Production of protected amino acids using the reaction between hydroxycarboxylic acids and amino acids as well as binding on the bentonite

Open access

Abstract

We have developed methods for the production of protected methionine and protected lysine, making use of the reaction between citric acid and malic acid as well as methionine and lysine, on the one hand, and of the interaction between swollen bentonite and the two amino acids, on the other hand. Our in vivo and in vitro experiments have demonstrated that one part of the amino acids transformed during the reaction, while another part bound on the bentonite’s surface to a significant degree. Assisted by the reaction between hydroxycarboxylic acids and amino acids, we achieved a protection of about 75% for methionine and 60% for lysine, that is, 25% of the methionine and 40% of the lysine appeared in the free amino acid fraction. The swollen bentonite bound 75% of the added methionine and 60% of the added lysine. Our chemical analyses have demonstrated that through the time–temperature combinations applied by us the methionine and lysine do not undergo significant degradation and can be fully released from the protected form. Further, our in vitro experiments using rumen fluid from fistulated cattle showed that during the average retention time of the fodder in the rumen the protected amino acids will resist microbial enzymes and maintain their protected status during their presence in the rumen.

[1] H. E. Amos, C. O. Little, G. A. Digenis, G. T. Schelling, R. E. Tucker, G. E. Mitchell, Methionine, DL-homocysteine thiolactone, and N-acetyl-DL-methionine for ruminants. Journal of Animal Science, 39. (1974) 612–617.

[2] M. J. Arambel, E. E. Bartley, J. L. Camac, S. M. Dennis, T. G. Nagaraja, A. D. Dayton, Rumen degradability and intestinal availability of a protected methionine products and its effects on rumen fermentation, and passage rate of nutrients. Nutrition Reports International, 35. (1987) 661–672.

[3] J. R. Ashes, J. L. Mangan, G. S. Sidhu, Nutritional availability of amino acids from proteins cross linked to protect against degradation in the rumen. British Journal of Nutrition, 2. (1984) 239–247.

[4] J. A. Ayoade, P. J. Buttery, D. Lewis, Studies on methionine derivatives as possible sources of protected methionine in ruminant rations. Journal of the Science of Food and Agriculture, 33. (1982) 949–956.

[5] G. A. Broderick, W. M. Craig, Effect of heath treatment on ruminal degradation and escape and intestinal digestibility of cottonseed meal protein. Journal of Nutrition, 110. (1980) 2381–2389.

[6] G. A. Broderick, L. D. Satter, A. E. Harper, Use of plasma amino acid concentration to identify limiting amino acids for milk production. Journal of Dairy Science, 57. (1974) 1015–1023.

[7] P. J. Buttery, S. Manomai-Udom, D. Lewis, Preliminary investigations on some potential sources of protected methionine derivatives for ruminant rations. Journal of the Science of Food and Agriculture, 28. (1977) 481–485.

[8] S. Calsamiglia, M. D. Stern, A three-step procedure to estimate postruminal protein digestion in ruminants. Journal of Dairy Science, 76. (1993) 176.

[9] W. Chalupa, Rumen bypass and protection of proteins and amino acids. Journal of Dairy Science, 58. 8. (1975) 1198–1218.

[10] J. Csapó, Cs. Albert, K. Lóki, Zs. Csapó-Kiss, Separation and determination of the amino acids by ion-exchange column chromatography applying postcolumn derivatization. Acta Universitatis Sapientiae, Alimentaria, 1. (2008) 5–30.

[11] G. de Boer, J. J. Murphy, J. J. Kennelly, Mobile nylon bag for estimating availability of rumen undegradable protein. Journal of Dairy Science, 70. (1987) 977–982.

[12] L. Doepel, D. Pacheco, J. J. Kennelly, M. D. Hanigen, I. F. Lopez, H. Lapierre, Milk protein synthesis a function of amino acid supply. Journal of Dairy Science, 87. (2004) 1279–1297.

[13] S. S. Donkin, G. A. Varga, T. F. Sweeney, L. D. Muller, Rumen-protected methionine and lysine: Effects on animal performance, milk protein yield and physiological measures. Journal of Dairy Science, 72. 6. (1989) 1484–1491.

[14] F. Giallongo, J. Oh, T. Frederick, H. Weeks, A. N. Hristov, H. Lapierre, R. A. Patton, A. Gehman, C. Parys, Effect of slow-release urea, rumen-protected methionine and histidine on performance of dairy cow metabolizable protein-deficiencies. Journal of Dairy Science, 98. (2015) 3292–3308.

[15] L. C. Griel, R. A. Patton, R. D. McCarthy, P. T. Chandler, Milk production response to feeding methionine hydroxy analog to lactating dairy cows. Journal of Dairy Science, 51. (1968) 1866–1868.

[16] D. G. Harrison, D. E. Beever, D. F. Osburn, The contribution of protozoa to the protein entering the duodenum of sheep. British Journal of Nutrition, 41. (1979) 521–527.

[17] B. A. Jones, O. E. Mohamed, R. W. Prange, L. D. Satter, Degradation of methionine hydroxy analogue in the rumen of lactating cows. Journal of Dairy Science, 71. (1988) 525–529.

[18] A. Kamalak,Ö. Canbolat, Y. Gürbüz, O.Özay, Protected protein and amino acids in ruminant nutrition. Journal of Science and Engineering, 8. (2005) 84–88.

[19] T. M. Kenna, C. G. Schwab, Evaluation of N-hydroxymethyl-DL-methionine-Ca and dihydroxymethyl-L-lysine-Ca in a blended corn-based ration for lactating cows. Journal of Dairy Science, 64. (1981) 775–781.

[20] P. N. Langar, P. J. Buttery, D. Lewis, N-stearoyl-DL-methionine, a protected methionine source for ruminants. Journal of the Science of Food and Agriculture, 29. (1978) 808–814.

[21] H. Lapierre, G. Holtrop, A. G. Calder, J. Renaud, G. E. Lobley, Is D-methionine available to dairy cows? Journal of Dairy Science, 95. (2012) 353–362.

[22] H. Lapierre, D. Pacheco, R. Berthiaume, D. R. Ouellet, C. G. Schwab, P. Dubreuil, G. Holtrop, G. E. Lobley, What is the true supply of amino acids for a dairy cow? Journal of Dairy Science, 89. (2006) E1–E14.

[23] C. Lee, F. Giallongo, A. N. Hristov, H. Lapierre, T. W Cassidy, K. S. Heyler, G. A. Varga, C. Paris, Effect of dietary protein level and rumen-protected amino acid supplementation on amino acid utilization for milk protein in lactating dairy cows. Journal of Dairy Science, 98. (2015) 1–18.

[24] C. Lee, A. N. Hristov, T. W. Cassidy, K. S. Heyler, H. Lapierre, G. A. Varga, M. J. de Veth, R. A. Patton, C. Paris, Rumen-protected lysine, methionine, and histidine increase milk protein yield in dairy cow fed metabolizable protein-deficient diet. Journal of Dairy Science, 95. (2012) 6042–6056.

[25] S. C. Loerch, B. O. Oke, Rumen-protected amino acids in ruminant nutrition. In: M. Friedman (ed.), Absorption and utilization of amino acids. III. CRC Press, Boca Raton, FL. US, (1989) 187–200.

[26] T. B. Mepham, Amino acid utilization by lactating mammary gland. Journal of Dairy Science, 65. (1982) 287–298.

[27] Z. Mir, G. K. Macleod, J. G. Buchanan-Smith, D. G. Grieve, W. L. Grovum, Methods for protecting soybean and canola proteins from degradation in the rumen. Canadian Journal of Animal Science, 64. (1984) 853–865.

[28] T. S. Neudoerffer, D. B. Duncan, F. D. Horney, The extent of release of encapsulated methionine in the intestine of cattle. British Journal of Nutrition, 25. (1971) 333–341.

[29] J. J. Olmos Colmenero, G. A. Broderick, Effect of dietary crude protein concentration on milk production and nitrogen utilization in lactating dairy cows. Journal of Dairy Science, 89. (2006) 1704–1712.

[30] R. A. Patton, Effect of rumen-protected methionine on feed intake, milk production, true milk protein concentration, and true milk protein yield, and the factors that influence these effects. A meta-analysis. Journal of Dairy Science, 93. (2010) 2105–2118.

[31] P. H. Robinson, W. Chalupa, W. Julien, H. Sato, H. Suzuki, R. E. Mc-Queen, Supplemental rumen-protected amino acids for early lactation dairy cattle. Journal of Dairy Science, 75. (1992) 199.

[32] L. M. Rode, L. Kung, Rumen-protected amino acids improve milk production and milk protein yield. At: https://wcds.ualberta.ca/Portals/138/Documents/.../wcd96289.htm. (1996) 1–11.

[33] F. Rossi, M. Maurizio, M. Francesco, P. Gianfranco, Rumen degradation and intestinal digestibility of rumen-protected amino acids: Comparison between in situ and in vitro data. Animal Feed Science and Technology, 108. (2003) 223–229.

[34] C. G. Schwab, Protected proteins and amino acids for ruminants. In: R. J. Wallace, A. Chesson (eds.), Biotechnology in animal feeds and animal feeding. VCH Verlagsgesellschaftmbh, (1995) 115–144.

[35] C. G. Schwab, G. A. Broderick, A 100-year review: Protein and amino acid nutrition in dairy cows. Journal of Dairy Science, 100. (2017) 10094–10112.

[36] J. Trinácty, L. Krízová, M. Richter, V. Cerny, J. Ríha, Effect of rumen-protected methionine, lysine or both on milk production and plasma amino acids of high-yielding dairy cows. Czech Journal of Animal Science, 54. (2009) 239–248.

[37] D. M. Waltz, M. D. Stern, Evaluation of various methods for protecting soy-bean from degradation by rumen bacteria. Animal Feed Science and Technology, 25. (1989) 111–122.

[38] Y. Wang, L. Jin, Q. N. Wen, N. K. Kopparapu, J. Liu, X. L. Liu, Y. G. Zhang, Rumen degradability and small intestinal digestibility of the amino acids in four protein supplements. Asian-Australian Journal of Animal Science, 29. (2016) 241–249.

[39] W. J. Weber, W. P. Hansen, D. G. Johnson, D. E. Otterby, B. A. Crooker, G. A. Ducharme, Lactational performance of Holstein cows fed corn based diet supplemented with rumen protected lysine and methionine. Journal of Dairy Science, 75. (1992) 75–81.

[40] D. Vyas, R. A. Erdman, Meta-analysis of milk protein yield responses to lysine and methionine supplementation. Journal of Dairy Science, 92. (2009) 5011–5018.

Acta Universitatis Sapientiae, Alimentaria

The Journal of Sapientia Hungarian University of Transylvania

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 88 88 23
PDF Downloads 37 37 4