Ornamental plants as climatic indicators of arthropod vectors

Open access


The importance and risk of vector-borne diseases (e.g., leishmaniasis, West Nile Virus, Lyme borreliosis) is going to increase in the European temperate areas due to climate change. Our previous studies have shown that the potential distribution of Leishmania infantum and some Phlebotomus (sand fly) species - a parasite of leishmaniasis, and its vectors - may be expanded even to the southern coastline of the Baltic Sea by the end of the 21st century. The lowland areas of the Carpathian Basin and the main part of Hungary are projected to be suitable for the studied sand fly vectors in the near future. It is important to find some indicator plants to examine whether the sand flies are able to live in a certain climate at a certain time. We studied several Mediterranean and Sub-Mediterranean plant species, and we found that the aggregated distribution of three ligneous species (Juniperus oxycedrus L., Quercus ilex L. and Pinus brutia Ten.) shows high correlation with the union distribution of five sand flies (Phlebotomus ariasi Tonn., Ph. neglectus Tonn., Ph. perfiliewi Parrot, Ph. perniciosus Newst. and Ph. tobbi Adler, Theodor et Lourie). Since these Mediterranean species are highly tolerant of the edaphic characteristics of the planting site, they may prove to be good indicators. The present and upcoming climate of Hungary is seen to be suitable for the selected indicator plant species, and it draws attention to and verifies the potential of the expansion of sand flies, which has been proved by some recent observations of the vectors in Southern Hungary.

[1] Alvar J., Canavate, C., Guti´errez-Solar, B., Jim´enez, M., Laguna, F., L´opez-V´elez, R., Molina, R., Moreno, J. (1997), Leishmania and human immunodeficiency virus coinfection: the first 10 years. Clin. Microbiol. Rev., 10(2): 298-319.

[2] Asp¨ock, H., Gerersdorfer, T., Formayer, H., Walochnik, J. (2008), Sandflies and sandfly-borne infections of humans in Central Europe in the light of climate change. Wiener klinische Wochenschrift, 120(4): 24-29.

[3] Bakkenes, M., Eickhout, B., Alkemade, R. (2006), Impacts of different climate stabilisation scenarios on plant species in Europe. Global Environmental Change, 16(1): 19-28.

[4] Bartholy, J., Pongr´acz, R., Gelyb´o, Gy. (2007), A 21. sz´azad v´eg´en v´arhat´o ´eghajlatv´altoz´as Magyarorsz´agon. F¨oldrajzi ´Ertes´ıt˝o, 56(3-4): 147-168.

[5] Bede-Fazekas, ´A. (2012), Melegig´enyes d´ıszf´ak telep´ıthet˝os´egi ter¨ulet´enek el˝orejelz´ese a 21. sz´azadra. Thesis, Corvinus University of Budapest, Faculty of Landscape Architecture, Budapest.

[6] Berry, P. M., Rounsevell, M. D. A., Harrison, P. A., Audsley, E. (2006), Assessing the vulnerability of agricultural land use and species to climate change and the role of policy in facilitating adaptation. Environmental Science & Policy, 9(2): 189-204.

[7] Czink´oczky, A., Bede-Fazekas, ´A. (2012), Visualization of the climate change with the shift of the so-called Moesz-line. In: Buhmann, E., Ervin, S., Pietsch, M. (eds.): Peer Reviewed Proceedings of Digital Landscape Architecture 2012 at Anhalt University of Applied Sciences. Herbert Wichmann Verlag, Berlin, pp. 437-444.

[8] Cz´ucz, B. (2010), Az ´eghajlatv´altoz´as hazai term´eszetk¨ozeli ´el˝ohelyekre gyakorolt hat´asainak modellez´ese. PhD dissertation. Corvinus University of Budapest, Faculty of Horticultural Sciences. Budapest.

[9] De la Roque, S., Rioux, J. A., Slingenbergh, J. (2008), Climate change: Effects on animal disease systems and implications for surveillance and control. Revue Scientifique Et Technique. International Des Epizooties, 27(2): 339-354.

[10] Dormann, C. F. (2007), Promising the future? Global change projections of species distributions. Basic and Applied Ecology, 8(5): 387-397.

[11] Elith, J., Leathwick, J. R. (2009), Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 40(1): 677-697.

[12] ENSEMBLES (2013), ENSEMBLES data archive. ensemblesrt3.dmi.dk. Last accessed: 2013.03.01.

[13] EUFORGEN (2009), Distribution map of Brutia pine (Pinus butia). www.euforgen.org/distributionmaps.html. Last accessed: 2013.01.01.

[14] FAO (1971): FAO-UNESCO Soil Map of the World, 1:500 000. Food and Agriculture Organization, United Nations, Rome and Paris.

[15] Farkas, R., T´anczos, B., Bongiorno, G., Maroli, M., Dereure, J., Ready, P. D. (2011), First surveys to investigate the presence of canine leishmaniasis and its phlebotomine vectors in Hungary. Vector Borne Zoonotic Dis, 11(7): 823-834.

[16] Fischer, D., Thomas, S. M., Beierkuhnlein, C. (2010), Temperaturederived potential for the establishment of phlebotomine sandflies and visceral leishmaniasis in Germany. Geospatial Health, 5(1): 59-69.

[17] GISCO (2013), GISCO - Eurostat (European Commission). epp.eurostat.ec.europa.eu/portal/page/portal/gisco Geographical information maps/popups/references/ administrative units statistical units 1. Last accessed: 2013.01.01

[18] Guisan, A., Zimmermann, N. E. (2000), Predictive habitat distribution models in ecology. Ecological Modelling, 135(2-3): 147-186.

[19] Hammer, ˇR., Harper, D. A. T., Ryan, P. D. (2001), PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4: 9.

[20] Hanson, W. J. (1961) The Breeding Places of Phlebotomus in Panama (Diptera, Psychodidae). Annals of the Entomological Society of America, 54(3): 317-322.

[21] Harrison, P. A., Berry, P. M., Butt, N., New, M. (2006), Modelling climate change impacts on species’ distributions at the European scale: implications for conservation policy. Environmental Science & Policy, 9(2): 116-128.

[22] Hijmans, R. J., Graham, C. H. (2006), The ability of climate envelope models to predict the effect of climate change on species distributions.

Global Change Biology, 12(12): 2272-2281.

[23] Hughes, L. (2000), Biological consequences of global warming: is the signal already apparent? Trends in Ecology and Evolution, 15(2): 56-61.

[24] Ibánez, I., Clark, J. S., Dietze, M. C., Feeley, K., Hersh, M., Ladeau, S., Mcbride, A., Welch, N. E., Wolosin, M. S. (2006), Predicting Biodiversity Change: Outside the Climate Envelope, beyond the Species-Area Curve. Ecology, 87(8): 1896-1906.

[25] Kennewick, W. A., Marfin, A. A. (2010), Emerging Vector-Borne Infectious Diseases What’s New in Medicine Workshop.

[26] Killick-Kendrick, R. (1990), Phlebotomine vectors of the leishmaniases: a review. Medical and Veterinary Entomolog, 4(1): 1-24.

[27] Killick-Kendrick, R., Killick-Kendrick, M. (1987), The laboratory colonization of Phlebotomus ariasi (Diptera, Psychodidae). Ann Parasitol Hum Comp, 62(4): 354-356.

[28] Kocsis, M., Hufnagel, L. (2011), Impacts of climate change on Lepidoptera species and communities. Applied Ecology and Environmental Research, 9(1): 43-72.

[29] Köhler, K., Stechele, M., Hetzel, U., Domingo, M. Sch¨onian, G., Zahner, H., Burkhardt, E. (2002), Cutaneous leishmaniosis in a horse in southern Germany caused by Leishmania infantum. Vet Parasito, 16(109): 9-17.

[30] Kovács-Láng, E., Kr¨oel-Dulay, Gy., Cz´ucz, B. (2008), Az ´eghajlatv´altoz´as hat´asai a term´eszetes ´el˝ovil´agra ´es teend˝oink a meg˝orz´es ´es kutat´as ter¨ulet´en. Term´eszetv´edelmi K¨ozlem´enyek, 14(1): 5-39.

[31] Ladányi M., Horv´ath, L. (2010), A review of the potential climate change impact on insect populations - general and agricultural aspects. Applied Ecology and Environmental Research, 8(2): 143-152.

[32] Leger, N., Depaquit, J., Fert´e, H., Rioux, J. A., Gantier, J. C., Gramiccia, M., Ludovisi, A., Michaelides, A., Christophi, N., Economides, P. (2000), Phlebotomine sandflies (Diptera: Psychodidae) of the isle of Cyprus. II - isolation and typing of Leishmania (Leishmania infantum Nicolle, 1908 (zymodeme MOM 1) from Phlebotomus (Larrouius) tobbi Adler and Theodor, 1930. Parasite, 7(2): 143-146.

[33] Lindgren, E., Naucke, T. (2006), Leishmaniasis: Influences of Climate and Climate Change Epidemiology, Ecology and Adaptation Measures. In: Menne, B, Ebi, K. L. (eds.): Climate change and adaptation strategies for human health. Steinkopff Verlag, Darmstadt, pp. 131-156.

[34] Lindgren, E., Naucke, T., Menne, B. (2008), Climate Variability And Visceral Leishmaniasis In Europe. WHO/TDR Working paper for the Scientific Working Group meeting on Leishmaniasis Research, convened by the Special Programme for Research and Training in Tropical Diseases, Geneva.

[35] Max-Planck-Institut f¨ur Meteorologie (2007), What will the climate in Europe look like in the middle of the 21st century? www.mpimet.mpg.de/en/news/press/faq-frequently-asked-questions/ what-will-the-climate-in-europe-look-like-in-the-middle-of-the-21stcentury. html. Last accessed: 2013.03.01.

[36] Meusel, H., J¨ager, E. J., Weinert, E. (1965), Vergleichende Chorologie der zentraleurop¨aischen Flora. Band I. (Text und Karten). Fischer- Verlag, Jena.

[37] Minter, D. M. (1989), The leishmaniasis. In: Geographical distribution of arthropod-borne diseases and their principal vectors. WHO, Geneva (document WHO/VBC/89.967)

[38] Naderer, T., Ellis, M. A., Sernee, M. F., De Souza, D. P., Curtis, J., Handman, E., McConville, M. J. (2006), Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. PNAS. 103(14): 5502-5507.

[39] Nakicenovic, N., Swart, R. (eds.) (2000), Emissions Scenarios. Cambridge University Press, Cambridge.

[40] Naucke, T. J. (2002), Leishmaniosis, a tropical disease and its vectors (Diptera Psychodidae, Phlebotominae) in Central Europe. Denisia. 6: 163-178.

[41] Pennisi, M. G. (2002), A high prevalence of feline leishmaniasis in southern Italy. In: Killick-Kendrick, R. (ed.): Canine leishmaniasis: moving towards a solution. Proceedings of the Second International Canine Leishmaniasis Forum Seville, Spain. Intervet International, Boxmeer, The Netherlands. pp. 9-48.

[42] Peterson, A. T. (2006), Ecological niche modeling and spatial patterns of diseases transmission. Emerging Infectious Diseases, 12(12): 1822-1826.

[43] Peterson, A. T., Stewart, A., Mohamed, K. I., Ara´ujo, M. B. (2008), Shifting Global Invasive Potential of European Plants with Climate Change. PLoS ONE, 3(5): e2441.

[44] Pickett, S. T. A. (1989): Space-for-time substitution as an alternative to long-term studies. In: Likens, G. E. (ed.): Long-Term Studies in Ecology: Approaches and Alternatives. Springer, New York. pp. 110-135.

[45] Ready, P. D. (2010), Leishmaniasis emergence in Europe. Euro Surveill, 15(10): 19505.

[46] Roeckner, E., B¨auml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., Tompkins, A. (2003), The atmospheric general circulation model ECHAM 5. Part I: Model description. Max-Planck-Institut f¨ur Meteorologie, Hamburg.

[47] Roeckner E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh, L., Manzini, E., Schlese, U., Schulzweida, U. (2004), The atmospheric general circulation model ECHAM 5. PART II: Sensitivity of Simulated Climate to Horizontal and Vertical Resolution. Max-Planck- Institut f¨ur Meteorologie, Hamburg.

[48] Rogers, D. J., Randolph, S. E. (2006), Climate Change and Vector-Borne Diseases. Advances in Parasitology, 62: 345-381.

[49] Sánchez, M., Herv´as, J., Chac´on, F., G´omez, J., Luicentes, J., Castrillo, J., P´erez, R., Pascual, F., Pascual, F. (2000), Evaluaci´on del gato com´un (Felis catus domesticus) como reservorio dela leishmaniosis enela cuenca mediterranea. Revista T´ecnica Veterinaria, Pequenos Animales. 24: 46-54

[50] Serra-Diaz, J. M., Ninyerola, M., Lloret, F. (2012), Coexistence of Abies alba (Mill.) - Fagus sylvatica (L.) and climate change impact in the Iberian Peninsula: A climatic-niche perspective approach. Flora - Morphology, Distribution, Functional Ecology of Plants, 207(1): 10-18.

[51] Shaw, S. E., Lerga, A., Williams, S. (2003), Review of exotic infectious diseases in small animals entering the United Kingdom from aboard diagnosed by PCR. Vet. Rec., 152(6): 176-177.

[52] Skov, F., Svenning, J. C. (2004), Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography, 27(3): 366-380.

[53] Solano-Gallego, L., Fern´andez-Bellon, H., Serra, R., G´allego, M., Ramis, A., Fondevila, D., Ferrer, L. (2003), Cutaneous leishmaniosis in three horses in Spain. Equine Vet J., 35(3): 320-323.

[54] Solano-Gallego, L., Guadalupe, M., Koutinas, M., Cardoso, L., Pennisi, M. G., Ferrer, L., Bourdeau, P., Gaetano, O., Baneth, G. (2011), LeishVet guidelines for the practical management of canine leishmaniosis. Parasites & Vectors, 4: 86.

[55] Thuiller, W., Ara´ujo, M. B., Lavorel, S. (2004), Do we need land-cover data to model species distributions in Europe? Journal of Biogeography, 31(3): 353-361.

[56] Trotz-Williams, L. A., Trees, A. J. (2003): Systematic review of the distribution of the major vector-borne parasitic infections in dogs and cats in Europe. Veterinary Record, 152: 97-105.

[57] Tutin, T. G., Burges, N. A., Chater, A. O., Edmondson, J. R., Heywood, V. H., Moore, D. M., Valentine, D. H., Walters, S. M., Webb, D. A., Akeroyd, J. R., Newton, M. E., Mill, R. R. (1964), Flora Europaea. - Cambridge University Press, Cambridge. VBORNET (2013), [58] VBORNET maps - Sandflies. ecdc.europa.eu/en/activities/diseaseprogrammes/ emerging and vector borne diseases/pages/ vbornet maps sandflies.aspx?MasterPage=1. Last accessed: 2013.01.01.

[59] WHO (1984): The leishmaniases: report of an expert committee. WHO Tech Rep Ser 701: 1-140.

Acta Universitatis Sapientiae, Agriculture and Environment

The Journal of Sapientia Hungarian University of Transylvania

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 137 135 9
PDF Downloads 43 42 5