Antimicrobial resistance of bacterial isolates from dierent dairy products and their emergence in the food chain

Open access


The antibiotic resistance of foodborne pathogens represents a healthcare concern globally. This phenomenon has an increasing impact on medicine and economy. A total of 26 spoilage and pathogenic bacterial isolates originating from different dairy products have been screened against eight different antibiotics. Based on the type of the selective agar medium used for their isolation, the isolates were: five staphylococci isolates, six Vibrio isolates, two Pseudomonas sp. isolates, three Salmonella isolates, five E. coli isolates, and five coliform isolates. The overall resistance to the tested antimicrobials of the bacterial isolates was 31.73%, the majority being susceptible. Based on the results, there are isolates with multiple antibiotic patterns that can be possible risk factors and may call for preventive measures.

[1] O. Adenaike, O. S. Olonitola, J. B. Ameh, C. M. Z. Whong, Multidrug resistance pattern and Multiple Antibiotic Resistance index of strains of Escherichia coli isolated from retailed smoked fish. Nigerian Journal of Microbiology, 30. 1. (2016) 3168–3171.

[2] M. A. Al-Ashmawy, K. I. Sallam, S. M. Abd-Elghany, M. Elhadidy, T. Tamura, Prevalence, molecular characterization, and antimicrobial susceptibility of methicillin-resistant Staphylococcus aureus isolated from milk and dairy products. Foodborne Pathogens and Disease, 13. (2016) 156–162.

[3] S. Arslan, A. Eyi, F.Özdemir, Spoilage potentials and antimicrobial resistance of Pseudomonas spp. isolated from cheeses. Journal of Dairy Science, 94. (2011) 5851–5856.

[4] C. Baker-Austin, Antimicrobial resistance in Vibrio species, In: C.-Y. Chen, X. Yan, C. R. Jackson (eds), Antimicrobial resistance and food safety. Academic Press, Amsterdam (2015).

[5] P. Blanco, S. Hernando-Amado, J. A. Reales-Calderon, F. Corona, F. Lira, M. Alcalde-Rico, A. Bernardini, M. B. Sanchez, J. L. Martinez, Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms, 4. 1. (2016).

[6] A. Bleicher, K. Neuhaus, S. Scherer, Vibrio casei sp. nov., isolated from the surfaces of two French red smear soft cheeses. International Journal of Systematic and Evolutionary Microbiology, 60. (2010) 1745–1749.

[7] P. Butaye, M.Á. Argudín, J. Threlfall, Introduction to antimicrobial-resistant foodborne pathogens. In: C.-Y. Chen, X. Yan, C. R. Jackson (eds), Antimicrobial resistance and food safety. Academic Press, Amsterdam (2015).

[8] C. A. O’Bryan, P. G. Crandall, S. C. Ricke, Antimicrobial resistance in foodborne pathogens. In: S. C. Ricke, G. G. Atungulu, C. E. Rainwater, Si H. Park (eds), Food and feed safety systems and analysis. Academic Press, Amsterdam (2018).

[9] A. Castro, J. Silva, P. Teixeira, Staphylococcus aureus, a food pathogen: virulence factors and antibiotic resistance. In: A. M. Holban, A. M. Grumezescu (eds), Foodborne diseases handbook of food bioengineering. Academic Press, Amsterdam (2018).

[10] M. L. Cole, Om V. Singh, Foodborne pathogens and their apparent linkage with antibiotic resistance. In: Om. V. Singh (eds), Foodborne pathogens and antibiotic resistance. John Wiley & Sons, Inc. Published (2017).

[11] R. Davis, P. D. Brown, Multiple Antibiotic Resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. Journal of Medical Microbiology, 65. (2016) 261–271.

[12] EFSA. 2018. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. EFSA Journal, 16. 2. (2018) 5182.

[13] M. Friedman, Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts. Journal of Agricultural and Food Chemistry, 63. 15. (2015) 3805–3822.

[14] L. L. Founou, R. C. Founou, S. Y. Essack, Antibiotic resistance in the food chain: A developing country-perspective. Frontiers in microbiology, 7. (2016).

[15] HiMedia Catalogue 2017–18 home page: (accessed: 2018.08.26).

[16] H. Jamali, M. Paydar, B. Radmehr, S. Ismail, Prevalence and antimicrobial resistance of Staphylococcus aureus isolated from raw milk and dairy products. Food Control, 54. (2015) 383–388.

[17] G. Meletis, M. Bagkeri, Pseudomonas aeruginosa: Multi-drug-resistance development and treatment options. In: S. Basac (ed.), Infection Control. Intech Open, London (2013).

[18] H. Nikaido, Multidrug resistance in bacteria. Annual Review of Biochemistry, 78. (2009) 119–146.

[19] G. Normanno, G. La Salandra, A. Dambrosio, N. C. Quaglia, M. Corrente, A. Parisi, G. Santagada, A. Firinu, E. Crisetti, G. V. Celano, Occurrence, characterization and antimicrobial resistance of enterotoxigenic Staphylococcus aureus isolated from meat and dairy products. International Journal of Food Microbiology, 115. (2007) 290–296.

[21] S. C. Ricke, J. R. Calo, Antibiotic resistance in pathogenic Salmonella. In: C.-Y. Chen, X. Yan, C. R. Jackson (ed.), Antimicrobial resistance and food safety. Academic Press, Amsterdam (2015).

[22] S. Sasidharan, B. Prema, L. Yoga Latha, Antimicrobial drug resistance of Staphylococcus aureus in dairy products. Asian Pacific Journal of Tropical Biomedicine, 1. 2. (2011) 130–132.

[23] C. Sharma et al., Antimicrobial resistance: Its surveillance, impact, and alternative management strategies. Dairy Animals. Frontiers in Veterinary Science, 4. 237. (2017) 1–27.

[24] D. Sharma, A. Malik, Incidence and prevalence of antimicrobial resistant Vibrio cholerae from dairy farms. African Journal of Microbiology Research, 6. 25. (2012) 5331–5334.

[25] C. Verraes et al., Antimicrobial resistance in the food chain: A Review. International Journal of Environmental Research and Public Health, 10. (2013) 2643–2669.

[26] G. N. Zanella, J. M. G. Mikcha, E. Bando, V. L. D. Siqueira, M. Machinski, Occurrence and antibiotic resistance of coliform bacteria and antimicrobial residues in pasteurized cow’s milk from Brazil. Journal of Food Protection, 73. 9. (2010) 1684–1687.

[27] R. R. Watkins, R. A. Bonomo, Overview: Global and local impact of antibiotic resistance. Infectious Diseases Clinics of North America, 30. (2016) 313–322.

Acta Universitatis Sapientiae, Alimentaria

The Journal of Sapientia Hungarian University of Transylvania

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 83 83 16
PDF Downloads 49 49 8