FOLIA 182

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XV (2016)

Kazimierz Rajchel, Jerzy Szczęsny
 New method to solve certain differential equations

Abstract

A new method to solve stationary one-dimensional Schroedinger equation is investigated. Solutions are described by means of representation of circles with multiple winding number. The results are demonstrated using the well-known analytical solutions of the Schroedinger equation.

1. Introduction

One of methods to obtain the equation of a unit circle with winding number equal to n [1] is raising the equation

$$
\begin{equation*}
Q_{0}^{2}+P_{0}^{2}=1 \tag{1}
\end{equation*}
$$

to the n-th power, where $Q_{0}, P_{0} \in \mathbb{R}$. For instance, in the case $n=2$, by appropriate grouping of terms we get

$$
\begin{equation*}
\bar{Q}_{1}^{2}+\bar{P}_{1}^{2}=1 \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& \bar{Q}_{1}^{2}=\left(2 Q_{0}^{2}-1\right)^{2} \tag{3}\\
& \bar{P}_{1}^{2}=4 Q_{0}^{2}\left(1-Q_{0}^{2}\right) . \tag{4}
\end{align*}
$$

The results are illustrated in Figure 1.
Generally, a circle with winding number equal to n is represented by the sum of polynomials of $2(n+1)$ degree and proper number of zeros. Moreover, it can be seen that in this representation the domain of Q_{0} does not change regardless of the winding number.

AMS (2010) Subject Classification: 35A24, 81Q99.
Keywords and phrases: differential equation, Schroedinger equation, unit circle.

Figure 1: Graphs of the second order polynomials which form the equations of the circles with $n=1$ (a) and $n=2$ (b) respectively. Q_{0} is on the horizontal axis.

2. Unit circle transformation

In the present paper, we use the transformations (3), (4) and others to construct solutions to the nonlinear Schroedinger equations. We are looking for a transformation $Q_{0} \mapsto Q_{1}\left(Q_{0}\right)\left(P_{0} \mapsto P_{1}\left(Q_{0}\right)\right)$, where the functions $Q_{1}\left(Q_{0}\right)$, $P_{1}\left(Q_{0}\right)$ have two zeros and three zeros respectively, satisfy the equation

$$
Q_{1}^{2}+P_{1}^{2}=1
$$

This equation, by analogy to (2), represents a unit circle with winding number $n=2$ if we choose Q_{1}^{2}, P_{1}^{2} in the form

$$
\begin{aligned}
& Q_{1}^{2}=\frac{\left(a_{11} Q_{0}-b_{11}\right)^{2}\left(a_{12} Q_{0}-b_{12}\right)^{2}}{A_{11} Q_{0}^{2}+B_{11} Q_{0}+C_{11}} \\
& P_{1}^{2}=\frac{\left(\alpha_{11} Q_{0}-\beta_{11}\right)^{2}\left(\alpha_{1}+\beta_{1} Q_{0}+\gamma_{1} Q_{0}^{2}\right)}{A_{11} Q_{0}^{2}+B_{11} Q_{0}+C_{11}}
\end{aligned}
$$

where $A_{11}>0, B_{11}^{2}-4 A_{11} C_{11}<0$ and $\beta_{1}^{2}-4 \alpha_{1} \gamma_{1}>0$. For example, functions which represent the well-known analytical solutions of the quantum oscillator [2, 3],

$$
\begin{gather*}
Q_{1}^{2}=\frac{\left(Q_{0}^{2}-1\right)^{2}}{1+Q_{0}^{2}} \tag{5}\\
P_{1}^{2}=\frac{Q_{0}^{2}\left(3-Q_{0}^{2}\right)}{1+Q_{0}^{2}} \tag{6}
\end{gather*}
$$

are illustrated in Figure 2.

Figure 2: Graphs of the rational functions (see equations (5) and (6)) which form the equation of circle with $n=2 . Q_{0}$ is on the horizontal axis.

On the basis of the procedure described above we are able to get functions $Q_{n}\left(Q_{0}\right), P_{n}\left(Q_{0}\right)$ which satisfy a unit circle equation

$$
Q_{n}^{2}+P_{n}^{2}=1
$$

where winding number is equal to $n+1$. Thus,

$$
\begin{aligned}
Q_{n}^{2} & =\frac{\left(a_{n 1} Q_{0}-b_{n 1}\right)^{2}\left(a_{n 2} Q_{0}-b_{n 2}\right)^{2} \ldots\left(a_{n n+1} Q_{0}-b_{n n+1}\right)^{2}}{A_{n 1} Q_{0}^{2 n}+A_{n 2} Q_{0}^{2 n-1}+\ldots+A_{n 2 n} Q_{0}+A_{n 2 n+1}} \\
P_{1}^{2} & =\frac{\left(\alpha_{n 1} Q_{0}-\beta_{n 1}\right)^{2} \ldots\left(\alpha_{n n} Q_{0}-\beta_{n n}\right)^{2}\left(\alpha_{n}+\beta_{n} Q_{0}+\gamma_{n} Q_{0}^{2}\right)}{A_{n 1} Q_{0}^{2 n}+A_{n 2} Q_{0}^{2 n-1}+\ldots+A_{n 2 n} Q_{0}+A_{n 2 n+1}}
\end{aligned}
$$

where $A_{n 1} Q_{0}^{2 n}+A_{n 2} Q_{0}^{2 n-1}+\ldots+A_{n 2 n} Q_{0}+A_{n 2 n+1}>0$ for $Q_{0} \in \mathbb{R}$ and $\beta_{n}^{2}-$ $4 \alpha_{n} \gamma_{n}>0$.

3. Schroedinger equation

In the present paper, we consider the Schroedinger equation in one dimension

$$
\frac{d^{2}}{d x^{2}} \psi_{n}(x)+\left(E_{n}-V(x)\right) \psi_{n}(x)=0
$$

Then the function

$$
W_{n}(x)=-\frac{\psi_{n}^{\prime}(x)}{\psi_{n}(x)}
$$

where prime denotes differentiation with respect to x, satisfies the corresponding Riccati equation (4, 5, 6]

$$
W_{n}^{\prime}(x)-W_{n}^{2}(x)=E_{n}-V(x)
$$

Assuming that the function $W_{0}(x)$ has a zero inside an interval I and

$$
W_{0}^{\prime}(x)>0 \quad \text { for all } x \in I \subset \mathbb{R}
$$

what is associated with normalization of the basic function ψ_{0}, we get the equation of the unit circle (1), where

$$
Q_{0}^{2}=\frac{W_{0}^{2}(x)}{W_{0}^{\prime}(x)}, \quad P_{0}^{2}=\frac{E_{0}-V(x)}{W_{0}^{\prime}(x)}
$$

and $E_{0}-V(x) \geq 0$.
Now we can express the function W_{1}^{2} in terms of W_{0}. From $\frac{Q_{1}^{2}}{P_{1}^{2}}$ we get

$$
W_{1}^{2}=\frac{\left(a_{11} Q_{0}-b_{11}\right)^{2}\left(a_{12} Q_{0}-b_{12}\right)^{2}}{\left(\alpha_{11} Q_{0}-\beta_{11}\right)^{2}} \frac{E_{1}-E_{0}+W_{0}^{\prime}(x)-W_{0}^{2}(x)}{\alpha_{1}+\beta_{1} Q_{0}+\gamma_{1} Q_{0}^{2}}
$$

Taking into account the properties of the function W_{1} we obtain

$$
W_{0}^{\prime}=A+B W_{0}+C W_{0}^{2}
$$

which should not be treated as a differential equation. Hence, we get

$$
W_{0}^{\prime}=\frac{L_{n+2}\left(W_{0}\right)}{R_{n}\left(W_{0}\right)}
$$

where L_{n+2} is a polynomial in W_{0} of degree $n+2$ and R_{n} is a polynomial of degree n. Finally,

$$
W_{1}^{2}=\frac{\left(a_{11} Q_{0}-b_{11}\right)^{2}\left(a_{12} Q_{0}-b_{12}\right)^{2}}{\left(\alpha_{11} Q_{0}-\beta_{11}\right)^{2}} W_{0}^{\prime}(x)
$$

and in general

$$
W_{n}^{2}=\frac{\left(a_{n 1} Q_{0}-b_{n 1}\right)^{2}\left(a_{n 2} Q_{0}-b_{n 2}\right)^{2} \ldots\left(a_{n n+1} Q_{0}-b_{n n+1}\right)^{2}}{\left(\alpha_{n 1} Q_{0}-\beta_{n 1}\right)^{2} \ldots\left(\alpha_{n n} Q_{0}-\beta_{n n}\right)^{2}} W_{0}^{\prime}(x)
$$

what allows to find solutions of the Schroedinger equation using only W_{0}.

4. Conclusions

In this paper, we have proposed the new method of solving one-dimensional stationary Schroedinger equation. This method is closely related to the properties of the unit circle equation which not only allow to find general solutions of the Schroedinger equation but may also help in further investigations concerning the relationship between quantum integral conditions, which are known in quantum mechanics as the Bohr-Sommerfeld condition, and the area of a circle. Moreover, this method can be also applied to differential equations of the relativistic quantum mechanics [7].

References

[1] Dubrovin, Boris A., and Anatolii T. Fomenko, and Sergei P. Novikov. Modern geometry-methods and applications. Part II. The geometry and topology of manifolds. New York: Springer-Verlag, 1985. Cited on 107
[2] Shankar, Ramamurti. Principles of quantum mechanics. 2nd ed. New York: Plenum Press, 1994. Cited on 108.
[3] Junker, Georg. Supersymmetric methods in quantum and statistical physics. Berlin: Springer-Verlag, 1996. Cited on 108
[4] Walter, Wolfgang. Ordinary differential equations. New York: Springer-Verlag, 1998. Cited on 109
[5] Cooper, Fred, and Avinash Khare, and Uday Sukhatme. "Supersymmetry in Quantum Mechanics." Phys. Rep. 251, no. 5-6 (1995): 267-385. Cited on 109
[6] Reid, William T. "Ricatti Differential Equations." New York, London: Academic Press, 1972. Cited on 109
[7] Rajchel, Kazimierz. "New solvable potentials with bound state spectrum." Acta Physica Polonica B. (submitted). Cited on 110

Institute of Informatics
Pedagogical University of Cracow
ul. Podchorażych 2
PL 30-084 Kraków
Poland
E-mail: krajchel@up.krakow.pl szczesny@up.krakow.pl

Received: October 20, 2016; final version: November 12, 2016; available online: November 21, 2016.

