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Abstract. In this paper, we propose and analyse an iterative algorithm for
the approximation of a common solution for a finite family of k-strict pseudo-
contractions and two finite families of generalized equilibrium problems in
the setting of Hilbert spaces. Strong convergence results of the proposed
iterative algorithm together with some applications to solve the variational
inequality problems are established in such setting. Our results generalize
and improve various existing results in the current literature.

1. Introduction

Throughout this paper, we work in the setting of a real Hilbert space H
equipped with the inner product 〈· , ·〉 and the induced norm ‖·‖. Let C be
a nonempty subset of a real Hilbert space H and let T : C → C be a mapping.
The set of fixed points of the mapping T is defined and denoted as F (T ) = {x ∈
C : T (x) = x}. The mapping T is said to be

(i) a contraction, if ‖Tx− Ty‖ ≤ α‖x− y‖ for all x, y ∈ C and α ∈ (0, 1);
(ii) nonexpansive, if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C;

(iii) Lipschitzian, if ‖Tx−Ty‖ ≤ L‖x−y‖ for some L > 0 and for all x, y ∈ C;
(iv) firmly nonexpansive, if

‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉 for all x, y ∈ C; (1)

(v) a pseudo-contraction, if

〈x− y , Tx− Ty〉 ≤ ‖x− y‖2 for all x, y ∈ C; (2)
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(vi) a strict pseudo-contraction, if there exists 0 < λ ≤ 1
2 , such that for all

x, y ∈ C,

〈x− y , Tx− Ty〉 ≤ ‖x− y‖2 − λ‖(I − T )x− (I − T )y‖2; (3)

(vii) a strong pseudo-contraction, if there exists a positive constant δ ∈ (0, 1)
such that T − δI is a pseudo-contractive mapping.

It is remarked that the inequalities (1) and (2) are equivalent to

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(I − T )x− (I − T )y‖2

and
‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖(I − T )x− (I − T )y‖2,

respectively. Note that, if we set k = 1− 2λ ∈ [0, 1), then (3) takes the form

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2.

Throughout the manuscript, we use the above formulation of the k-strict pseudo-
contraction in the terminology of Browder and Petryshyn [3] which satisfies the
following Lipschitz condition

‖Tx− Ty‖ ≤ 1 + k

1− k ‖x− y‖.

Moreover, if we set A := I − T , where I is the identity mapping, then (3) is
equivalent to

〈x− y ,Ax−Ay〉 ≥ λ‖Ax−Ay‖2. (4)

For such a case, the mapping A is then referred as a λ-inverse strongly monotone
mapping.

Metric fixed point theory has its roots in the celebrated Banach Contraction
Principle (BCP), which asserts that a contraction on a complete metric space has
a unique fixed point. Besides this, the BCP also provides a constructive procedure
for the approximation of such unique fixed points. Moreover, BCP has valuable
applications to various nonlinear problems such as Fredholm and Volterra integral
equations, ordinary differential equations, partial differential equations and image
processing. Since then, metric fixed point theory has emerged as a powerful tool
to solve various nonlinear problems arising in different branches of mathematical
sciences. As a consequence, the BCP is a highly cited result in the whole theory
of analysis.

It is worth mentioning that the BCP dominates fixed point theory only for the
class of contraction mappings. The essential ingredient of the BCP such as com-
pleteness of the metric space, uniqueness of the fixed point, and the sequence of
successive approximation whose order of convergence is of geometric progression,
are no longer true for the class of nonexpansive mappings. In fact, fixed point
theory of nonexpansive mappings depends on the geometrical structures of the
underlying space. Fixed points of nonexpansive mappings have a diverse range of
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applications to solve problems such as variational inequality problem, convex min-
imization problem of a function and zeros of a monotone operator. It is therefore,
natural to extend such powerful results of the class of nonexpansive mappings to
more general class of mappings such as asymptotically nonexpansive mappings,
pseudo-contractions, strict pseudo-contractions and others.

In 1967, Browder and Petryshyn [3] introduced the class of strict pseudo-
contractions as an important and significant generalization of the class of nonex-
pansive mappings. It is evident from the definition of a k-strict pseudo-contraction
T that

(i) nonexpansive mappings are 0-strict pseudo-contraction, whereas firmly
nonexpansive mappings are −1-strict pseudo-contraction, and therefore the
class of k-strict pseudo-contractions contains both firmly nonexpansive map-
pings and nonexpansive mappings;

(ii) the class of k-strict pseudo-contractions falls into the one between the
classes of nonexpansive mappings and pseudo-contractions;

(iii) the class of strong pseudo-contractions is independent of the class of k-
strict pseudo-contractions.

In view of the above the discussion, the class of k-strict pseudo-contractions
is prominent among various classes of nonlinear mappings in the current lit-
erature. The iterative construction of fixed points of nonexpansive mappings
have been extensively studied in the current literature. Although strict pseudo-
contractions have more powerful applications than the nonexpansive mappings for
solving inverse problems [19], iterative construction of fixed points of strict pseudo-
contractions are far less developed, because of the second term in the definition,
than those for nonexpansive mappings. On the other hand, various existing iter-
ative algorithms for k-strict pseudo-contractions possess only weakly convergent
characteristics. It is therefore, natural to propose and analyse iterative algorithms
for the construction of fixed points of k-strict pseudo-contractions and established
strong convergence results under suitable conditions.

Equilibrium problem theory provides a unified approach to address a variety
of problems arising in various disciplines of science such as physics, optimization
and economics. The existence result of an equilibrium problem can be found in
the seminal work of Blum and Oettli [2]. From the computational view point,
Combettes and Hirstoaga [5] introduced an iterative algorithm in Hilbert space
for the best approximation of the equilibrium point assuming the set of solutions
of equilibrium points is nonempty. It is worth to mention that the KKM lemma
of Ky Fan [7] not only plays a key role in the development of a classical existence
result of equilibrium problem theory but still in practice to prove the existence of
equilibrium points for various generalized versions of classical equilibrium prob-
lems.

Let C be a nonempty subset of a real Hilbert space H, let A : C → H be
a nonlinear mapping and let f : C × C → R (the set of reals) be a bifunction.
A generalized equilibrium problem, is to find x ∈ C such that

f(x, y) + 〈Ax, y − x〉 ≥ 0 for all y ∈ C. (5)
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We denote the solution set of a generalized equilibrium problem by GEP (f,A).
For solving the equilibrium problem, let us assume that the bifunction f sat-

isfies the following conditions (c.f. [2] and [5])
(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e. f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C, lim supt↓0 f(tz + (1− t)x, y) ≤ f(x, y);
(A4) f(x, ·) is convex and lower semi-continuous for all x ∈ C.

Note that, if A ≡ 0 then the problem (5) reduces to the classical equilibrium
problem EP (f). That is, to find x ∈ C such that f(x, y) ≥ 0. Moreover, if
f(x, y) ≡ 0 then the problem (5) reduces to the classical variational inequality
problem V I(C,A). That is, to find x ∈ C such that 〈Ax, y − x〉 ≥ 0.

We remark that the generalized equilibrium problem includes - as a special case
- fixed point problems, the Nash equilibrium problem in noncooperative games
and variational inequality problem. Moreover, as a direct consequence of the
variational inequality problem, the generalized equilibrium problem can also be
used to solve image recovery problems, inverse problems, transportation problems,
optimization problems, minimax problems and others; see for instance [2, 5, 12,
15, 20, 17, 18].

It is worth mentioning that the problem of finding a common element in the
set of solutions of an equilibrium problem and the set of fixed points of a nonlinear
mapping is a fascinating field of research. Therefore, numerous iterative algorithms
have been proposed and analyzed to solve such problems, see, for example, [4, 8,
10, 11, 13, 21, 22, 23] and the references cited therein. Approximation of a common
solution for a pair of equilibrium problems has relevant important applications in
various branches of applied mathematics. In fact, a common solution of the system
of equilibrium problems solves the corresponding system of problems as mentioned
above. In particular, a common solution of two or more equilibrium problems can
be used to solve various forms of feasibility problems, see, for example, [1, 6] and
the references cited therein.

In 2010, Kim et al. [14] approximated a common element of the set of common
solutions of two generalized equilibrium problems and the set of fixed points of
a strict pseudo-contraction in a Hilbert space. They proved the following result.

Theorem KCQ ([14])
Let C be a nonempty closed convex subset of a real Hilbert space H and let T : C →
C be a k-strict pseudo-contraction. Let F1, F2 : C × C → R be two bifunctions
satisfying (A1)–(A4) and let A,B : C → H be η-inverse-strongly monotone and
ζ-inverse-strongly monotone mappings, respectively. Let {rn} and {sn} be two
positive real sequences. Assume that F := F (T )∩GEP (F1, A)∩GEP (F2, B) 6= ∅,
and the sequence {xn} is generated by
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x1 ∈ C1 = C,

F1(un, u) + 〈Axn, u− un〉+ 1
rn
〈u− un, un − xn〉 ≥ 0, ∀u ∈ C,

F2(vn, v) + 〈Bxn, v − vn〉+ 1
sn
〈v − vn, vn − xn〉 ≥ 0, ∀v ∈ C,

zn = γnun + (1− γn)vn,
yn = αnxn + (1− αn)(βnzn + (1− βn)Tzn),

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x1, n ≥ 1,

(6)

where {αn}, {βn} and {γn} are sequences in (0, 1). Assume that {αn}, {βn},
{γn}, {rn} and {sn} satisfy the following restrictions:

(i) 0 ≤ αn < a < 1;
(ii) 0 ≤ k ≤ βn < b < 1;

(iii) 0 ≤ c ≤ γn < d < 1;
(iv) 0 < e ≤ rn ≤ f < 2η and 0 < e

′ ≤ sn ≤ f
′
< 2ζ.

Then the sequence {xn} generated by (6) converges strongly to x = PFx1, where
PF is the metric projection of H onto F.

In order to reduce the computational cost of the iteration (6), Kangtunyakarn
[9] proposed an efficient and simple hybrid iteration - wherein the yn component
is modified - for the following strong convergence result.

Theorem K ([9])
Let C be a nonempty closed convex subset of a real Hilbert space H and let T : C →
C be a k-strict pseudo-contraction. Let F,G : C × C → R be two bifunctions
satisfying (A1)–(A4) and let A,B : C → H be η-inverse-strongly monotone and
ζ-inverse-strongly monotone mappings, respectively. Let {rn} and {sn} be two
positive real sequences. Assume that F := F (T ) ∩ GEP (F,A) ∩ GEP (G,B) 6= ∅,
and the sequence {xn} is generated by

x1 ∈ C1 = C,

F (un, u) + 〈Axn, u− un〉+ 1
rn
〈u− un, un − xn〉 ≥ 0, ∀u ∈ C,

G(vn, v) + 〈Bxn, v − vn〉+ 1
sn
〈v − vn, vn − xn〉 ≥ 0, ∀v ∈ C,

zn = γnun + (1− γn)vn,
yn = αnzn + (1− αn)Tzn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x1, n ≥ 1,

(7)

where {αn} is a sequences in [0, 1], rn ∈ [a, b] ⊂ (0, 2η) and sn ∈ [c, d] ⊂ (0, 2ζ)
satisfy the following conditions:
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(i) limn→∞ γn = γ ∈ (0, 1);
(ii) 0 ≤ k ≤ αn < 1 for all n ≥ 1.

Then the sequence {xn} generated by (7) converges strongly to x = PFx1.

Inspired and motivated by the works of Kim et al. [14] and Kangtunyakarn [9],
we propose and analyze an iterative algorithm to find a common element in the set
of common solutions of two finite families of generalized equilibrium problems and
the set of common fixed points of a finite family of k-strict pseudo-contraction in
the setting of Hilbert spaces. We establish strong convergence results under some
mild conditions on the control sequences of parameters and consequently refine
and improve various results announced in the current literature.

2. Preliminaries

Throughout this paper, we write xn → x (resp. xn ⇀ x) to indicate strong
convergence (resp. weak convergence) of a sequence {xn}∞n=1. Let H be a Hilbert
space and let C be a nonempty closed and convex subset of H. For each x ∈ H,
there exists a unique nearest point of C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C.

Such a mapping PC : H → C is known as a metric projection or a nearest point
projection of H onto C. Moreover, PC is characterized as the nonexpansive map-
ping in a Hilbert space that satisfies 〈x − PCx, PCx − y〉 ≥ 0 for all x, y ∈ C.
Recall that a nonlinear mapping A : C → H is λ-inverse strongly monotone if it
satisfies (4). Note that, if A := I − T is a λ-inverse strongly monotone mapping,
then

(i) A is ( 1
λ )-Lipschitz continuous mapping;

(ii) if T is a nonexpansive mapping, then A is ( 1
2 )-inverse strongly monotone

mapping;
(iii) if T is a k-strict pseudo-contraction, then A is ( 1−k

2 )-inverse strongly
monotone mapping;

(iv) if η ∈ (0, 2λ], then I − ηA is a nonexpansive mapping.

The nonexpansivity of I − ηA can be inferred from the following estimate

‖(I − ηA)x− (I − ηA)y‖2 = ‖x− y − η(Ax−Ay)‖2

= ‖x− y‖2 − 2η〈x− y,Ax−Ay〉
+ η2‖Ax−Ay‖2

≤ ‖x− y‖2 + η(η − 2λ)‖Ax−Ay‖2

≤ ‖x− y‖2.

(8)

Hence, when η ≤ 2λ, then I − ηA is nonexpansive.
The following result is crucial for the best approximation of equilibrium points

and can be found in [2].
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Lemma 2.1
Let C be a closed convex subset of a real Hilbert space H and let f : C×C → R be
a bifunction satisfying (A1)–(A4). For r > 0 and x ∈ H, there exists z ∈ C such
that

f(z, y) + 1
r
〈y − z, z − x〉 ≥ 0 for all y ∈ C.

Moreover, define a mapping Vr : H → C by

Vr(x) =
{
z ∈ C : f(z, y) + 1

r
〈y − z, z − x〉 ≥ 0 for all y ∈ C

}
for all x ∈ H. Then, the following hold

(1) EP (f) is closed and convex;
(2) Vr is single-valued;
(3) Vr is firmly nonexpansive-type mapping, i.e.

‖Vrx− Vry‖2 ≤ 〈Vrx− Vry, x− y〉 for all x, y ∈ H,

(4) F (Vr) = EP (f).

The following results collect some of the characterizations of a k-strict pseudo-
contraction T and the set of fixed points F (T ) in Hilbert spaces.

Lemma 2.2 ([16, Proposition 2.1 (iii)])
Let C be a nonempty closed convex subset of a real Hilbert space H. If T : C → H
is a k-strict pseudo-contraction, then the fixed point set F (T ) is closed and convex
so that the projection PF (T ) is well defined.

Lemma 2.3 ([16, Proposition 2.1 (ii)])
Let C be a nonempty closed convex subset of a real Hilbert space H and T : C → C
a k-strict pseudo-contraction. Then (I − T ) is demiclosed, that is, if {xn} is
a sequence in C with xn ⇀ x and xn − Txn → 0, then x ∈ F (T ).

The following identity in the form of a lemma is well-known in the context of
a real Hilbert space.

Lemma 2.4
Let H be a real Hilbert space, then the following identity holds

‖αx+ (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2.

3. Strong convergence results

We first set some of the notions required in the sequel for our main result of
this section. For a nonempty subset C of a real Hilbert space H, we assume that

(i) Ti(modN) : C → C be a finite family of k-strict pseudo-contractions such
that k = max{ki : 1 ≤ i ≤ N};

(ii) fi(modN) : C × C → R be a finite family of bifunctions;
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(iii) Ai(modN) : C → H be a finite family of η-inverse-strongly monotone
mappings such that η = max{ηi : 1 ≤ i ≤ N} and

(iv) Bi(modN) : C → H be a finite family of ζ-inverse-strongly monotone
mappings such that ζ = max{ζi : 1 ≤ i ≤ N}.

We are now in a position to prove our main result of this section.

Theorem 3.1
Let C be a nonempty closed convex subset of a real Hilbert space H and let Ti : C →
C be a finite family of k-strict pseudo-contractions. Let fi, gi : C × C → R be
two finite families of bifunctions satisfying (A1)–(A4) and let Ai, Bi : C → H be
two finite families of η-inverse-strongly monotone and ζ-inverse-strongly monotone
mappings, respectively. Assume that

F :=
[ N⋂
i=1

F (Ti)
]
∩
[ N⋂
i=1

GEP (fi, Ai)
]
∩
[ N⋂
i=1

GEP (gi, Bi)
]
6= ∅

and the sequence {xn} is generated by

x1 ∈ C1 = C,

fi(un,i, u) + 〈Aixn, u− un,i〉+ 1
rn,i
〈u− un,i, un,i − xn〉 ≥ 0, ∀u ∈ C,

gi(vn,i, v) + 〈Bixn, v − vn,i〉+ 1
sn,i
〈v − vn,i, vn,i − xn〉 ≥ 0, ∀v ∈ C,

zn,i = αn,iun,i + (1− αn,i)vn,i,
yn,i = βn,izn,i + (1− βn,i)Tizn,i,

Cn+1 =
{
z ∈ Cn : sup

i≥1
‖yn,i − z‖ ≤ ‖xn − z‖

}
,

xn+1 = PCn+1x1, n ≥ 1,

(9)

where {rn,i}, {sn,i} are two positive real sequences and {αn,i}, {βn,i} are sequences
in (0, 1). Assume that {αn,i}, {βn,i}, {rn,i} and {sn,i} satisfy the following re-
strictions:

(C1) 0 ≤ k < a ≤ αn,i, βn,i ≤ b < 1;
(C2) 0 < c ≤ rn,i ≤ d < 2η and 0 < c

′ ≤ sn,i ≤ d
′
< 2ζ for all n ≥ 1 and for

all i ∈ I.

Then the sequence {xn} generated by (9) converges strongly to x = PFx1.

Proof. Let p ∈ F is a common element, therefore p = Tip, for each 1 ≤ i ≤ N ,
represents that p is a common fixed point of the finite family of strict pseudo-
contractions Ti. Moreover,

p =
N⋂
i=1

(Vrn,i(p− rn,iAip)) =
N⋂
i=1

(Vsn,i(p− sn,iBip)),
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as mentioned in Lemma 2.1, represents that p is a common solution of two finite
families of generalized equilibrium problems. Furthermore, Lemma 2.1 implies
that un,i can be written as un,i = Vrn,i

(xn − rn,iAixn) for all n ≥ 1. It follows
from the estimate (8), that I − rn,iAi is nonexpansive. Similarly, we can establish
the nonexpansivity of I − sn,iBi. This further implies that Vrn,i(I − rn,iAi) and
Vsn,i

(I − sn,iBi) are nonexpansive as well. Hence we have

‖un,i − p‖ ≤ ‖xn − p‖ and ‖vn,i − p‖ ≤ ‖xn − p‖. (10)

As a direct consequence of (10) we get

‖zn,i − p‖ ≤ ‖xn − p‖. (11)

It is now easy to show that Cn is closed and convex for every n ∈ N. It follows
from the definition that Cn+1 is closed. Next, we show by induction that Cn+1 is
convex. Since C1 = C is convex, we assume that Ck is convex for some k ≥ 2. For
any z ∈ Ck, the inequality ‖yn,i − z‖ ≤ ‖xn − z‖ is equivalent to

‖yn,i‖2 − ‖xn‖2 − 2〈z, yn,i − xn, 〉 ≥ 0.

This implies that Ck+1 is convex and hence we conclude that Cn+1 is convex
for each n ≥ 1. It remains to show that F ⊂ Cn+1 for all n ≥ 1. Obviously,
F ⊂ C1 = C. Let p ∈ F. Utilizing (10)–(11) and Lemma 2.4, we have the following
estimate

‖yn,i − p‖2 = ‖βn,i(zn,i − p) + (1− βn,i)(Tizn,i − p)‖2

= βn,i‖zn,i − p‖2 + (1− βn,i)‖Tizn,i − p‖2

− βn,i(1− βn,i)‖zn,i − Tizn,i‖2

≤ βn,i‖zn,i − p‖2

+ (1− βn,i)(‖zn,i − p‖2 + k‖zn,i − Tizn,i‖2)
− βn,i(1− βn,i)‖zn,i − Tizn,i‖2

≤ ‖zn,i − p‖2 − (1− βn,i)(βn,i − k)‖zn,i − Tizn,i‖2.

(12)

Since βn,i − k ≥ 0 (by (C1)), therefore the above estimate (12) yields

‖yn,i − p‖ ≤ ‖zn,i − p‖ ≤ ‖xn − p‖. (13)

This implies that p ∈ Cn+1 for all n ≥ 1 and hence the iteration (9) is well-defined.
We now only compute estimates which we subsequently use in the sequel.
Note that xn+1 = PCn+1x1, therefore ‖xn+1−x1‖ ≤ ‖x0−x1‖ for all x0 ∈ Cn+1.

In particular, we have ‖xn+1 − x1‖ ≤ ‖PFx1 − x1‖. This implies that {xn} is
bounded, so are {un,i}, {vn,i}, {yn,i} and {zn,i}. On the other hand, xn = PCn

x1
and xn+1 = PCn+1x1 ∈ Cn+1 ⊂ Cn, we have

0 ≤ 〈x1 − xn, xn − xn+1〉
= 〈x1 − xn, xn − x1 + x1 − xn+1〉
≤ −‖x1 − xn1‖2 + ‖xn+1 − x1‖‖xn − x1‖.
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The above estimate implies that ‖xn − x1‖ ≤ ‖xn+1 − x1‖. That is, the sequence
{‖xn − x1‖} is nondecreasing. This implies that the following limit exists

lim
n→∞

‖xn − x1‖. (14)
Observe that

‖xn+1 − xn‖2 = ‖xn+1 − x1 + x1 − xn‖2

= ‖xn+1 − x1‖2 + ‖xn − x1‖2 − 2〈xn − x1, xn+1 − x1〉
= ‖xn+1 − x1‖2 + ‖xn − x1‖2 − 2〈xn − x1, xn+1 − xn + xn − x1〉
= ‖xn+1 − x1‖2 − ‖xn − x1‖2 − 2〈xn − x1, xn+1 − xn〉
≤ ‖xn+1 − x1‖2 − ‖xn − x1‖2.

Taking lim sup on both sides of the above estimate and utilizing (14), we have
lim supn→∞ ‖xn+1 − xn‖2 = 0. That is

lim
n→∞

‖xn+1 − xn‖ = 0. (15)

Since xn+1 ∈ Cn+1, we have ‖yn,i − xn+1‖ ≤ ‖xn − xn+1‖. This implies that

lim
n→∞

‖yn,i − xn+1‖ = 0. (16)

Utilizing (15) and (16) and the following triangular inequality

‖yn,i − xn‖ ≤ ‖yn,i − xn+1‖+ ‖xn+1 − xn‖,
we get

lim
n→∞

‖yn,i − xn‖ = 0 for all i ∈ I. (17)

Since un,i = Vrn,i
(xn − rn,iAixn) and vn,i = Vsn,i

(xn − rn,iBixn). Therefore,
observe the following variant of the estimate (13)

‖yn,i − p‖2

≤ ‖zn,i − p‖2 ≤ αn,i‖un,i − p‖2 + (1− αn,i)‖vn,i − p‖2

= αn,i‖Vrn,i
(xn − rn,iAixn)− Vrn,i

(p− rn,iAip)‖2

+ (1− αn,i)‖Vsn,i(xn − sn,iBixn)− Vsn,i(p− sn,iBip)‖2

≤ αn,i‖(xn − p)− rn,i(Aixn −Aip)‖2 (18)
+ (1− αn,i)‖(xn − p)− sn,i(Bixn −Bip)‖2

= αn,i
(
‖xn − p‖2 − 2rn,i〈xn − p,Aixn −Aip〉+ r2

n,i‖Aixn −Aip‖2)
+ (1− αn,i)

(
‖xn − p‖2 − 2sn,i〈xn − p,Bix−Bip〉+ s2

n,i‖Bixn −Bip‖2)
≤ ‖xn − p‖2 − rn,i(2η − rn,i)‖Aixn −Aip‖2 − sn,i(2ζ − sn,i)‖Bixn −Bip‖2.

The following two consequences of the estimate (18) are crucial

rn,i(2η − rn,i)‖Aixn −Aip‖2

≤ ‖xn − p‖2 − ‖yn,i − p‖2

= (‖xn − p+ yn,i − p‖)(‖xn − p− yn,i + p‖)
≤ (‖xn − p‖+ ‖yn,i − p‖)‖xn − yn,i‖

(19)
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and
sn,i(2ζ − sn,i)‖Bixn −Bip‖2

≤ ‖xn − p‖2 − ‖yn,i − p‖2

= (‖xn − p+ yn,i − p‖)(‖xn − p− yn,i + p‖)
≤ (‖xn − p‖+ ‖yn,i − p‖)‖xn − yn,it‖.

(20)

Utilizing the restriction (C2) and estimate (17), it follows from (19) that

lim
n→∞

‖Aixn −Aip‖ = 0 for all i ∈ I. (21)

Reasoning as above, the estimate (20) implies that,

lim
n→∞

‖Bixn −Bip‖ = 0 for all i ∈ I. (22)

On the other hand, it follows from the firm nonexpansivity of Vrn,i that

‖un,i − p‖2 = ‖Vrn,i
(I − rn,iAi)xn − Vrn,i

(I − rn,iAi)p‖2

≤ 〈(I − rn,iAi)xn − (I − rn,iAi)p, un,i − p〉

= 1
2
(
‖(I − rn,iAi)xn − (I − rn,iAi)p‖2 + ‖un,i − p‖2

− ‖xn − un,i − rn,i(Aixn −Aip)‖2)
= 1

2
(
‖(I − rn,iAi)xn − (I − rn,iAi)p‖2 + ‖un,i − p‖2

− (‖xn − un,i‖2 + r2
n,i‖Aixn −Aip‖2

− 2rn,i〈xn − un,i, Aixn −Aip〉)
)

≤ 1
2
(
‖xn − p‖2 + ‖un,i − p‖2 − ‖xn − un,i‖2 − r2

n,i‖Aixn −Aip‖2

+ 2rn,i〈xn − un,i, Aixn −Aip〉
)
.

That is

‖un,i − p‖2 ≤ ‖xn − p‖2 − ‖xn − un,i‖2 − r2
n,i‖Aixn −Aip‖2

+ 2rn,i‖xn − un,i‖‖Aixn −Aip‖.
(23)

Similarly

‖vn,i − p‖2 ≤ ‖xn − p‖2 − ‖xn − vn,i‖2 − s2
n,i‖Bixn −Bip‖2

+ 2sn,i‖xn − vn,i‖‖Bixn −Bip‖.
(24)

Since ‖yn,i − p‖2 ≤ αn,i‖un,i − p‖2 + (1− αn,i)‖vn,i − p‖2, therefore substituting
(23) and (24), we get

‖yn,i − p‖2 ≤ αn,i
(
‖xn − p‖2 − ‖xn − un,i‖2 − r2

n,i‖Aixn −Aip‖2

+ 2rn,i‖xn − un,i‖‖Aixn −Aip‖
)

+ (1− αn,i)
(
‖xn − p‖2 − ‖xn − vn,i‖2 − s2

n,i‖Bixn −Bip‖2
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+ 2sn,i‖xn − vn,i‖‖Bixn −Bip‖
)
.

Simplifying the above estimate and utilizing (C1), we obtain the following two
estimates

a‖xn − un,i‖2 ≤ (‖xn − p‖+ ‖yn,i − p‖)‖xn − yn,i‖
+ 2rn,i‖xn − un,i‖‖Aixn −Aip‖
+ 2sn,i‖xn − vn,i‖‖Bixn −Bip‖,

(25)

and
(1− b)‖xn − vn,i‖2 ≤ (‖xn − p‖+ ‖yn,i − p‖)‖xn − yn,i‖

+ 2rn,i‖xn − un,i‖‖Aixn −Aip‖
+ 2sn,i‖xn − vn,i‖‖Bixn −Bip‖.

(26)

Letting n → ∞ in the estimates (25)–(26) respectively, and then utilizing (17),
(21) and (22) we have

lim
n→∞

‖xn − un,i‖ = 0 = lim
n→∞

‖xn − vn,i‖ for all i ∈ I. (27)

Observe that ‖zn,i− xn‖2 ≤ αn,i‖un,i− xn‖2 + (1−αn,i)‖vn,i− xn‖2. Hence (27)
implies that

lim
n→∞

‖zn,i − xn‖ = 0 for all i ∈ I. (28)

Also from (17) and (28), we get that

lim
n→∞

‖yn,i − zn,i‖ = 0 for all i ∈ I. (29)

Further ‖yn,i − zn,i‖ = (1− βn,i)‖Tizn,i − zn,i‖. It follows from (29) and the fact
that λ < a ≤ βn,i ≤ b < 1, we get

lim
n→∞

‖Tizn,i − zn,i‖ = 0 for all i ≥ 1. (30)

Next we show that ω(xn) ⊂ F, where ω(xn) is the set of all weak ω-limits of
{xn}. Since {xn} is bounded, therefore ω(xn) 6= ∅. Let q ∈ ω(xn), there exists
subsequence {xnj

} of {xn} such that xnj
⇀ q. It follows from the first estimate

of (27) that unj ,i ⇀ q. We first show that q ∈ EP (f1, A1), where f1 = fnj
for

some j ≥ 1. Note that, for a finite family of generalized equilibrium problems, the
indexing f1 = fnj results from the modulo function j ≡ 1(modN) whereas the
corresponding term of the infinite sequence {xn} would then be {xnj

}. Similarly,
we can have fnk

= f2 for some k ≥ 1. From unj ,i = Vrnj ,i
(I − rnj ,iAi)xn for all

n ≥ 1, we have

f1(unj ,i, y) + 〈A1xnj
, y−unj ,i〉+

1
rnj ,i

〈y−unj ,i, unj ,i−xnj 〉 ≥ 0 for all y ∈ C.

From (A2), we have

〈A1xnj
, y − unj ,i〉+ 1

rnj ,i
〈y − unj ,i, unj ,i − ynj ,i〉 ≥ f1(y, unj ,i), y ∈ C. (31)
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Let yt = ty + (1 − t)q for 0 < t < 1 and y ∈ C. Since q ∈ C. this implies that
yt ∈ C. It follows from the estimate (31) that

〈yt − unj ,i, A1yt〉 ≥ 〈yt − unj ,i, A1yt〉 − 〈A1xnj
, yt − unj ,i〉

−
〈
yt − unj ,i,

unj ,i − xnj

rnj ,i

〉
+ f1(yt, unj ,i)

= 〈yt − unj ,i, A1yt −A1unj ,i〉
+ 〈yt − unj ,i, A1unj ,i −A1xnj 〉

−
〈
yt − unj ,i,

unj ,i − xnj

rnj ,i

〉
+ f1(yt, unj ,i).

(32)

Since limn→∞ ‖xnj
− unj ,i‖ = 0, therefore limn→∞ ‖A1xnj

−A1unj ,i‖ = 0. More-
over, it follows from the monotonicity of A1 that 〈yt − unj ,i, A1yt −A1unj ,i〉 ≥ 0.
Finally, (A4) implies that

〈yt − q, A1yt〉 ≥ f1(yt, q). (33)

Using (33), (A1) and (A4) the following estimate

0 = f1(yt, yt) ≤ tf1(yt, y) + (1− t)f1(yt, q)
≤ tf1(yt, y) + (1− t)〈yt − q, A1yt〉
= tf1(yt, y) + (1− t)t〈y − q, A1yt〉,

implies that
f1(yt, y) + (1− t)〈y − q, A1yt〉 ≥ 0. (34)

Letting t → 0, we have f1(q, y) + 〈y − q, A1q〉 ≥ 0 for all y ∈ C. Thus, q ∈
GEP (f1, A1). In a similar fashion, we we can show that q ∈ GEP (f2, A2), where
f2 = fnl

for some l ≥ 1. Therefore, q ∈
⋂N
i=1 GEP (fi, Ai). Reasoning as above, we

can also show that q ∈
⋂N
i=1 GEP (gi, Bi). Since xnj

⇀ q, so it follows from (28)
and Lemma 2.3 that q ∈

⋂N
i=1 F (Ti). Hence q ∈ F. Let x = PFx1, since ‖xn+1 −

x1‖ ≤ ‖x0 − x1‖ for all x0 ∈ Cn+1. It follows that

‖x1 − x‖ ≤ ‖x1 − q‖ ≤ lim inf
n→∞

‖x1 − xnj
‖ ≤ lim sup

n→∞
‖x1 − xnj

‖ ≤ ‖x1 − x‖.

On the other hand,

‖x1 − q‖ = lim
j→∞

‖x1 − xnj
‖ = ‖x1 − x‖.

This implies xnj → q = PFx1. From the arbitrariness of the subsequence {xnj} of
{xn}, we conclude that xn → x as n→∞. This completes the proof.

In particular, if Ti - in iteration (9) - is a finite family of nonexpansive map-
pings, then the following result holds

Corollary 3.1
Let C be a nonempty closed convex subset of a real Hilbert space H and let
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Ti : C → C be a finite family of nonexpansive mappings. Let fi, gi : C ×C → R be
two finite families of bifunctions satisfying (A1)–(A4) and let Ai, Bi : C → H be
two finite families of η-inverse-strongly monotone and ζ-inverse-strongly monotone
mappings, respectively. Let {αn,i}, {βn,i}, {rn,i} and {sn,i} be as in Theorem 3.1
and satisfy the following restrictions

(C1) 0 ≤ k < a ≤ αn,i, βn,i ≤ b < 1;
(C2) 0 < c ≤ rn,i ≤ d < 2η and 0 < c

′ ≤ sn,i ≤ d
′
< 2ζ for all n ≥ 1 and for

all i ∈ I.

Assume that

F :=
[ N⋂
i=1

F (Ti)
]
∩
[ N⋂
i=1

GEP (fi, Ai)
]
∩
[ N⋂
i=1

GEP (gi, Bi)
]
6= ∅,

then the sequence {xn} generated by (9) converges strongly to x = PFx1.

In order to solve the variational inequality problem together with the fixed
point problem, we prove the following result.

Theorem 3.2
Let C be a nonempty closed convex subset of a real Hilbert space H and let
Ti : C → C be a finite family of k-strict pseudo-contractions. Let Ai, Bi : C → H be
two finite families of η-inverse-strongly monotone and ζ-inverse-strongly monotone
mappings, respectively. Let {αn,i}, {βn,i}, {rn,i} and {sn,i} be as in Theorem 3.1
and satisfy the following restrictions

(C1) 0 ≤ k < a ≤ αn,i, βn,i ≤ b < 1;
(C2) 0 < c ≤ rn,i ≤ d < 2η and 0 < c

′ ≤ sn,i ≤ d
′
< 2ζ for all n ≥ 1 and for

all i ∈ I.

Assume that

F :=
[ N⋂
i=1

F (Ti)
]
∩
[ N⋂
i=1

V I(C,Ai)
]
∩
[ N⋂
i=1

V I(C,Bi)
]
6= ∅,

and the sequence {xn} generated by

x1 ∈ C1 = C,

φn,i = PC(I − rn,iAi)xn,
ϕn,i = PC(I − sn,iBi)xn,
zn,i = αn,iφn,i + (1− αn,i)ϕn,i,
yn,i = βn,izn,i + (1− βn,i)Tizn,i,

Cn+1 =
{
z ∈ Cn : sup

i≥1
‖yn,i − z‖ ≤ ‖xn − z‖

}
,

xn+1 = PCn+1x1, n ≥ 1,

converges strongly to x = PFx1.
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Proof. Set fi(x, y) = gi(x, y) ≡ 0 for each i ≥ 1, then

〈Aixn, y − un,i〉+ 1
rn,i
〈y − un,i, un,i − xn〉 ≥ 0

is equivalent to
〈xn − rn,iAixn − un,i, un,i − y〉 ≥ 0.

This implies that un,i = PC(xn − rn,iAixn) = φn,i. Similarly, vn,i = PC(xn −
sn,iBixn) = ϕn,i. The desired result then follows from Theorem 3.1 immediately.

If we substitute Ai = Bi ≡ 0 - in iteration (9) - then we have the following
result for the equilibrium problem together with the fixed point problem.

Theorem 3.3
Let C be a nonempty closed convex subset of a real Hilbert space H and let Ti : C →
C be a finite family of k-strict pseudo-contractions. Let fi, gi : C × C → R be two
finite families of bifunctions satisfying (A1)–(A4). Let {αn,i}, {βn,i}, {rn,i} and
{sn,i} be as in Theorem 3.1 and satisfy the following restriction

(C1) 0 ≤ k < a ≤ αn,i, βn,i ≤ b < 1.

Assume that

F :=
[ N⋂
i=1

F (Ti)
]
∩
[ N⋂
i=1

EP (fi)
]
∩
[ N⋂
i=1

EP (gi)
]
6= ∅,

then the sequence {xn} generated by

x1 ∈ C1 = C,

fi(un,i, u) + 1
rn,i
〈u− un,i, un,i − xn〉 ≥ 0, ∀u ∈ C,

gi(vn,i, v) + 1
sn,i
〈v − vn,i, vn,i − xn〉 ≥ 0, ∀v ∈ C,

zn,i = αn,iun,i + (1− αn,i)vn,i,
yn,i = βn,izn,i + (1− βn,i)Tizn,i,

Cn+1 =
{
z ∈ Cn : sup

i≥1

∥∥∥yn,i − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x1, n ≥ 1,

converges strongly to x = PFx1.

Theorem 3.4
Let C be a nonempty closed convex subset of a real Hilbert space H and let Ti : C →
C be a finite family of k-strict pseudo-contractions. Let fi : C ×C → R be a finite
family of bifunctions satisfying (A1)–(A4) and let Ai : C → H be a finite family
of η-inverse-strongly monotone mappings. Let {αn,i}, {βn,i} and {rn,i} be as in
Theorem 3.1 and satisfy the following restrictions

(C1) 0 ≤ k < a ≤ αn,i, βn,i ≤ b < 1;
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(C2) 0 < c ≤ rn,i ≤ d < 2η for all n ≥ 1 and for all i ∈ I.

Assume that

F :=
[ N⋂
i=1

F (Ti)
]
∩
[ N⋂
i=1

GEP (fi, Ai)
]
6= ∅,

then the sequence {xn} generated by

x1 ∈ C1 = C,

fi(un,i, u) + 〈Aixn, u− un,i〉+ 1
rn,i
〈u− un,i, un,i − xn〉 ≥ 0, ∀u ∈ C,

yn,i = βn,iun,i + (1− βn,i)Tiun,i,

Cn+1 =
{
z ∈ Cn : sup

i≥1
‖yn,i − z‖ ≤ ‖xn − z‖

}
,

xn+1 = PCn+1x1, n ≥ 1,

converges strongly to x = PFx1.

Proof. The desired result is an immediate consequence of the proof of Theorem 3.1
by substituting fi = gi, Ai = Bi and un,i = vn,i for all i ∈ I.

Remark 3.1
The results presented in this section improve and extend various results announced
in the current literature, in particular established in [9] and [14]. It is of worth
interest to establish such results in general Banach spaces.
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