Production of prebiotics via reactions involving lactose as well as malic acid and citric acid

Open access

Abstract

Prebiotics are such indigestible food ingredients that enter the colon and serve as nutrient for bifidobacteria and lactobacilli. Since fibres and oligosaccharides are the typical prebiotics, we produced prebiotics in our experiments with the reaction of lactose and malic acid as well as citric acid, where these reactions made use of an appropriate concentration of these substances, had an adequate duration, and were carried out under optimal temperature conditions. We determined the optimal parameters of the reaction, measured the loss of the starting materials as well as the increase in concentration of the end-product, and analysed the total sugar content of the hydrolysed prebiotics after hydrolysis by hydrochloric acid. In vitro experiments were performed to demonstrate our end-product’s resistance to carbohydrate-degrading enzymes, which is a fundamental requirement for a prebiotic so that upon reaching the colon it can serve as nutrient for the probiotic bacteria found there.

[1] R. L. Antrim, F. W. Barresi, R. McPherson, J. I. Wang, Dextrinized, saccharide-derivatized oligosaccharides. United States Patent No 10/601, 912. 23 June 2003.

[2] J. Csapó, Cs. Albert, Zs. Csapóné Kiss, Funkcionális élelmiszerek [Functional foods]. Scientia Publishing House, Cluj-Napoca, (2016) 1–211.

[3] J. Csapó, É. Vargáné Visi, R. V. Salamon, Sz. Salamon, Zs. Csapóné Kiss, Tejsavbaktériumok által termelt exopoliszacharidok és oligoszacharidok szerkezeti és mennyiségi analízise [Structural and quantitative analysis of exopolysaccharides and oligosaccharides produced by lactic acid bacteria]. Tejgazdaság, 74. (2014c) 3–17.

[4] J. Csapó, R. V. Salamon, Sz. Salamon, Sz. Toró, Zs. Csapó-Kiss, Structural and quantitative analysis of exopolysaccharides produced by lactobacillus. I. Basic information, isolation, quantitative determination, molecular mass and monosaccharide composition. Acta Universitatis Sapientiae, Alimentaria, 7. (2014a) 5–20.

[5] J. Csapó, R. V. Salamon, Sz. Salamon, Sz. Toró, Zs. Csapó-Kiss, Structural and quantitative analysis of exopolysaccharides produced by lactobacillus. II. The connection status, configuration, phosphorous content, modification, structure of monosaccharides, exopolysaccharides in yogurt, galactooligosaccharides. Acta Universitatis Sapientiae, Alimentaria, 7. (2014b) 21–44.

[6] A. P. Femia, M. Salvadori, W. F. Broekaert, I. E. J. A. Francois, J. A. Delcour, Arabinoxylan-oligosaccharides (AXOS) reduce preneoplastic lesions in the colon of rats treated with 1,2-dimethylhydrazine (DMH). European Journal of Nutrition, 49. (2010) 127–132.

[7] V. R. Gaertner, E. L. Doerr, Carbohydrate esters of carboxylic acids and methods of preparing same. United States Patent No 579,719. 23 April 1956.

[8] G. R. Gibson, H. M. Probert, J. V. Loo, R. A. Rastall, M. B. Roberfroid, Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition Research Reviews, 17. (2004) 259–275.

[9] G. R. Gibson, M. B. Roberfroid, Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. Journal of Nutrition, 125. (1995) 1401–1412.

[10] D. A. Glover, K. Ushida, A. O. Phillips, S. G. Riley, Acacia (sen) SUPERGUMTM (Gum arabic): An evaluation of potential health benefits in human subjects. Food Hydrocolloids, 23. (2009) 2410–2415.

[11] B. Lin, J. Gong, Q. Wang, S. Cui, H. Yu, B. Huang, In vitro assessment of the effects of dietary fibers on microbial fermentation and communities from large intestinal digesta of pigs. Food Hydrocolloids, 25. (2011) 180–188.

[12] V. Mandal, S. K. Sen, N. C. Mandal, Effect of prebiotics on bacteriocin production and cholesterol lowering activity of Pediococcus acidilactici LAB 5. World Journal of Microbiology and Biotechnology, 25. (2009) 1837–1841.

[13] D. Matteuzzi, E. Swennen, M. Rossi, T. Hartman, V. Lebet, Prebiotic effects of a wheat germ preparation in human healthy subjects. Food Microbiology, 21. (2004) 119–124.

[14] A-L. Molan, Z. Liu, M. Kruger, The ability of blackcurrant to positively modulate key markers of gastrointestinal function in rats. World Journal of Microbiology and Biotechnology, 26. (2010) 1735–1743.

[15] A. O. Phillips, G. O. Phillips, Biofunctional behaviour and health benefits of a specific gum Arabic. Food Hydrocolloids, 25. (2011) 165–169.

[16] M. Sabater-Molina, E. Larque, F. Torrella, S. Zamora, Dietary fructooligosaccharides and potential benefits on health. Journal of Physiology and Biochemistry, 65. (2009) 315–328.

[17] J. Stowell, Calorie control and weight management (Chapter 4). In: H. Mitchell (ed.), Sweeteners and sugar alternatives in food technology. Blackwell Publishing Ltd., (2007).

[18] R. H. Vaidya, M. K. Sheth, Processing and storage of Indian cereal and cereal products alters its resistant starch content. Journal of Food Science and Technology, 48. (2010) 622–627.

[19] E. Vamanu, A. Vamanu, The influence of prebiotics on bacteriocin synthesis using the strain Lactobacillus paracasei CMGB16. African Journal of Microbiology Research, 4. (2010) 534–537.

[20] B. Xu, Y. Wang, J. Li, Q. Lin, Effect of prebiotic xylooligosaccharides on growth performances and digestive enzyme activities of allogyno-genetic crucian carp (Carassius auratus gibelio). Fish Physiology and Biochemistry, 35. (2009) 351–357.

Acta Universitatis Sapientiae, Alimentaria

The Journal of Sapientia Hungarian University of Transylvania

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 87 87 23
PDF Downloads 43 43 8