The role of selenium in nutrition – A review

Open access


The role of selenium has been changed over the last decade. The element that was previously considered to be toxic turned out to be present in the human body in amounts of 10–15 mg, and almost every cell of our body contains it. Selenium contributes to growth, supports healthy muscle activity, reproductive organs, reduces the toxicity of certain elements such as mercury, supports the immune system, and even delays the spread of certain viruses (influenza, Ebola, HIV). Selenium-deficient areas of Europe could be a risk for their populations. The recommended daily intake (RDA) of selenium is 55 µg/day, while WHO and FAO have set up the daily tolerable dose at 400 µg/day. We must count with the harmful effects of selenium overdose, but it is almost impossible to introduce this amount into our body solely with food. Our selenium sources can be refilled with food supplements or selenium-enriched functional foods. In the review article, we report about the role of selenium in the environment, selenium-enriched plants, selenium-enriched yeast, the role of selenium in animal feed and in the human body, the opportunities of selenium restoration, selenium-enriched animal products, and the selenium content of milk.

[1] C. B. Allan, G. M. Lacourciere, T. C. Stadtman, Responsiveness of selenoproteins to dietary selenium. Annual Review of Nutrition, 19. (1999) 1–16.

[2] C. Ani, S. Grantham-McGregor, D. Muller, Nutritional supplementation in Down syndrome: Theoretical considerations and current status. Developmental Medicine & Child Neurology, 42. (2007) 207–213.

[3] J. R. Arthur, The role of selenium in thyroid hormone metabolism. Canadian Journal of Physiology and Pharmacology, 69. (1991) 1648–1652.

[4] Y. C. Awashti, E. Beutler, K. Srivastava, Purification and properties of human erythrocyte glutathione peroxidase. Journal of Biological Chemistry, 250. (1975) 5144–5149.

[5] H. Bankhofer, Bio-Selen Natürlicher Schutz für unser Immunsystem. Munich, Herbig Verlagsbuchhandlung (1988).

[6] G. S. Bańuelos et al., Selenium accumulation, distribution, and speciation in spineless prickly pear cactus: A drought- and salt-tolerant, selenium-enriched nutraceutical fruit crop for biofortified foods. Plant Physiology, 155. (2011) 315–327.

[7] M. A. Beilstein, P. D. Whanger, Selenium containing proteins in higher primates. Journal of Nutrition, 116. (1986) 706–712.

[8] M. A. Beilstein, P. D. Whanger, G. Q. Yang, Chemical forms of selenium in corn and rice grown in a high selenium area of China. Biomedical and Environmental Sciences, 4. (1991) 392–398.

[9] L. Bendhal, B. Gammelgaard, Separation and identification of Semethyl-seleno-galactosamine, a new metabolite in basal human urine by HPLC-ICP-MS and CE-nano-ESI-(MS). Journal of Analytical Atomic Spectrometry, 19. (2004) 950–957.

[10] J. Bokori et al., A takarmányozás alapjai. Budapest, Mezőgazda Kiadó (2003).

[11] K. M. Brown, J. R. Arthur, Selenium, selenoproteins and human health: A review. Public Health Nutrition, 4. (2001) 593–599.

[12] M. P. Burke, K. Opeskin, Fulminant heart failure due to selenium deficiency cardiomyopathy (Keshan disease). Medicine, Science, and the Law, 42. (2002) 10–13.

[13] L. Calamari, F. Petrera, F. Abeni, G. Bertin, Metabolic and hemato-logical profiles in heat stressed lactating dairy cows fed diets supplemented with different selenium sources and doses. Livestock Science, 142. (2011) 128–137.

[14] L. Calamari, F. Petrera, G. Bertin, Effects of either sodium selenite or Se yeast (Sc CNCM I-3060) supplementation on selenium status and milk characteristics in dairy cows. Livestock Science, 128. (2010) 154–165.

[15] J. C. Chang, Selenium content of Brazil nuts from two geographic locations in Brazil. Chemosphere, 30. (1995) 801–802.

[16] J. P. Chanoine, Selenium and thyroid function in infants, children and adolescents. BioFactors, 19. (2003) 137–143.

[17] C. C. Clayton, C. A. Bauman, Diet and azo dye tumors: effect of diet during a period when the dye is not fed. Cancer Research, 9. (1949) 575–580.

[18] I. P. Clement. D. J. Lisk, Efficacy of cancer prevention by high-selenium garlic is primarily dependent on the action of selenium. Carcinogenesis, 16. (1995) 2649–2652.

[19] G. F. Combs: Selenium in global food systems. The British Journal of Nutrition, 85. (2001) 517–547.

[20] J. E. Cone, M. R. Del Rio, J. N. Davis, T. C. Stadtman, Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. Proceedings of the National Academy of Sciences of the United States of America, 73. (1976) 2659–2663.

[21] P. J. Craig, Organometallic compounds in the environment. Longman Group Ltd. London, 1986. (1986) 255–277.

[22] J. Csapó, Cs. Albert, Funkcionális élelmiszerek. Debrecen, Debreceni Egyetemi Kiadó (2018).

[23] J. Csapó, Cs. Albert, Zs. Csapóné Kiss, Funkcionális élelmiszerek. Cluj-Napoca, Scientia Kiadó (2016).

[24] J. Csapó, Zs. Csapóné Kiss, Tej és tejtermékek a táplálkozásban. Budapest, Mezőgazda Kiadó (2002).

[25] M.Á. Cser, I. Sziklai-László, A szelén szerepe a humán medicinában. In: M.Á. Cser, I. Sziklai-László (eds), A szelén szerepe a környezetben és egészségvédelemben. Budapest, Frag Bt. (1998) 28–46.

[26] K. Dredge, Selenium and animal health. Agrifood Research Reports, 69. (2005) 51–53.

[27] B. M. Dworkin, Selenium deficiency in HIV infection and the acquired immunodeficiency syndrome (AIDS). Chemico-Biological Interactions, 91. (1994) 181–186.

[28] L. Ebdon, L. Pitts, R. Cornelis, H. Crews, O. F. X. Donard, P. Quevauviller, Trace element speciation for environment. London, Royal Society of Chemistry (2001).

[29] D. R. Ellis, D. E. Salt, Plants, selenium and human health. Current Opinion in Plant Biology, 6. (2003) 273–279.

[30] P. Eszenyi, A. Sztrik, B. Babka, J. Prokisch, Elemental, nano-sized (100–500 nm) selenium production by probiotic lactic acid bacteria. International Journal of Bioscience, Biochemistry and Bioinformatics, 1. (2011) 148.

[31] G. Feroci, R. Badiello, A. Fini, Interactions between different selenium compounds and zinc, cadmium and mercury. Journal of Trace Elements in Medicine and Biology, 18. (2005) 227–234.

[32] J. W. Finley, J. G. Penland, Adequacy or deprivation of dietary selenium in healthy men: clinical and psychological findings. The Journal of Trace Elements in Experimental Medicine, 11. (1998) 11–27.

[33] S. Florian, S. Krehl, M. Loewinger, A. Kipp, A. Banning, S. Esworthy, C. Fong-Fong, R. Brigelius-Flohé, Loss of GPx2 increases apoptosis, mitosis, and GPx1 expression in the intestine of mice. Free Radical Biology and Medicine, 49. (2011) 1694–1702.

[34] T. E. Fox et al., Absorption of selenium from wheat, garlic, and cod intrinsically labelled with Se-77 and Se-82 stable isotopes. International Journal for Vitamin and Nutrition Research, 75. (2005) 179–186.

[35] K. F. Gey, Vitamins E plus C and interacting conutrients required for optimal health. A critical and constructive review of epidemiology and supplementation data regarding cardiovascular disease and cancer. Biofactors, 7. (1998) 113–74.

[36] J. L. Gómez-Ariza, D. Sanchez-Rodas, E. Morales, O. Herrgott, I. L. Marr, Inorganic and organic selenium compound speciation with coupled HPLC-MW-HG-AFS. Applied Organometallic Chemistry, 13. (1999) 783–787.

[37] J. L. Gómez-Ariza, J. A. Pozas, I. Giraldez, E. Morales, Speciation of volatile forms of selenium and inorganic selenium in sediments by gas chromatography–mass spectrometry. Journal of Chromatography A, 823. (1998) 259–277.

[38] F. Gondi, G. Pantó, J. Fehér, G. Bogye, G. Alfthan, Selenium in Hungary. The rock-soil-human system. Biological Trace Element Research, 35. (1992) 299–306.

[39] M. Hidiroglou, D. J. Jenkins, Teneur en sélénium du lait de vache dans le nord ontarien. Annales de Zootechnie, (1975) 129–132.

[40] D. H. Holben, A. M. Smith, The diverse role of selenium within selenoproteins: A review. Journal of American Dietetic Association, 99. (1999) 836–843.

[41] M. Horacsek, A. Lugasi,É. Martos, Az étrend-kiegészítok. Új Diéta, 1. (2006) 8–9.

[42] Institute of Medicine, Food and Nutrition Board. Dietary reference intakes: Vitamin C, vitamin E, selenium, and carotenoids. National Academy Press, Washington, D.C. (2000).

[43] E. Karag, I. Németh, A. Ferke, J. Hajdú, S. Pintér, A vörösvértest szelén és antagonista nyomelemek, valamint a plazma antioxidánsok koncentrációja és összefüggése érettújszülöttek köldökzsinór vérében. In: M.Á. Cser, I. Sziklai-László (eds), A szelén szerepe a környezetben és egészségvédelemben. Budapest, Frag Bt. (1998) 112–114.

[44] J. D. Keyes, Salt, which color is right? All Current Publications, 87. (2012) 1–3.

[45] Y. Kobayashi, Y. Ogra, K. Ishiwata, H. Takayama, N. Aimi, K. T. Suzuki, Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range. Proceedings of the National Academy of Sciences of the United States of America, 99. (2002) 15932–15936.

[46] M. Kotrebai, M. Birringer, J. F. Tyson, E. Block, P. C. Uden, Selenium speciation in enriched and natural samples by HPLC-ICP-MS and HPLC-ESI-MS with perfluorinated carboxylic acid ion-pairing agents. Analyst, 125. (2000) 71–78.

[47] M. K. McGuire et al., Selenium status of infants is influenced by supplementation of formula or maternal diets. American Journal of Clinical Nutrition, 58. (1993) 643–648.

[48] S. McSheehy, W. Yang, F. Pannier, J. Szpunar, R. Lobinski, J. Auger, M. Potin-Gautier, Speciation analysis of selenium in garlic by two-dimensional high-performance liquid chromatography with parallel inductively coupled plasma mass spectrometric and electrospray tandem mass spectrometric detection. Analytica Chimica Acta, 421. (2000) 147–153.

[49] A. Meister, M. Anderson, Glutathione. Annual Review of Biochemistry, 52. (1983) 711–760.

[50] B. Michalke, H. Witte, P. Schramel, Developments of a rugged method for selenium speciation. Journal of Analytical Atomic Spectrometry, 16. (2001) 593–597.

[51] J. R. Mitchell, W. L. Nelson, W. Z. Potter, H. A. Sasame, D. J. Jollow, Metabolic activation of furosemide to a chemically reactive, hepatotoxic metabolite. Journal of Pharmacology and Experimental Therapeutics, 199. (1976) 41–52.

[52] J. Molnár, A szelén antioxidáns hatásai és a szelénellátottság kérdései. Orvosi Hetilap, 154. (2013) 1613–1319.

[53] D. Mustacich, G. Powis, Thioredoxin reductase. Biochemical Journal, 346. (2000) 1–8.

[54] A. A. Nelson, O. G. Fitzhugh, H. O. Calvery: Liver tumors following cirrhosis caused by selenium in rats. Cancer Reserach, 3. (1943) 230–236.

[55] O. E. Olson: Selenium toxicity in animals with emphasis on man. Journal of the American College of Toxicology, 5. (1986) 45–70.

[56] A. Polatajko, M. Mihaly Dernovics, R. Ruzik, J. R. Encinar, J. Szpunar, A systematic approach to selenium speciation in selenized yeast. Journal of Analytical Atomic Spectrometry, 19. (2004) 114–120.

[57] C. Reilly, Selenium: A new entrant into the functional food arena. Trends in Food Science & Technology, 9. (1998) 114–118.

[58] J. Rigó, Dietetika. Medicina Könyvkiadó Rt., Budapest. 71. (2002) 113–117.

[59] J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, W. G. Hoekstra, Selenium. Biochemical role as a components of glutation peroxidase. Science, 179. (1973) 588–590.

[60] A. W. Sampson, Range and pasture management. John Wiley and Sons, New York, NY. (1923).

[61] G. N. Schrauzer, Anticarcinogenic effects of selenium. Cellular and Molecular Life Sciences, 57. (2000) 1864–1873.

[62] K. Schwarz, C. M. Foltz, Selenium as an integral part of factor-3 against dietary necrotic liver degeneration. Journal of American Chemical Society, 79. (1957) 3292–3296.

[63] R. J. Shamberger, G. Rudolph, Protection against cocarcinogenesis by antioxidants. Experientia, 22. (1966) 116.

[64] C. P. Skinner, Environmental chemistry of selenium. Soil Science Society of America Journal, 164. (1999) 70–72.

[65] J. Stone, A. Doube, D. Dudson, J. Wallace, Inadequate calcium, folic acid, vitamin E, zinc, and selenium intake in rheumatoid arthritis patients: Results of a dietary survey. Semin Arthritis Rheum., 27. (1997) 180–185.

[66] P. Surai, Selenium in nutrition and health. Nottingham, Nottingham University Press (2006).

[67] K. T. Suzuki, Y. Ogra, Metabolic pathway for selenium in the body: speciation by HPLC-ICP MS with enriched Se. Food Additives and Contaminants, 19. (2002) 974–983.

[68]É. Széles,Á. Tóth, A. Nagy, J. Prokisch, B. Kovács, Z. Gyori, A szelén jelentosége az élővilágban és a kutatásban. Acta Agraria Debreceniensis, 26. (2007) 278–286.

[69] L. Tamás, A szelén betegségmegelőző szerepe. Komplementer Medicina, 4. (2000) 16–20.

[70] M. Tamás, J. Csapó, Examination of the selenium content of wheat grasses produced in different soil types in Csík Basin. Acta Universitas Sapientiae, Alimentaria, 8. (2015) 30–44.

[71] N. Terry, A. M. Zayed, M. P. Desouza, A. S. Tarun, Selenium in higher plants. The Annual Review of Plant Physiology and Plant Molecular Biology, 51. (2000) 401–432.

[72] Y. Thomassen, E Nieboer, Speciation of elements; trace elements in human health. Royal Society of Chemistry (1995).

[73] C. D. Thomson, Assessment of requirements for selenium and adequacy of selenium status: A review. European Journal of Clinical Nutrition, 58. (2004) 391–402.

[74] C. D. Thomson, Selenium and iodine intakes and status in New Zealand and Australia. British Journal of Nutrition, 91. (2004) 661–672.

[75] D. C. Turner, T. C. Stadtman, Purification of protein components of the clostridial glycine reductase system and characterization of protein A as a selenoprotein. Archives of Biochemistry and Biophysics, 154. (1973) 366–381.

[76]É. Ungvári, Nanopartikuláris szelénkészítmények farmakológiai vizsgálata–új lehetőségek a szelénpótlás területén. Debreceni Egyetem Gyógyszerészeti Tudományok Iskola, Debrecen (2015) 17–22.

[77] P. Varo, G. Alfthan, P. Ekholm, A. Aro, P. Koivistoinen, Selenium intake and serum selenium in Finland-effects of soil fertilization with selenium. American Journal of Clinical Nutrition, 48. (1988) 324–329.

[78] L. N. Vernie, Selenium in carcinogenesis. Biochimica et Biophysica Acta (BBA) – Reviews on Cancer, 738. (1984) 203–217.

[79] G. P. Walker, F. R. Dunshea, J. W. Heard, C. R. Stockdale, P. T. Doyle, Output of selenium in milk, urine, and feces is proportional to selenium intake in dairy cows fed a total mixed ration supplemented with selenium yeast. Journal of Dairy Science, 93. (2010) 4644–4650.

[80] B. S. Weeks, M. S. Hanna, D. Cooperstein, Dietary selenium and seleno-protein function. Medical Science Monitor, 18. (2012) RA127–RA132.

[81] A. C. Wilson, H. J. Thompson, P. J. Schedin, N. W. Gibson, H. E Gauther, Effect of methylated forms of selenium on cell viability and the induction of DNA strand breakage. Biochemistry and Pharmacology, 43. (1992) 1137–1141.

[82] J. L. Zhang, J. L. Li, X. D. Huang, S. Bo, W. Rihua, S. Li, S. W. Xu, Dietary selenium regulation of transcript abundance of selenoprotein N and selenoprotein W in chicken muscle tissues. Biometals, 25. (2012) 297–307.

[83] 152/2009. (XI. 12.) FVM rendelet. Magyar Közlöny, 159. (2009) 39554 p.

Acta Universitatis Sapientiae, Alimentaria

The Journal of Sapientia Hungarian University of Transylvania

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 219 219 16
PDF Downloads 117 117 4