Changes of mycorrhizal colonization along moist gradient in a vineyard of Eger (Hungary)

Open access


The role of mycorrhizal fungi has special importance in the case of low soil moisture because the colonization of vine roots by mycorrhiza increases water and nutrient uptake and thus aids the avoidance of biotic and abiotic stresses of grape. Our aim was to investigate in the Eger wine region the changes of mycorrhizal colonization, water potential, and yield quality and quantity of grape roots at three altitudes, along a changing soil moist gradient. Our results show that the degree of mycorrhizal colonization is higher in drier areas, which supports the water and nutrient uptake of the host plant.

[1] Auge, R. M. (2001), Water relations. drought and vesicular-arbusciilar mycorrhizal symbiosis, Mycorrhiza 11,3-42.

[2] Aguin. O., Mansilla. P., Vilarino, A., Sainz, M. (2004), Effects of mycorrhizal inoculation on root morphology and nursery production of three grapevine rootstocks. American Journal of Enology and Viticulture 55(1), 108-111.

[3] Baumgartner. K. (2003), Why and how. Encouraging beneficial AM fungi in vineyard soil, Practical Winery and Vineyard 14, 57-60.

[4] Bavaresco, L., Gatti, M., Zamboni, M., Fogher, C., Ferrari. F. (2010), Role of artificial mycorThization on iron uptake in calcareous soils, on stilbene root synthesis and in other physiological processes in grapevine. 33"* OW World Congress ofVine and Wine. General Assembty of The OW, 20-25 June 2010, Tbilisi. Georgia. 8.

[5] Benyei, F., Lörincz, A., Sz. Nagy, L. (1999), Szölötermeszies. Mezögazda Kiadö,Budapest.

[6] Cahural J. Y. (2004), Mycorrhizae in grapevine. A review. Progr& Agricole et Viticole, Montpellier 121(2), 31-36.

[7] Cheng. X., Baumgartner. K. (2005), Overlap of grapevine and cover crop roots enhances interactions among grapevines. cover crops, and arbuscular mycorrhizal fungi. In: Christensen. P., Smart, D. (eds.), Proceedings of the Soil Environment and Vine Mineral Symposium, 29-30 June 2004, San Diego, CA - American Society of Enolog}1 and Viticulture, Davis, CA, USA, 171-174.

[8] Davies. F. T., Potter, J. R., Linderman. R. G. (1992), Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and nutrient content. Plant Physiology 139(3), 289-294.

[9] DelTAmico. J., A. Torrecillas, P. Rodriguez. Morte, A.. Sanchez-Blanco. M. J. (2002), Responses of tomato plants associated with the arbuscular mycorrhizal fungus Gloumus darum during drought and recovery, Journal of Agricultural Science 138, 387-393.

[10] Donkö, A., Zanathy, G., Erös-Honti, Zs., Gäl. Cs., Göblyös, J., Bisztray. Gy. D. (2013), Telepiteskor vegzett mesterseges mikorrhizäläs eredmenyessege a Kunsägi borvideken.Kertgazdasäg 45(1), 20-28.

[11] Eibach. R.. Alleweidt. G., (1984). Einfliß der Wasserversorgung auf Wachstum Vitis 23, 11-20.

[12] Eissenstat. D. M. (1992). Costs and benefits of constructins roots of small diameter. Plant Nutrition 15(6-7), 763-782.

[13] Francis. R.. Read, D. J. (1984), Direct transfer of carbon between plants connected by vesicular arbuscular mycorrhizal mycelium, Nature 307,53-56.

[14] Kounduras. S., Tsialtas, T., Zioziou. E., Nikolaou, N. (2008), Rootstock effects on the adaptive strategies of grape\Tne (Vitis \-inifera L. cv. Cabemet-Sauvignon) under contrasting water status: Leaf physiological and structural responses, Agriculture, Ecosystems and Environment 128, 86-96.

[15] Linderman. R. G., Davis. E. A. (2001), Comparative response of selected grapevine rootstocks and cultivars to inoculation with different mycorrhizal fungi, American Journal of Enology and Viticulture 52, 8-11.

[16] Marschner. H. (1997). Mineral nutrition of higher plants. Academic Press. London.

[17] McGomgle. T. P., Müler, M. H., Evans, D. G., Fairchild. G. L., Swan, J. A. (1990), A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist 115, 495-501.

[18] Menge. J. A., Raski, D. J., Lider, L. A., Johnson. E. L. V.. Jones, N. O., Kissler. J. J., Hemstreet. C. L. (1983), Interactions between mycorrhizal fungi. soil fumigation. and growth of grapes in California. American Journal of Enology and Viticulture 34,117-121.

[19] Meyer, A. H., Valentine, A. J., Botha. A., Archer, E., Louw. P. J. E. (2004), Young grapevine response and root colonisation following inoculation with arbuscular mycorrhizal fungi. South African Journal of Enology and Viticulture 25(1), 26-32.

[20] Nikolaou, N., Angelopoulos, K.. Karagiannidis. N. (2003), Effects of drought stress on mycoirhizal and non-mycoirhizal Cabemet Sauvignon grapevine, grafted onto various rootstocks. Experimental Agriculture 39, 241-252.

[21] Omar. A. E. K. (2007), Rooting and growth response of grapevine nurslings to inoculation with arbuscular mycorrhizal fungi and irrigation intervals. Journal of Applied Horticulture 9(2), 108-111.

[22] Pinkerton. J. N., Schreiner, R. P.. Ivors, K. L., Vasconcelos, M. C. (2004), Effects of Mesocriconema xenoplax on Vitis vinifera and associated mycorrhizal fungi. Journal of Nematology 36(3), 193-201.

[23] Poni, S., Bemizzoni. F., Civardi, S., Gatti. M., Porro. D.. Camin. F. (2009), Performance and water-use efficiency (single-leaf vs. whole-canopy) of well-watered and half-stressed split- root Lambrusco grapevines grown in Po Valley (Italy), Agriculture, Ecosystems and Environment 129,97-106.

[24] Scholander, P. F., Hammel. H. T.. Hemmingsen. E. A., Bradstreet. E. D. (1964), Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. Proceedings of the National Academy of Sciences, USA 52,119-125.

[25] Schreiner, R. P. (2003), Mycorrhizal colonization of grapevine rootstocks under field conditions, American Journal of Enology and Viticulture 54(3), 143-149.

[26] Schreiner, R. P.. Linderman. R. G. (2005), Mycorrhizal colonization in dryland vineyards of the Willamette Valley, Oregon. Small Fruits Review 4(3), 41-55.

[27] Schreiner, R. P. (2005), Mycorrhizas and mineral acquisition in grapevines. In: Christensen. L. P., Smart, D. R. (eds.), Proceedings of the Soil Environment and Vine Mineral Nutrition Symposium. American Society for Enology and Viticulture, Davis, 49-60.

[28] Schreiner. R. P. (2005), Spatial and temporal Variation of roots, arbuscular mycorrhizal fungi. and plant and soil nutrients in a mature Pinot Noir (Vitis vinifera L.) vineyard in Oregon. Plant and Soil 276(1-2), 219-234.

[29] Schreiner. R. P., Tarara. J. M., Smithyman. R. P. (2007), Deficit irrigation promotes arbuscular colonization of fine roots by mycorrhizal fungi in grapevines (*Vitis vinifera* L.) in an arid climate. Mycorrhiza 17(7), 551-562.

[30] Selosse, M.-A., Richard. F., He, X., Simard. S. W. (2006), Mycorrhizal networks: des liaisons dangereuses? Tree 21(11), 621-628.

[31] Smith, S. E., Gianinazzi-Pearson. V., Koide. R., Caimey. J. W. G. (1994), Nutrient transport in mycorrhizas: structure. physiology and consequences for efficiencv of the symbiosis. Plant Soil 159,103-113.

[32] Sweet, R. M., Schreiner. R. P. (2010), Alleyway cover crops have little influence on Pinot Noir grapevines (Vitis vinifera L.) in two Western Oregon vineyards. American Journal of Enology and Viticulture 61(2), 240-252.

[33] Valentine. A. J., Mortimer, P. E., Lintnaar, A., Borgo. R. (2006), Drought responses of arbuscular mycoirhizal grapevines, Symbiosis 41(3), 127-133.

[34] Wright, S. F.. Upadhyaya, A. (1998), A survey of soils for aggregate stability and glomalin, a glycoprotem produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil 198, 97-107.

Acta Universitatis Sapientiae, Agriculture and Environment

The Journal of "Sapientia" Hungarian University of Transylvania

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 52 52 24
PDF Downloads 10 10 2