

FOLIA 206

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XVI (2017)

Zenon Moszner Translation equation and the Jordan non-measurable continuous functions

Communicated by Justyna Szpond

Abstract. A connection between the continuous translation equation and the Jordan non-measurable continuous functions is given.

It is well known that a continuous function is Lebesgue measurable. It is not true for the Jordan measurability (in short: measurability). We give an example of a non-measurable continuous function by the solution of the translation equation.

1. Continuous solutions of translation equation

Every continuous solution of the translation equation

$$F(F(x,t),s) = F(x,t+s),$$
 (1)

where $F: I \times \mathbb{R} \to I$ and I is a non-degenerated interval, is of the form

$$F(x,t) = \begin{cases} h_n^{-1}[h_n(g(x)) + t], & \text{for } g(x) \in I_n, \ t \in \mathbb{R}, \\ g(x), & \text{for } g(x) \in g(I) \setminus \bigcup I_n, \ t \in \mathbb{R}, \end{cases}$$
(2)

where $g: I \to I$ is a continuous idempotent $(g \circ g = g), I_n \subset g(I)$ for $n \in N_1 \subset \mathbb{N}$ are open and disjoint intervals and $h_n: I_n \to \mathbb{R}$ are homeomorphisms.

Indeed, it is proved in the book [3] that every continuous solution F_1 of the translation equation for which $F_1(x, 0) = x$ is of the form (1) with g(x) = x. Let F be a continuous solution of the translation equation. The function $F_1 = F|_{F(I,\mathbb{R})\times\mathbb{R}}$

AMS (2010) Subject Classification: 39B12, 39B22, 26A99.

Keywords and phrases: Translation equation; Jordan non-measurable function.

is a continuous solution of the translation equation for which $F_1(x, 0) = x$, since if $x = F(x_1, t_1)$ for some $(x_1, t_1) \in I \times \mathbb{R}$, then

$$F_1(x,0) = F_1(F(x_1,t_1),0) = F(F(x_1,t_1),0) = F(x_1,t_1) = x.$$

Moreover, $F(x,t) = F(F(x,t),0) = F_1(F(x,0),t)$ and F(x,0) is a continuous idempotent.

2. Main considerations

DEFINITION

A function $f: I_1 \to I_2$, where I_1, I_2 are the intervals in \mathbb{R} , is said to be measurable if the set $\{x \in I_1 : f(x) > a\}$ is measurable for every $a \in \mathbb{R}$.

Let $I \subset \mathbb{R}$ be a non-degenerated interval, $g: I \to I$ a continuous idempotent such that g(I) is a non-degenerated bounded interval. Let C be a set of the Smith-Volterra-Cantor type in g(I), i.e. let C be a non-measurable set obtained in g(I)as a modification of the construction of the Cantor set in which $\frac{1}{4}$ is taken in place of $\frac{1}{3}$ ([1] p.191) (the Cantor set is here not good since it is of Jordan measure zero as a closed set of Lebesgue measure zero). Let I_n be the components of the open set $g(I) \setminus C$. Let F be the function given by the formula (2) with these intervals I_n and arbitrary homeomorphisms $h_n: I_n \to \mathbb{R}$. Fix an arbitrary $t_0 \neq 0$. We will prove that the functions $f(x) = F(x, t_0) - g(x)$ and -f are continuous and at least one of these functions is non-measurable.

Indeed, they are continuous since F and g are continuous functions. We have

- 1) f(x) = 0 for $g(x) \in C$,
- 2) $f(x) \neq 0$ for $g(x) \in I_n$, $n \in N_1 \subset \mathbb{N}$, otherwise we would have $g(x) = F(x, t_0) = h_n^{-1}[h_n(g(x)) + t_0]$ and $h_n(g(x)) = h_n(g(x)) + t_0$, a contradiction.

Thus,

$$\bigcup I_n = \{x \in \bigcup I_n : f(x) > 0\} \cup \{x \in \bigcup I_n : f(x) < 0\}$$

= $g(I) \cap \{x \in I : f(x) > 0\} \cup g(I) \cap \{x \in I : f(x) < 0\}.$

The set $\bigcup I_n$ is non-measurable since $\bigcup I_n = g(I) \setminus C$, thus at least one of the sets $\{x \in I : f(x) > 0\}$ and $\{x \in I : f(x) < 0\} = \{x \in I : -f(x) > 0\}$ is non-measurable. The proof is completed.

The type of monotonicity of homeomorphisms h_n decides partly which function: f or -f, is not measurable, e.g. if $t_0 > 0$ and every h_n is increasing, then

$$F(x,t_0) = h_n^{-1}[h_n(g(x)) + t_0] > h_n^{-1}[h_n(g(x))] = g(x)$$

for $g(x) \in I_n$. Thus we have f(x) > 0 for $g(x) \in \bigcup I_n$, hence the function f is non-measurable. This type of monotonicity of h_n may be of course different for different n.

Let *I* be the bounded interval and g(x) = x in (2). In this case the function F(x,0) = x is evidently measurable. Moreover, for every $t_0 \neq 0$, the function $F(\cdot,t_0): I \to I$ is measurable too: for every real number *a* the set $\{x \in I : F(x,t_0) > a\}$ is an interval, as $F(\cdot,t_0)$ is onto, continuous and increasing.

[118]

CONCLUSION

The difference of measurable functions (even continuous) may be non-measurable.

It is known that this situation is impossible for the Lebesgue measurable functions.

There exists a continuous solution F of (1) such that for all $t \in \mathbb{R}$, functions $F(\cdot, t)$ are non-measurable.

Indeed, we put h(x) = d(x, C) + 1 for $x \in [0, 1)$ and h(x) = x for $x \in [1, 2]$, where C is the above set on the interval [0, 1] and d(x, C) is the distance between x and C. This function h is

- 1) continuous since the function d(x, C) is continuous ([2] p.103),
- 2) non-measurable since the set $\{x\in [0,2]:\ h(x)>1\}=(I\backslash C)\cup(1,2]$ is non-measurable,
- 3) an idempotent function since it is the identity function on the range of the function h(h([0,2]) = [1,2]).

Thus the function F(x,t) = h(x) for $(x,t) \in [0,2] \times \mathbb{R}$ is the solution of (1) and $F(\cdot,t): [0,2] \to [0,2]$ is a continuous, non-measurable function for every $t \in \mathbb{R}$.

3. Remark

Proposition

There exists a solution F of (1) for which $F(\cdot, 0)$ is measurable and $F(\cdot, 1)$ is non-measurable.

Proof. Let $g_1: (0,1] \cap \mathbb{Q} \to (-\infty,0] \cap \mathbb{Q}, g_2: (0,1] \setminus \mathbb{Q} \to (0,+\infty) \setminus \mathbb{Q}, g_3: (1,3) \cap \mathbb{Q} \to (0,+\infty) \cap \mathbb{Q}$ and $g_4: (1,3) \setminus \mathbb{Q} \to (-\infty,0] \setminus \mathbb{Q}$ be bijections such that $g_4((1,2) \setminus \mathbb{Q}) \subset (-1,0]$. The function $g = g_1 \cup g_2 \cup g_3 \cup g_4$ is a bijection from (0,3) onto \mathbb{R} . This implies that the function $F(x,t) = g^{-1}[g(x) + t]$ is a solution of (1). The function F(x,0) = x is evidently measurable. We prove that the function $F(\cdot,1)$ is non-measurable by proving that the set $S = \{x \in (0,3) : F(x,1) > 1\}$ is non-measurable. We have

- i) $(1,2) \cap \mathbb{Q} \subset S$ since if $x \in (1,2) \cap \mathbb{Q}$, then $g(x) \in (0,+\infty) \cap \mathbb{Q}$, thus $g(x) + 1 \in (1,+\infty) \cap \mathbb{Q}$ and this yields that $F(x,1) = g^{-1}[g(x) + 1] \in (1,3) \cap \mathbb{Q}$,
- ii) $[(1,2) \setminus \mathbb{Q}] \cap S = \emptyset$. Indeed, suppose to the contrary that there exists an $x_0 \in (1,2) \setminus \mathbb{Q}$ such that $F(x_0,1) > 1$. We obtain $g(x_0) = g_4(x_0) \in (-\infty,0] \setminus \mathbb{Q}$, thus $g(x_0)$ and $g(x_0) + 1$ are irrational numbers. Moreover, $g(x_0)\epsilon g_4((1,2) \setminus \mathbb{Q}) \subset (-1,0]$ hence $g(x_0) + 1 \in (0,1]$ and since $g(x_0) + 1$ is an irrational number, we have $g(x_0) + 1 \in (0,1] \setminus \mathbb{Q} \subset (0,+\infty) \setminus \mathbb{Q}$. From here $F(x_0,1) = g^{-1}[g(x_0) + 1] = g_2^{-1}[g(x_0) + 1] \in (0,1] \setminus \mathbb{Q}$. We obtain a contradiction since $F(x_0,1) > 1$.

By i) and ii), the set S is non-measurable.

Zenon Moszner

The function F from the above proof is evidently discontinuous since, e.g. the set F((0, 1], 1) is not an interval.

QUESTION

Does there exist a continuous solution of (1) which has the property as in the Proposition?

Such a solution, if it exists, must be of the form (2) with $N_1 \neq \emptyset$ and the function g which is not the identity function (see section 2).

References

- Carathéodory, Constantin. Vorlesungen über reelle Funktionen. Leipzig, Berlin: Vieweg, Teubner Verlag, 1927. Cited on 118.
- [2] Kuratowski, Casimir. Topologie. Vol. I. Warszawa: Polskie Towarzystwo Matematyczne, 1952. Cited on 119.
- [3] Sibirskiĭ, Konstantin S. Introduction to topological dynamics. Leiden: Noordhoff International Publishing, 1975. Cited on 117.

Institute of Mathematics Pedagogical University Podchorążych 2 30-084 Kraków Poland E-mail: zmoszner@up.krakow.pl

Received: November 7, 2017; final version: January 11, 2018; available online: January 15, 2018.

[120]