Disease incidence, identification, and monthly fluctuations in the population density of root-knot nematodes Meloidogyne javanica on cucumber plants in Semel District, Duhok, Kurdistan Region, Iraq

Open access

Abstract

A survey was performed in four locations of Semel District – as follows: Sartenk, Qesir yazdin, Sharia, and Grshin (Bawerde) – by selecting 4 greenhouses planted with cucumber plants (Cucumis sativus L.) on each location, during both growing seasons (spring and autumn) of the year 2015. The results showed that the incidence of root-knot disease increased to its maximum level (37.48%) in the autumn season and then decreased to its minimum level (34.67%) in the spring season. According to the surveyed locations, the highest disease incidence (73.05%) was recorded in Sartenk location and the lowest (13.54%) in Sharia location. Results of the interaction between the locations and seasons revealed that the highest disease incidence (80.5%) appeared in Sartenk location during the autumn growing season followed by 65.60% in the same location during the spring growing season, whereas the lowest percentage was reported in Sharia during the spring season (3.47%). Depending on the perineal patterns for species identification of Meloidogyne spp. on cucumber plants, results showed the presence of Meloidogyne javanica in all surveyed locations. Generally, in one of the greenhouses of Sartenk location, the population density of M. javanica reached its maximum level (1,762 nematodes/200 gm soil) in September 2015, while the minimum level (337.5 nematodes/200 gm soil) was recorded in May the same year.

[1] Agbenin, O. N. (2004), Potentials of organic amendments in the control of plant parasitic nematodes. Plant Protection Science 40(1), 21–25.

[2] Agrios, G. N. (2005), Introduction to Plant Pathology (5th edition), Elsevier Academic Press Publication.

[3] Agu, C. M. (2008), Effects of organic manure types on root-gall nematode disease and African yam bean yield. The Journal of American Science 4(1), 67–77.

[4] Ahmed, A. I. (2008), Cucumber root-knot nematodes disease in Erbil province and its certain control methods. M.Sc. thesis, College of Agriculture, University of Salahaddin, Erbil, Kurdistan Region, Iraq (in Arabic).

[5] Akyazi, F., Han, H., Cetintas, R., Felek, A. F. (2012), First report of root-knot nematodes, Meloidogyne arenaria and M. Hapla (Nemata: Meloidogynidae) from pepino in Turkey. Nematologia Mediterranea 40, 107–110.

[6] Ami, S. N. (1985), Studies on ecology and biology of root-knot nematodes (Meloidogyne spp.) and its effect on tomato plant in north of Iraq. M.Sc. thesis, College of Agriculture and Forestry, Mosul University (in Arabic).

[7] Ami, S. N., Al-Sabie, R. F. (1989), Study the population density of root-knot nematode Meloidogyne spp. on tomato fields in northern Iraq. Mesopotamia Journal of Agriculture 21(2), 301–321 (in Arabic).

[8] Bowles, J. E. (1984), Physical and geotechnical properties of soils. McGraw-Hill Book Company, New York. 241–276.

[9] Charegani, H., Majzoob, S., Hamzehzarghani, H., Karegar-Bide, A. (2012), Effect of various initial population densities of two species of Meloidogyne on growth of tomato and cucumber in greenhouse. Nematologia Mediterranea 40(2), 129–134.

[10] Chaudhary, K. K., Brhane, D., Okube, H., Zaid, T., Dagnew, E. (2011), Distribution, frequency of occurrence and population density of root knot nematode in Hamelmalo eritrea. African Journal of Microbiology Research 5, 5656–5661.

[11] Coyne, D. L., Nicol, J. M., Claudius-Cole, B. (2007), Practical plant nematology: A field and laboratory guide. International Institute of Tropical Agriculture (IITA).

[12] Dropkin, V. H. (1980), Introduction to plant nematology. John Wily and Sons, New York.

[13] Hussain, M. A. (2011), Studies on biology, distribution and management of Meloidogyne spp. on Okra. Ph.D. dissertation, PMAS-Arid Agriculture University, Rawalpindi, Pakistan.

[14] Hussain, M. A., Mukhtar, T. A. R. I. Q., Kayani, M. Z., Aslam, M. N., Haque, M. I. (2012), A survey of okra (Abelmoschus esculentus) in the Punjab province of Pakistan for the determination of prevalence, incidence and severity of root-knot disease caused by Meloidogyne spp. Pakistan Journal of Botany 44(6), 2071–2075.

[15] Ismail, M., Anwar, S. A., Riaz, A. (2012), Incidence of Meloidogyne incognita in cucumber fields. Pakistan Journal of Zoology 44(5), 1383–1387.

[16] Kago, E. K., Kinyua, Z. M., Okemo, P. O., Maingi, J. M. (2013), Efficacy of Brassica Tissue and Chalim TM on Control of Plant Parasitic Nematodes. Journal of Biology 1(1): 25–32.

[17] Karajeh, M. R., Al-Nasir, F. M. (2014), Field utilization of nitrogen fertilizers for controlling root-knot nematode and improving growth and yield of cucumber. International Journal of Agriculture and Forestry 4(1), 34–40.

[18] Kayani, M. Z., Mukhtar, T., Hussain, M. A., Haque, M. I., Perveen, R. (2012), Incidence and severity of root-knot nematodes (Meloidogyne spp.) on cucumber in district Rawalpindi. Pakistan Journal of Phytopathology 24(2), 122–128.

[19] Kumar, N., Adamu, M. A., Isah, K. M., Lawal, A. F. (2014), A survey of vegetable fields for root-gall disease in Niger State, Nigeria. PAT 10(1), 17–27.

[20] Lower, R. L., Edwards, M. D. (1986), Cucumber breeding. In: M. J. Basset (ed.), Breeding vegetables crops. Westport, Connecticut USA: AVI Publishing Co. 173–203.

[21] Madulu, J., Trudgill, D. L. (1994), Influence of temperature on Meloidogyne javanica. Nematologica 40, 230–243.

[22] Naz, I., Palomares-Rius, J. E., Blok, V., Saifullah, Ali, S., Ahmed, M. (2012), Prevalence, incidence and molecular identification of root-knot nematodes of tomato in Pakistan. African Journal of Biotechnology 11, 16546–16556.

[23] Nelson, D. W., Sommers, L. E. (1982), Total carbon, organic carbon and organic matter. In: Page, A. L., Miller, R. H., Keeney, D. R. (eds.), Methods of soil analysis. Part 2: Chemical and microbiological properties. Agron. Monogr. 9. ASA, Madison, WI. 539–580.

[24] Netscher, C. (1985), A crop rotation to control root-knot nematodes in the tropics. International Nematology Network Newsletter 2(1), 5–14.

[25] Ogumo, E. (2014), Use of eco-friendly strategies in suppression of root-knot nematodes in French bean (Phaseolus vulgaris) in Kenya. M.Sc. thesis, University of Nairobi.

[26] Olabiyi, T. I., Olayiwola, A. O., Oyediran, G. O. (2009), Influence of soil textures on distribution of phytonematodes in the south western Nigeria. World Journal of Agricultural Sciences 5(5), 557–560.

[27] Park, S. D.; Khan, Z., Yeon, K., Kim, Y. H. (2005), A survey for plant-parasitic nematodes associated with strawberry (Fragaria ananassa Duch.) crop in Korea. Plant Pathology Journal 21, 387–390.

[28] Pokharel, R. R., Larsen, H., Hammon, B., Gourd, T., Bartolo, M. (2008), Plant parasitic nematodes, soil and root health of Colorado onion fields. Colorado State University Agricultural Experiment Station Technical Report TR 09–12. 31–38.

[29] Prot, J. C., Van Gundy, S. D. (1981), Effect of soil texture and the clay component on migration of Meloidogyne incognita second-stage juveniles. Journal of Nematology 13(2), 213–217.

[30] Robinson, E. (2005), Soil type guides VR nematodes applications. Farm Press (http://www.deltafarmpress.com/mag/farming_soil_type_guides/index.html). 1–2.

[31] Rowell, D. L. (1996), Soil science: Methods and applications. Longman Group UK Limited. 50–51.

[32] SAS. (2001), SAS/STAT user’s guide, version 8.2. 1st printing. Vol. 2. SAS Institute Inc, SAS Campus Drive, Gray, North Carolina.

[33] Selim, M. E., Mahdy, M. E., Sorial, M. E., Dababat, A. A., Sikora, R. A. (2014), Biological and chemical dependent systemic resistance and their significance for the control of root-knot nematodes. Nematology 16(8), 917–927.

[34] Stanley, J. (2008), Biological comparison of four isolates of Meloidogyne floridensis from Florida. M.Sc. thesis. University of Florida.

[35] Trudgill, D. L. (1995), An assessment of the relevance of thermal time relationships to nematology. Fund. Appl. Nematology 18, 407–417.

[36] Van Bezooijen, J. (2006), Methods and techniques for nematology. Wageningen: Wageningen University.

[37] Van Reeuwijk, L. R. (1995), Procedures for soil analysis: 3–8. 5th edition. International Soil Reference and Information Center. Technical Paper 9.

[38] Wang, K. H., McSorley, R. (2005), Effects of soil ecosystem management on nematode pests, nutrient cycling and plant health. APS net. 1–16.

[39] Wehner, T. C., Guner N. (2004), Growth stage, flowering pattern, yield and harvest date prediction of four types of cucumber tested at 10 planting dates. In: J. D. McCreight, E. J. Ryder (eds.), Proc. XXVI IHC. Advances in Vegetable Breeding. Acta Hort. 637, 223–229.

Acta Universitatis Sapientiae, Agriculture and Environment

The Journal of Sapientia Hungarian University of Transylvania

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 162 162 23
PDF Downloads 96 96 9