OPEN
DOI: 10.1515/aupcsm-2017-0009

FOLIA 206

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XVI (2017)

Zenon Moszner
 Translation equation and the Jordan non-measurable continuous functions

Communicated by Justyna Szpond

Abstract. A connection between the continuous translation equation and the Jordan non-measurable continuous functions is given.

It is well known that a continuous function is Lebesgue measurable. It is not true for the Jordan measurability (in short: measurability). We give an example of a non-measurable continuous function by the solution of the translation equation.

1. Continuous solutions of translation equation

Every continuous solution of the translation equation

$$
\begin{equation*}
F(F(x, t), s)=F(x, t+s) \tag{1}
\end{equation*}
$$

where $F: I \times \mathbb{R} \rightarrow I$ and I is a non-degenerated interval, is of the form

$$
F(x, t)= \begin{cases}h_{n}^{-1}\left[h_{n}(g(x))+t\right], & \text { for } g(x) \in I_{n}, t \in \mathbb{R} \tag{2}\\ g(x), & \text { for } g(x) \in g(I) \backslash \bigcup I_{n}, t \in \mathbb{R}\end{cases}
$$

where $g: I \rightarrow I$ is a continuous idempotent $(g \circ g=g), I_{n} \subset g(I)$ for $n \in N_{1} \subset \mathbb{N}$ are open and disjoint intervals and $h_{n}: I_{n} \rightarrow \mathbb{R}$ are homeomorphisms.

Indeed, it is proved in the book [3] that every continuous solution F_{1} of the translation equation for which $F_{1}(x, 0)=x$ is of the form (11) with $g(x)=x$. Let F be a continuous solution of the translation equation. The function $F_{1}=\left.F\right|_{F(I, \mathbb{R}) \times \mathbb{R}}$

Keywords and phrases: Translation equation; Jordan non-measurable function.
is a continuous solution of the translation equation for which $F_{1}(x, 0)=x$, since if $x=F\left(x_{1}, t_{1}\right)$ for some $\left(x_{1}, t_{1}\right) \in I \times \mathbb{R}$, then

$$
F_{1}(x, 0)=F_{1}\left(F\left(x_{1}, t_{1}\right), 0\right)=F\left(F\left(x_{1}, t_{1}\right), 0\right)=F\left(x_{1}, t_{1}\right)=x
$$

Moreover, $F(x, t)=F(F(x, t), 0)=F_{1}(F(x, 0), t)$ and $F(x, 0)$ is a continuous idempotent.

2. Main considerations

Definition

A function $f: I_{1} \rightarrow I_{2}$, where I_{1}, I_{2} are the intervals in \mathbb{R}, is said to be measurable if the set $\left\{x \in I_{1}: f(x)>a\right\}$ is measurable for every $a \in \mathbb{R}$.

Let $I \subset \mathbb{R}$ be a non-degenerated interval, $g: I \rightarrow I$ a continuous idempotent such that $g(I)$ is a non-degenerated bounded interval. Let C be a set of the Smith-Volterra-Cantor type in $g(I)$, i.e. let C be a non-measurable set obtained in $g(I)$ as a modification of the construction of the Cantor set in which $\frac{1}{4}$ is taken in place of $\frac{1}{3}$ ([1] p.191) (the Cantor set is here not good since it is of Jordan measure zero as a closed set of Lebesgue measure zero). Let I_{n} be the components of the open set $g(I) \backslash C$. Let F be the function given by the formula (2) with these intervals I_{n} and arbitrary homeomorphisms $h_{n}: I_{n} \rightarrow \mathbb{R}$. Fix an arbitrary $t_{0} \neq 0$. We will prove that the functions $f(x)=F\left(x, t_{0}\right)-g(x)$ and $-f$ are continuous and at least one of these functions is non-measurable.

Indeed, they are continuous since F and g are continuous functions. We have

1) $f(x)=0$ for $g(x) \in C$,
2) $f(x) \neq 0$ for $g(x) \in I_{n}, n \in N_{1} \subset \mathbb{N}$, otherwise we would have $g(x)=$ $F\left(x, t_{0}\right)=h_{n}^{-1}\left[h_{n}(g(x))+t_{0}\right]$ and $h_{n}(g(x))=h_{n}(g(x))+t_{0}$, a contradiction.

Thus,

$$
\begin{aligned}
\bigcup I_{n} & =\left\{x \in \bigcup I_{n}: f(x)>0\right\} \cup\left\{x \in \bigcup I_{n}: f(x)<0\right\} \\
& =g(I) \cap\{x \in I: f(x)>0\} \cup g(I) \cap\{x \in I: f(x)<0\} .
\end{aligned}
$$

The set $\bigcup I_{n}$ is non-measurable since $\bigcup I_{n}=g(I) \backslash C$, thus at least one of the sets $\{x \in I: f(x)>0\}$ and $\{x \in I: f(x)<0\}=\{x \in I:-f(x)>0\}$ is non-measurable. The proof is completed.

The type of monotonicity of homeomorphisms h_{n} decides partly which function: f or $-f$, is not measurable., e.g. if $t_{0}>0$ and every h_{n} is increasing, then

$$
F\left(x, t_{0}\right)=h_{n}^{-1}\left[h_{n}(g(x))+t_{0}\right]>h_{n}^{-1}\left[h_{n}(g(x))\right]=g(x)
$$

for $g(x) \in I_{n}$. Thus we have $f(x)>0$ for $g(x) \in \bigcup I_{n}$, hence the function f is non-measurable. This type of monotonicity of h_{n} may be of course different for different n.

Let I be the bounded interval and $g(x)=x$ in 22). In this case the function $F(x, 0)=x$ is evidently measurable. Moreover, for every $t_{0} \neq 0$, the function $F\left(\cdot, t_{0}\right): I \rightarrow I$ is measurable too: for every real number a the set $\{x \in I$: $\left.F\left(x, t_{0}\right)>a\right\}$ is an interval, as $F\left(\cdot, t_{0}\right)$ is onto, continuous and increasing.

Conclusion

The difference of measurable functions (even continuous) may be non-measurable.
It is known that this situation is impossible for the Lebesgue measurable functions.

There exists a continuous solution F of (1) such that for all $t \in \mathbb{R}$, functions $F(\cdot, t)$ are non-measurable.

Indeed, we put $h(x)=d(x, C)+1$ for $x \in[0,1)$ and $h(x)=x$ for $x \in[1,2]$, where C is the above set on the interval $[0,1]$ and $d(x, C)$ is the distance between x and C. This function h is

1) continuous since the function $d(x, C)$ is continuous ([2] p.103),
2) non-measurable since the set $\{x \in[0,2]: h(x)>1\}=(I \backslash C) \cup(1,2]$ is non-measurable,
3) an idempotent function since it is the identity function on the range of the function $h(h([0,2])=[1,2])$.

Thus the function $F(x, t)=h(x)$ for $(x, t) \in[0,2] \times \mathbb{R}$ is the solution of (11) and $F(\cdot, t):[0,2] \rightarrow[0,2]$ is a continuous, non-measurable function for every $t \in \mathbb{R}$.

3. Remark

Proposition

There exists a solution F of (1) for which $F(\cdot, 0)$ is measurable and $F(\cdot, 1)$ is non-measurable.

Proof. Let $g_{1}:(0,1] \cap \mathbb{Q} \rightarrow(-\infty, 0] \cap \mathbb{Q}, g_{2}:(0,1] \backslash \mathbb{Q} \rightarrow(0,+\infty) \backslash \mathbb{Q}, g_{3}:(1,3) \cap \mathbb{Q} \rightarrow$ $(0,+\infty) \cap \mathbb{Q}$ and $g_{4}:(1,3) \backslash \mathbb{Q} \rightarrow(-\infty, 0] \backslash \mathbb{Q}$ be bijections such that $g_{4}((1,2) \backslash \mathbb{Q}) \subset$ $(-1,0]$. The function $g=g_{1} \cup g_{2} \cup g_{3} \cup g_{4}$ is a bijection from (0,3) onto \mathbb{R}. This implies that the function $F(x, t)=g^{-1}[g(x)+t]$ is a solution of (1). The function $F(x, 0)=x$ is evidently measurable. We prove that the function $F(\cdot, 1)$ is non-measurable by proving that the set $S=\{x \in(0,3): F(x, 1)>1\}$ is non-measurable. We have
i) $(1,2) \cap \mathbb{Q} \subset S$ since if $x \in(1,2) \cap \mathbb{Q}$, then $g(x) \in(0,+\infty) \cap \mathbb{Q}$, thus $g(x)+1 \in(1,+\infty) \cap \mathbb{Q}$ and this yields that $F(x, 1)=g^{-1}[g(x)+1] \in$ $(1,3) \cap \mathbb{Q}$,
ii) $[(1,2) \backslash \mathbb{Q}] \cap S=\emptyset$. Indeed, suppose to the contrary that there exists an $x_{0} \in(1,2) \backslash \mathbb{Q}$ such that $F\left(x_{0}, 1\right)>1$. We obtain $g\left(x_{0}\right)=g_{4}\left(x_{0}\right) \in$ $(-\infty, 0] \backslash \mathbb{Q}$, thus $g\left(x_{0}\right)$ and $g\left(x_{0}\right)+1$ are irrational numbers. Moreover, $g\left(x_{0}\right) \epsilon g_{4}((1,2) \backslash \mathbb{Q}) \subset(-1,0]$ hence $g\left(x_{0}\right)+1 \in(0,1]$ and since $g\left(x_{0}\right)+1$ is an irrational number, we have $g\left(x_{0}\right)+1 \in(0,1] \backslash \mathbb{Q} \subset(0,+\infty) \backslash \mathbb{Q}$. From here $F\left(x_{0}, 1\right)=g^{-1}\left[g\left(x_{0}\right)+1\right]=g_{2}^{-1}\left[g\left(x_{0}\right)+1\right] \in(0,1] \backslash \mathbb{Q}$. We obtain a contradiction since $F\left(x_{0}, 1\right)>1$.

By i) and ii) the set S is non-measurable.

The function F from the above proof is evidently discontinuous since, e.g. the set $F((0,1], 1)$ is not an interval.

Question

Does there exist a continuous solution of (11) which has the property as in the Proposition?

Such a solution, if it exists, must be of the form (2) with $N_{1} \neq \emptyset$ and the function g which is not the identity function (see section 22).

References

[1] Carathéodory, Constantin. Vorlesungen über reelle Funktionen. Leipzig, Berlin: Vieweg, Teubner Verlag, 1927. Cited on 118
[2] Kuratowski, Casimir. Topologie. Vol. I. Warszawa: Polskie Towarzystwo Matematyczne, 1952. Cited on 119
[3] Sibirskiŭ, Konstantin S. Introduction to topological dynamics. Leiden: Noordhoff International Publishing, 1975. Cited on 117

Institute of Mathematics
Pedagogical University
Podchorażych 2
30-084 Kraków
Poland
E-mail: zmoszner@up.krakow.pl

