties. LWT - Food Sci. and Techn., 61. (2015) 172–176.

[34] A. Lőrincz, A. Unger, Á. Novák, K. Szabó, G. Császár, S. Bukovics, A. Fülöp, Cs. Balla, L. Friedrich, H. K. Pásztorné, L. Szalai, Kutatások a savanyú savó alkotórészeinek membránszeparációs technikákkal történő teljes körű hasznosítására. (Researches for the whole utilization of lactic acid whey by membrane filtration techniques). Hungarian Dairy Journal. Science and Practice (Tejgazdaság), 71. (2011) 30–33.

[35] M. Al-Khajafi, S. Szakály, J. Schrem, Egyszerű gyors módszerek a savanyú tejtermékek állománytulajdonságainak mérésére. (Simple tests for the determination of texture properties of fermented milk products). Dairy Industry (Tejipar), 27. (1977) 12–17.

Acta Universitatis Sapientiae, Alimentaria

The Journal of Sapientia Hungarian University of Transylvania

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 229 222 12
PDF Downloads 96 94 8