FOLIA 206

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XVI (2017)

Akbar Rezaei, Arsham Borumand Saeid and Andrzej Walendziak Some results on pseudo-Q algebras

Communicated by Justyna Szpond

Abstract

The notions of a dual pseudo-Q algebra and a dual pseudo-QC algebra are introduced. The properties and characterizations of them are investigated. Conditions for a dual pseudo-Q algebra to be a dual pseudo-QC algebra are given. Commutative dual pseudo-QC algebras are considered. The interrelationships between dual pseudo-Q/QC algebras and other pseudo algebras are visualized in a diagram.

1. Introduction

G. Georgescu and A. Iorgulescu [6] and independently J. Rachůnek [15], introduced pseudo-MV algebras which are a non-commutative generalization of MValgebras. After pseudo-MV algebras, pseudo-BL algebras [7] and pseudo-BCK algebras [8] were introduced and studied by G. Georgescu and A. Iorgulescu. A. Walendziak [18] gave a system of axioms defining pseudo-BCK algebras. W.A. Dudek and Y.B. Jun defined pseudo-BCI algebras as an extension of BCI-algebras [5]. Y.H. Kim and K.S. So [11 discussed on minimal elements in pseudo-BCI algebras. G. Dymek studied p-semisimple pseudo-BCI algebras and then defined and investigated periodic pseudo-BCI algebras 3.
A. Walendziak 19 introduced pseudo- BCH algebras as an extension of $\mathrm{BCH}-$ algebras and studied ideals in such algebras.

The notion of BE-algebras was introduced by H.S. Kim and Y.H. Kim [10].
B.L. Meng [13] introduced the notion of CI-algebras as a generalization of BE-algebras and dual BCK/BCI/BCH-algebras. R.A. Borzooei et al. defined and studied pseudo-BE algebras which are a generalization of BE-algebras [1]. A. Rezaei et al. introduced the notion of pseudo-CI algebras as a generalization

[^0]of pseudo-BE algebras and proved that the class of commutative pseudo-CI algebras coincides with the class of commutative pseudo-BCK algebras [16. Recently, Y.B. Jun et al. defined and investigated pseudo-Q algebras 9 as a generalization of Q-algebras [14].

In this paper, we define dual pseudo-Q and dual pseudo-QC algebras. We investigate the properties and characterizations of them. Moreover, we provide some conditions for a dual pseudo-Q algebra to be a dual pseudo-QC algebra. We also consider commutative dual pseudo-QC algebras and prove that the class of such algebras coincides with the class of commutative pseudo-BCI algebras. Finally, the interrelationships between dual pseudo-Q/QC algebras and other pseudo algebras are visualized in a diagram.

2. Preliminaries

In this section, we review the basic definitions and some elementary aspects that are necessary for this paper.

Definition 2.1 ([5])
An algebra $\mathfrak{X}=(X ; \rightarrow, \rightsquigarrow, 1)$ of type $(2,2,0)$ is called a pseudo- $B C I$ algebra if it satisfies the following axioms: for all $x, y, z \in X$,

$$
\begin{aligned}
& \left(\mathrm{psBCI}_{1}\right)(x \rightarrow y) \rightsquigarrow((y \rightarrow z) \rightsquigarrow(x \rightarrow z))=1, \\
& \left(\mathrm{psBCI}_{2}\right)(x \rightsquigarrow y) \rightarrow((y \rightsquigarrow z) \rightarrow(x \rightsquigarrow z))=1, \\
& \left(\mathrm{psBCI}_{3}\right) x \rightarrow((x \rightarrow y) \rightsquigarrow y)=1 \text { and } x \rightsquigarrow((x \rightsquigarrow y) \rightarrow y)=1, \\
& \left(\mathrm{psBCI}_{4}\right) x \rightarrow x=x \rightsquigarrow x=1, \\
& \left(\mathrm{psBCI}_{5}\right) x \rightarrow y=y \rightsquigarrow x=1 \Longrightarrow x=y \\
& \left(\mathrm{psBCI}_{6}\right) x \rightarrow y=1 \Longleftrightarrow x \rightsquigarrow y=1 .
\end{aligned}
$$

Every pseudo-BCI algebra \mathfrak{X} satisfying, for every $x \in X$, condition
$(\operatorname{psBCK}) x \rightarrow 1=1$
is said to be a pseudo-BCK algebra ([12]).
From [4] it follows that a pseudo-BCI-algebra $\mathfrak{X}=(X ; \rightarrow, \rightsquigarrow, 1)$ has the following property (for all $x, y \in X$)
$(\mathrm{psEx}) x \rightarrow(y \rightsquigarrow z)=y \rightsquigarrow(x \rightarrow z)$.
DEfinition 2.2 ([17])
A (dual) pseudo-BCH algebra is an algebra $(X ; \rightarrow, \rightsquigarrow, 1)$ of type $(2,2,0)$ verifying the axioms $\left(\mathrm{psBCI}_{4}\right),\left(\mathrm{psBCI}_{6}\right)$ and (psEx).

Remark 2.3
Obviously, every pseudo-BCI algebra is a pseudo-BCH algebra.

Definition 2.4 ([16])
An algebra $\mathfrak{X}=(X ; \rightarrow, \rightsquigarrow, 1)$ of type $(2,2,0)$ is called a pseudo-CI algebra if, for all $x, y, z \in X$, it satisfies the following axioms:

$$
\begin{aligned}
& \left(\mathrm{psCI}_{1}\right) x \rightarrow x=x \rightsquigarrow x=1, \\
& \left(\mathrm{psCI}_{2}\right) 1 \rightarrow x=1 \rightsquigarrow x=x, \\
& \left(\mathrm{psCI}_{3}\right) x \rightarrow(y \rightsquigarrow z)=y \rightsquigarrow(x \rightarrow z), \\
& \left(\mathrm{psCI}_{4}\right) x \rightarrow y=1 \Longleftrightarrow x \rightsquigarrow y=1 .
\end{aligned}
$$

Remark 2.5
Since every pseudo-BCH algebra satisfies $\left(\mathrm{psCI}_{1}\right)\left(\mathrm{psCI}_{4}\right)$ pseudo- BCH algebras are contained in the class of pseudo-CI algebras.

A pseudo-CI algebra $\mathfrak{X}=(X ; \rightarrow, \rightsquigarrow, 1)$ verifying condition
$(\mathrm{psBE}) x \rightarrow 1=x \rightsquigarrow 1=1$,
for all $x \in X$, is said to be a pseudo-BE algebra (see [1]).
Proposition 2.6 ([2])
Any pseudo-BCK algebra is a pseudo-BE algebra.
In a pseudo-CI algebra \mathfrak{X} we can introduce a binary relation " \leq " by

$$
x \leq y \Longleftrightarrow x \rightarrow y=1 \Longleftrightarrow x \rightsquigarrow y=1 \quad \text { for all } x, y \in X
$$

An algebra $\mathfrak{X}=(X ; \rightarrow, \rightsquigarrow, 1)$ of type $(2,2,0)$ is called commutative if for all $x, y \in X$, it satisfies the following identities:
(i) $(x \rightarrow y) \rightsquigarrow y=(y \rightarrow x) \rightsquigarrow x$,
(ii) $(x \rightsquigarrow y) \rightarrow y=(y \rightsquigarrow x) \rightarrow x$.

From [2] (see Theorem 3.4) it follows that any commutative pseudo-BE algebra is a pseudo-BCK algebra. By Theorem 3.9 of [16], any commutative pseudo-CI algebra is a pseudo-BE algebra. Therefore we obtain

Proposition 2.7
Commutative pseudo-CI algebras coincide with commutative pseudo-BE algebras and with commutative pseudo-BCK algebras (hence also coincide with commutative pseudo-BCI algebras and with commutative pseudo-BCH algebras).

Definition 2.8 (9)
An algebra $\mathfrak{X}=(X ; *, \diamond, 0)$ of type $(2,2,0)$ is called a pseudo- Q algebra if, for all $x, y, z \in X$, it satisfies the following axioms:

$$
\begin{aligned}
& \left(\mathrm{psQ}_{1}\right) x * x=x \diamond x=0 \\
& \left(\mathrm{psQ}_{2}\right) x * 0=x \diamond 0=x \\
& \left(\mathrm{psQ}_{3}\right)(x * y) \diamond z=(x \diamond z) * y
\end{aligned}
$$

3. Dual pseudo-Q algebras

Definition 3.1
An algebra $\mathfrak{X}=(X ; \rightarrow, \rightsquigarrow, 1)$ of type $(2,2,0)$ is called a dual pseudo- Q algebra if, for all $x, y, z \in X$, it verifies the following axioms:

$$
\begin{aligned}
& \left(\mathrm{dpsQ}_{1}\right) x \rightarrow x=x \rightsquigarrow x=1 \\
& \left(\mathrm{dpsQ}_{2}\right) 1 \rightarrow x=1 \rightsquigarrow x=x \\
& \left(\mathrm{dpsQ}_{3}\right) x \rightarrow(y \rightsquigarrow z)=y \rightsquigarrow(x \rightarrow z) .
\end{aligned}
$$

In a dual pseudo-Q algebra, we can introduce two binary relations $\leq \rightarrow$ and \leq_{\rightsquigarrow} by

$$
x \leq_{\rightarrow} y \Longleftrightarrow x \rightarrow y=1 \quad \text { and } \quad x \leq_{\rightsquigarrow} y \Longleftrightarrow x \rightsquigarrow y=1 .
$$

Proposition 3.2
Let $\mathfrak{X}=(X ; \rightarrow, \rightsquigarrow, 1)$ be a dual pseudo- Q algebra. Then \mathfrak{X} is a pseudo-CI algebra if and only if $\leq_{\rightarrow}=\leq_{\rightsquigarrow}$.

Example 3.3
(i) Let $X=\{1, a, b, c, d\}$. Define binary operations \rightarrow and \rightsquigarrow on X by the following tables ([16]):

\rightarrow					c			\rightsquigarrow		1 a	b		c	
1								1		1 a	b		c	
a	1				c	1		a		11	b		c	
b	1					d		b		$1 d$	1		1	d
c	1					d		c		1 d	1		1	
d	1							d		11	b		c	

Then $\mathfrak{X}=(X ; \rightarrow, \rightsquigarrow, 1)$ is a dual pseudo-Q algebra which is not a pseudoBCI algebra, since $b \neq c$ and $b \rightarrow c=c \rightsquigarrow b=1$ (that is, $\left(\mathrm{psBCI}_{5}\right)$ does not hold in \mathfrak{X}).
(ii) Let $X=\{1, a, b, c\}$. Define binary operations \rightarrow and \rightsquigarrow on X by the following tables:

\rightarrow	1	$1 a$	b			\rightsquigarrow		1 a	b		c
1		1 a	b			1		1 a	b		c
a	1	11	b	c	and	a		1	c		c
b	1	11	1	1		b		1	1		c
c		11	a	1		c		1	c		

Then $\mathfrak{X}=(X ; \rightarrow, \rightsquigarrow, 1)$ is a dual pseudo-Q algebra which is not a pseudo-CI algebra, because $b \rightarrow c=1$ but $b \rightsquigarrow c=c$.

By definition, we have
Proposition 3.4
Any pseudo-CI algebra is a dual pseudo- Q algebra.

Remark 3.5
The converse of Proposition 3.4 does not hold. See Example 3.3 (ii).
Proposition 3.6
Let \mathfrak{X} be a dual pseudo- Q algebra. If one of the following identities:
(1) $(y \rightarrow x) \rightarrow x=y \rightarrow x$,
(2) $(y \rightarrow x) \rightsquigarrow x=y \rightsquigarrow x$,
(3) $(y \rightsquigarrow x) \rightarrow x=y \rightarrow x$,
(4) $(y \rightsquigarrow x) \rightsquigarrow x=y \rightarrow x$,
(5) $(y \rightsquigarrow x) \rightsquigarrow x=y \rightsquigarrow x$,
(6) $(y \rightsquigarrow x) \rightarrow x=y \rightsquigarrow x$,
(7) $(y \rightarrow x) \rightsquigarrow x=y \rightarrow x$,
(8) $(y \rightarrow x) \rightarrow x=y \rightsquigarrow x$
holds in \mathfrak{X}, then \mathfrak{X} is a trivial algebra.
Proof. Suppose, for example, that (1) is satisfied. Let $x \in X$. Applying (dpsQ (1) and (dpsQ2) we have

$$
1=x \rightarrow x=(x \rightarrow x) \rightarrow x=1 \rightarrow x=x
$$

Thus \mathfrak{X} is a trivial algebra.
Proposition 3.7
Let \mathfrak{X} be a dual pseudo- Q algebra. If one of the following identities:
(1) $(y \rightarrow x) \rightarrow x=x \rightarrow y$,
(2) $(y \rightarrow x) \rightsquigarrow x=x \rightsquigarrow y$,
(3) $(y \rightsquigarrow x) \rightarrow x=x \rightarrow y$,
(4) $(y \rightsquigarrow x) \rightsquigarrow x=x \rightarrow y$,
(5) $(y \rightsquigarrow x) \rightsquigarrow x=x \rightsquigarrow y$,
(6) $(y \rightsquigarrow x) \rightarrow x=x \rightsquigarrow y$,
(7) $(y \rightarrow x) \rightsquigarrow x=x \rightarrow y$,
(8) $(y \rightarrow x) \rightarrow x=x \rightsquigarrow y$
holds in \mathfrak{X}, then \mathfrak{X} is a trivial algebra.
Proof. The proof is similar to the proof of Proposition 3.6
Proposition 3.8
In a dual pseudo- Q algebra \mathfrak{X}, for all $x, y, z \in X$, we have:
(1) if $1 \leq_{\rightarrow}$ or $1 \leq_{\rightsquigarrow} x$, then $x=1$,
(2) $x \leq_{\rightsquigarrow} y \rightarrow z \Longleftrightarrow y \leq_{\rightarrow} x \rightsquigarrow z$,
(3) $x \rightarrow 1=x \rightsquigarrow 1$,
(4) $(x \rightarrow y) \rightarrow 1=(x \rightarrow 1) \rightsquigarrow(y \rightsquigarrow 1)$ and $(x \rightsquigarrow y) \rightsquigarrow 1=(x \rightsquigarrow 1) \rightarrow(y \rightarrow 1)$,
(5) if $x \leq_{\rightarrow} y$, then $x \rightarrow 1=y \rightarrow 1$,
(6) if $x \leq_{\rightsquigarrow} y$, then $x \rightsquigarrow 1=y \rightsquigarrow 1$,
(7) $y \rightarrow((y \rightarrow x) \rightsquigarrow x)=1$ and $y \rightsquigarrow((y \rightsquigarrow x) \rightarrow x)=1$,

Proof. (1) Let $1 \leq x$. Then $1 \rightarrow x=1$. Now, by $\left(\mathrm{dpsQ}_{2}\right)$ we obtain $x=1$. Similarly, if $1 \leq_{\rightsquigarrow} x$, then $x=1$.
(2) Let $x, y, z \in X . \mathrm{By}\left(\mathrm{dpsQ}_{3}\right)$

$$
x \rightsquigarrow(y \rightarrow z)=1 \Longleftrightarrow y \rightarrow(x \rightsquigarrow z)=1 .
$$

Consequently, (2) holds.
(3) We have $x \rightarrow 1=x \rightarrow(x \rightsquigarrow x)=x \rightsquigarrow(x \rightarrow x)=x \rightsquigarrow 1$.
(4) Let $x, y, z \in X$. Then

$$
\begin{aligned}
(x \rightarrow y) \rightarrow 1 & =(x \rightarrow y) \rightarrow[(x \rightarrow 1) \rightsquigarrow(x \rightarrow 1)] \\
& =(x \rightarrow 1) \rightsquigarrow[(x \rightarrow y) \rightarrow(x \rightarrow 1)] \\
& =(x \rightarrow 1) \rightsquigarrow[(x \rightarrow y) \rightarrow(x \rightarrow(y \rightsquigarrow y))] \\
& =(x \rightarrow 1) \rightsquigarrow[(x \rightarrow y) \rightarrow(y \rightsquigarrow(x \rightarrow y))] \\
& =(x \rightarrow 1) \rightsquigarrow[y \rightsquigarrow((x \rightarrow y) \rightarrow(x \rightarrow y))] \\
& =(x \rightarrow 1) \rightsquigarrow(y \rightsquigarrow 1) .
\end{aligned}
$$

The proof of the second part is similar.
(5) Let $x \leq \rightarrow y$. Then $x \rightarrow y=1$ and so $y \rightarrow 1=y \rightsquigarrow 1=y \rightsquigarrow(x \rightarrow y)=$ $x \rightarrow(y \rightsquigarrow y)=x \rightarrow 1$. Thus $y \rightarrow 1=x \rightarrow 1$.
(6) The proof is similar to the proof of (5)
(7) $\mathrm{By}\left(\mathrm{dpsQ}_{3}\right)$ and $\left(\mathrm{dpsQ}_{1}\right)$ we get

$$
y \rightarrow((y \rightarrow x) \rightsquigarrow x)=(y \rightarrow x) \rightsquigarrow(y \rightarrow x)=1
$$

and

$$
y \rightsquigarrow((y \rightsquigarrow x) \rightarrow x)=(y \rightsquigarrow x) \rightarrow(y \rightsquigarrow x)=1 .
$$

A dual pseudo-Q algebra $\mathfrak{X}=(X ; \rightarrow, \rightsquigarrow, 1)$ satisfying the conditions ($\left.\mathrm{psBCI}_{1}\right)$ and $\left(\mathrm{psBCI}_{2}\right)$ is said to be a dual pseudo-QC algebra. The following example shows that there exist pseudo-Q algebras which do not satisfy $\left(\mathrm{psBCI}_{1}\right)$ or $\left(\mathrm{psBCI}_{2}\right)$.

Example 3.9
(i) Dual pseudo-Q algebra from Example 3.3 (ii) satisfies $\left(\mathrm{psBCI}_{2}\right)$ but it does not satisfy $\left(\mathrm{psBCI}_{1}\right)$ since

$$
(a \rightarrow b) \rightsquigarrow((b \rightarrow c) \rightsquigarrow(a \rightarrow c))=b \rightsquigarrow(1 \rightsquigarrow c)=c \neq 1
$$

(ii) Let $X=\{1, a, b, c, d, e, f, g, h\}$. We define the binary operations \rightarrow and \rightsquigarrow on X as follows ([17]):

\rightarrow	1	a	a			d	e		g	h			\rightsquigarrow		1 a	a	b	c	d	e	f	f	g	
1		a	a		c		e		g				1		1 a	a		c	d	e	e			
a	1	1			1	d	e	f	g	h			a		1	1		1	d				g	
b	1	c			1	d	e	f	g	h			b		1 c	c		1	d				g	h
c	1	c				d	e	f	g				c		1 c	c		1	d				,	h
d		d	d		d	1	g	h	e	f			d		$d \quad d$	d	d	d	1	h				
e		e	e	e	e	h	1	g	f				e		e e	e		e	g	1			d	f
f	f				f		h	1	d	e			f		f	f		J	h	,		1	-	d
g	h	,	h	h	h	e	f	d	1	g			g		$h h$	h	h	h	f		d			
h		g	g		g	f	d	e	h	1			h		$g g$		g	g	e		f	d		

Then $\mathfrak{X}=(X ; \rightarrow, \rightsquigarrow, 1)$ is a dual pseudo-Q algebra which does not satisfy $\left(\mathrm{psBCI}_{1}\right)$ and $\left(\mathrm{psBCI}_{2}\right)$ Indeed,

$$
(c \rightarrow a) \rightsquigarrow((a \rightarrow b) \rightsquigarrow(c \rightarrow b))=c \rightsquigarrow(1 \rightsquigarrow b)=c \rightsquigarrow b=b \neq 1
$$

and

$$
(c \rightsquigarrow a) \rightarrow((a \rightsquigarrow b) \rightarrow(c \rightsquigarrow b))=c \rightarrow(1 \rightarrow b)=c \rightarrow b=b \neq 1 .
$$

(iii) Let $X=\{1, a, b, c\}$. Define binary operations \rightarrow and \rightsquigarrow on X by the following tables:

\rightarrow	1	a	b			\leadsto		a	b	c
1	1	a	b			1		a	b	c
a	1	1	b	b	and	a		1	b	c
b	1	a	1	c		b		a	1	a
c	1	1	1	1		c		1	1	

Then $\mathfrak{X}=(X ; \rightarrow, \rightsquigarrow, 1)$ is a dual pseudo-QC algebra.
Lemma 3.10
Let $\mathfrak{X}=(X ; \rightarrow, \rightsquigarrow, 1)$ be a dual pseudo-QC algebra and $x, y \in X$. Then $x \rightarrow y=1$ if and only if $x \rightsquigarrow y=1$.
Proof. Let $x \rightarrow y=1$. Using $\left(\mathrm{dpsQ}_{2}\right)$ and $\left(\mathrm{psBCI}_{1}\right)$ we obtain

$$
x \rightsquigarrow y=x \rightsquigarrow(1 \rightsquigarrow y)=(1 \rightarrow x) \rightsquigarrow((x \rightarrow y) \rightsquigarrow(1 \rightarrow y))=1 .
$$

Similarly, if $x \rightsquigarrow y=1$, then $x \rightarrow y=1$.
From Lemma 3.10 we have

Proposition 3.11
Any dual pseudo-QC algebra is a pseudo-CI algebra.
REMARK 3.12
The converse of Proposition 3.11 does not hold. See Example 3.9 (ii)
Proposition 3.13
Every pseudo-BCI algebra is a dual pseudo-QC algebra.
Proof. Let \mathfrak{X} be a pseudo-BCI algebra. It is easy to see that \mathfrak{X} satisfies (dpsQ1)$\left(\mathrm{dpsQ}_{3}\right)$ that is, it is a dual pseudo-Q algebra. Moreover, \mathfrak{X} obviously satisfies $\left(\mathrm{psBCI}_{1}\right)$ and $\left(\mathrm{psBCI}_{2}\right)$ Consequently, \mathfrak{X} is a dual pseudo-QC algebra.

REMARK 3.14

In a dual pseudo-QC algebra, $\leq_{\rightarrow}=\leq_{\rightsquigarrow}$. Set $\leq=\leq_{\rightarrow}\left(=\leq_{\rightsquigarrow}\right)$.
Proposition 3.15
Let \mathfrak{X} be a dual pseudo-QC algebra and $x, y, z \in X$. Then:
(1) if $x \leq y$, then $y \rightarrow z \leq x \rightarrow z$ and $y \rightsquigarrow z \leq x \rightsquigarrow z$,
(2) if $x \leq y$, then $z \rightarrow x \leq z \rightarrow y$ and $z \rightsquigarrow x \leq z \rightsquigarrow y$.

Proof. (1) Let $x \leq y$. Then $x \rightarrow y=1$. By (dpsQ2) and (psBCI $)$ we have

$$
\begin{aligned}
(y \rightarrow z) \rightsquigarrow(x \rightarrow z) & =1 \rightsquigarrow((y \rightarrow z) \rightsquigarrow(x \rightarrow z)) \\
& =(x \rightarrow y) \rightsquigarrow((y \rightarrow z) \rightsquigarrow(x \rightarrow z)) \\
& =1 .
\end{aligned}
$$

Hence $y \rightarrow z \leq x \rightarrow z$. The proof of the second part is similar.
(2) Let $x \leq y$. Hence $x \rightarrow y=1$. Applying ($\left.\mathrm{dpsQ}_{2}\right)$ and $\left(\mathrm{psBCI}_{1}\right)$ we obtain

$$
\begin{aligned}
(z \rightarrow x) \rightarrow(z \rightarrow y) & =1 \rightsquigarrow((z \rightarrow x) \rightarrow(z \rightarrow y)) \\
& =(x \rightarrow y) \rightsquigarrow((z \rightarrow x) \rightarrow(z \rightarrow y)) \\
& =(z \rightarrow x) \rightarrow((x \rightarrow y) \rightsquigarrow(z \rightarrow y)) \\
& =1 .
\end{aligned}
$$

Hence $z \rightarrow x \leq z \rightarrow y$. Similarly, $z \rightsquigarrow x \leq z \rightsquigarrow y$.
Theorem 3.16
Let \mathfrak{X} be a dual pseudo- Q algebra. Then \mathfrak{X} is a pseudo-QC algebra if and only if it satisfies the following implications:
$(*) y \leq_{\rightarrow} z \Longrightarrow x \rightarrow y \leq_{m} x \rightarrow z$,
$(* *) y \leq_{\rightsquigarrow} z \Longrightarrow x \rightsquigarrow y \leq_{\rightarrow} x \rightsquigarrow z$.
Proof. If \mathfrak{X} is a pseudo-QC algebra, then it satisfies (*) and (**) by Proposition 3.15 Conversely, suppose that implications (*) and (**) hold for all $x, y, z \in$ X. By Proposition 3.8 (7), $y \leq_{\rightarrow}(y \rightarrow z) \rightsquigarrow z$. Using (*) we get $x \rightarrow y \leq_{\rightsquigarrow x} \rightarrow$ $((y \rightarrow z) \rightsquigarrow z)$. Hence $(x \rightarrow y) \rightsquigarrow(x \rightarrow((y \rightarrow z) \rightsquigarrow z))=1$. Applying (psEx) we obtain $(x \rightarrow y) \rightsquigarrow((y \rightarrow z) \rightsquigarrow(x \rightarrow z))=1$, that is, $\left(\mathrm{psBCI}_{1}\right)$ holds. Similarly, using (**) we have $\left(\mathrm{psBCI}_{2}\right)$

Proposition 3.17
Let \mathfrak{X} be a dual pseudo-QC algebra. Then \mathfrak{X} is a pseudo-BCI algebra if and only if it verifies $\left(\mathrm{psBCI}_{5}\right)$.

Proof. Let \mathfrak{X} be a dual pseudo-QC algebra satisfying (psBCI_{5}) Clearly, \mathfrak{X} verifies $\left(\mathrm{psBCI}_{1}\right),\left(\mathrm{psBCI}_{2}\right)$ and $\left(\mathrm{psBCI}_{4}\right)$ The axiom $\left(\mathrm{psBCI}_{3}\right)$ follows from Proposition $3.8 \mid(7)$, By Lemma $3.10 \mid\left(\mathrm{psBCI}_{6}\right)$ holds in \mathfrak{X}. Therefore, \mathfrak{X} is a pseudo-BCI algebra.

The converse is obvious.
Proposition 3.18
Let \mathfrak{X} be a dual pseudo-QC algebra and $x, y, z \in X$ such that $x \leq y$ and $y \leq z$. Then $x \leq z$.

Proof. Applying ($\left.\mathrm{dpsQ}_{2}\right)$ and $\left(\mathrm{psBCI}_{1}\right)$ we get

$$
\begin{aligned}
x \rightarrow z & =1 \rightsquigarrow(x \rightarrow z) \\
& =1 \rightsquigarrow(1 \rightsquigarrow(x \rightarrow z)) \\
& =(x \rightarrow y) \rightsquigarrow((y \rightarrow z) \rightsquigarrow(x \rightarrow z)) \\
& =1,
\end{aligned}
$$

and therefore $x \leq z$.
Corollary 3.19
If a dual pseudo-QC algebra \mathfrak{X} satisfies the condition $\left(\mathrm{psBCI}_{5}\right)$, then $(X ; \leq)$ is a poset.

Theorem 3.20
If \mathfrak{X} is a commutative dual pseudo-QC algebra, then it is a pseudo-BCI algebra.
Proof. It is sufficient to prove that $\left(\mathrm{psBCI}_{5}\right)$ holds in \mathfrak{X}. Let $x, y \in X$ and $x \rightarrow$ $y=y \rightsquigarrow x=1$. Then

$$
x=1 \rightarrow x=(y \rightsquigarrow x) \rightarrow x=(x \rightsquigarrow y) \rightarrow y=1 \rightarrow y=y .
$$

Therefore, \mathfrak{X} satisfies $\left(\mathrm{psBCI}_{5}\right)$ Thus \mathfrak{X} is a pseudo-BCI algebra.
From Theorem 3.20 it follows
Corollary 3.21
Commutative dual pseudo-QC algebras coincide with commutative pseudo-BCI algebras.

4. Conclusion

Denote by psBCK, psBCI, psBCH, psCI, psBE, dpsQ, and dpsQC the classes of pseudo-BCK, pseudo-BCI, pseudo-BCH, pseudo-CI, pseudo-BE, dual pseudo-Q, and dual pseudo-QC algebras respectively. By definition, psBCK \subset $\mathbf{p s B C I}$ and $\mathbf{p s B E} \subset \mathbf{p s C I} \subset \mathbf{d p s Q}$. From Remarks 2.3 and 2.5 we obtain $\mathbf{p s B C I}$
$\subset \mathbf{p s B C H} \subset \mathbf{p s C I}$. Moreover, that psBCI $\subset \mathbf{d p s Q C} \subset$ psCI follows from Propositions 3.13 and 3.11

By Proposition 2.7 and Corollary 3.21, commutative pseudo-QC algebras coincide with commutative algebras pseudo-BCK, -BCI, -BCH, -CI, -BE.

Now, in the following diagram we summarize the results of this paper and the previous results in this filed. An arrow indicates proper inclusion, that is, if \mathbf{X} and \mathbf{Y} are classes of algebras, then $\mathbf{X} \rightarrow \mathbf{Y}$ denotes $\mathbf{X} \subset \mathbf{Y}$. The mark $\mathbf{X} \xrightarrow{C} \mathbf{Y}$ means that every commutative algebra of \mathbf{X} belongs to \mathbf{Y}.

Problem 4.1
Is it true that every commutative dual pseudo-Q algebra is a pseudo-BCK algebra?

Acknowledgment

The authors wish to express their sincere thanks to the referees for the valuable suggestions which lead to an improvement of this paper.

References

[1] Borzooei, Rajab Ali et al. "On pseudo BE-algebras." Discuss. Math. Gen. Algebra Appl. 33, no. 1 (2013): 95-108. Cited on 61 and 63.
[2] Ciungu, Lavinia Corina. "Commutative pseudo BE-algebras." Iran. J. Fuzzy Syst. 13, no. 1 (2016): 131-144. Cited on 63
[3] Dymek, Grzegorz. "p-semisimple pseudo-BCI-algebras." J. Mult.- Valued Logic Soft Comput. 19, no. 5-6 (2012): 461-474. Cited on 61
[4] Dymek, Grzegorz. "On a period of elements of pseudo-BCI-algebras." Discuss. Math. Gen. Algebra Appl. 35, no. 1 (2015): 21-31. Cited on 62
[5] Dudek, Wieslaw A., and Young-Bae Jun. "Pseudo-BCI algebras." East Asian Math. J. 24, no. 2 (2008): 187-190. Cited on 61 and 62 .
[6] Georgescu, George, and Afrodita Iorgulescu. "Pseudo-MV algebras." Mult.- Valued Log. 6, no. 1-2 (2001): 95-135. Cited on 61
[7] Georgescu, George, and Afrodita Iorgulescu. "Pseudo-BL algebras: anoncommutative extension of BL algebras." In Abstracts of the Fifth International Conference FSTA 2000, Liptovský Ján, The Slovak Republic. January 31 - February 4, 2000, 90-92. Cited on 61.
[8] Georgescu, George, and Afrodita Iorgulescu. "Pseudo-BCK algebras: an extension of BCK algebras." In Combinatorics, computability and logic: Proceedings of the Third International Conference on Combinatorics, Computability and Logic, edited by C.S Calude et al. Discrete Math. Theor. Comput. Sci., 97-114. London: Springer, 2001. Cited on 61
[9] Jun, Young Bae, and Hee Sik Kim, and Sun Shin Ahn. "Structures of pseudo ideal and pseudo atom in a pseudo Q-algebra." Kyungpook Math. J. 56, no. 1 (2016): 95-106. Cited on 62 and 63
[10] Kim, Hee Sik, and Young Hee Kim. "On BE-algebras." Sci. Math. Jpn. 66, no. 1 (2007): 113-116. Cited on 61
[11] Kim, Young Hee, and Keum Sook So. "On minimality in pseudo-BCI-algebras." Commun. Korean Math. Soc. 27, no. 1 (2012): 7-13. Cited on 61
[12] Kühr, Jan. "Pseudo BCK-semilattices." Demonstratio Math. 40, no. 3 (2007): 495-516. Cited on 62
[13] Meng, Biao Long. "CI-algebras." Sci. Math. Jpn. 71, no. 1 (2010) 11-17. Cited on 61.
[14] Neggers, Joseph, and Sun Shin Ahn, and Hee Sik Kim. "On Q-algebras." Int. J. Math. Math. Sci. 27, no. 12 (2001): 749-757. Cited on 62
[15] Rachůnek, Jiří. "A non-commutative generalization of MV-algebras." Czechoslovak Math. J. 52(127), no. 2 (2002): 255-273. Cited on 61
[16] Rezaei, Akbar, and Arsham Borumand Saeid, and K. Yousefi Sikari Saber. "On pseudo-CI algebras." (submitted). Cited on 6263 and 64
[17] Rezaei, Akbar, and Arsham Borumand Saeid, and Andrzej Walendziak. "On pointed pseudo-CI algebras." (submitted). Cited on 62 and 67
[18] Walendziak, Andrzej. "On axiom systems of pseudo-BCK algebras." Bull. Malays. Math. Sci. Soc. (2) 34, no. 2 (2011): 287-293. Cited on 61.
[19] Walendziak, Andrzej. "Pseudo-BCH-algebras." Discuss. Math. Gen. Algebra Appl. 35, no. 1 (2015): 5-19. Cited on 61.

Akbar Rezaei
Department of Mathematics
Payame Noor University
p.o.box. 19395-3697
Tehran
Iran
E-mail: rezaei@pnu.ac.ir
Arsham Borumand Saeid
Department of Pure Mathematics
Faculty of Mathematics and Computer
Shahid Bahonar University of Kerman
Kerman
Iran
E-mail: arsham@uk.ac.ir
Andrzej Walendziak
Siedlce University, Faculty of Science
Institute of Mathematics and Physic
3 Maja 54
Siedlce
Poland
E-mail: walent@interia.pl

Received: March 10, 2017; final version: August 30, 2017; available online: November 2, 2017.

[^0]: AMS (2010) Subject Classification: 06F35, 03G25, 03B52.
 Keywords and phrases: Pseudo-BCI/BCK algebra, (dual) pseudo-BCH algebra, dual pseudoQ/QC algebra, (commutative) pseudo-CI/BE algebra.

