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Abstract. In the paper we give a mathematical overview of the CreditRisk+
model as a tool used for calculating credit risk in a portfolio of debts and
suggest some other applications of the same method of analysis.

In this paper we will give a condensed mathematical overview of the Credit-
Risk+ model and attempt to generalize it to be applicable in more situations that
it was originally created for.

CreditRisk+ model was formed in 1997 by Credit Suisse First Boston bank.
It is a tool used to calculate the level of credit risk for a portfolio of debts. The
main purpose of the model is to determine the probability distribution for the
amount of debt that will not be repaid in a given set of debts in a unit of time,
usually one year. Once the probability distribution is estimated it becomes possible
to calculate the expected loss, the level of value at risk, the amount of capital
necessary to cover an unexpected loss. This information later allows a credit
institution to compute the proper interest rate of a granted loan ensuring the
maximum profit for the company.

The reasoning presented in this paper that concerns the mathematical struc-
ture of the model is based on [3]. The input data necessary to apply the Credit-
Risk+ model is the following:

i. The number of debts in the portfolio.

ii. The value of each debt (this is the amount that a debtor fails to repay in the
event of default).

iii. The probability of default for each debtor.

The model is used as an approximation tool, so it will make sense to employ it in
case of a large number of debts in the portfolio and relatively small probabilities
of default.
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The analysis in the model is conducted in two steps. In the first one we
calculate the probability distribution for the number of debtors failing to repay
their liabilities. Since the values of debts are not constant among the debtors we
will not be able yet to transmit the number of defaults into the aggregated amount
of not paid off debt for the whole portfolio. This is done in the second step of the
analysis through a number of approximations and calculations.

The paper is organized as follows. In the first part we present, basing on [3],
the line of reasoning in the model that leads us to an applicable formula. Next we
give a possible financial example where CreditRisk+ is used. Finally we suggest
other areas of life where the model might be of use.

1. The number of defaulted debtors

In this section we will use standard definitions and properties from the proba-
bility theory. For further information we refer the reader to [1].

Let N be a positive integer. We will consider a family of independent random
variables X = {Xi; i = 1, . . . , N} such that P (Xi = 1) = pi and P (Xi = 0) =
1− pi for some pi ∈ (0, 1). In CreditRisk+ model the event of Xi = 1 signifies the
bankruptcy of debtor i. Let T =

∑N
i=1 Xi be the total number of defaulted debtors

in the portfolio. In the first part of the analysis we will calculate an approximation
of the probability distribution for T .

Let us denote by F and Fi the probability generating functions of T and Xi,
respectively (i = 1, . . . , N). Notice that

Fi(z) = 1− pi + piz.

Moreover, due to the independence,

F (z) =
N∏
i=1

Fi(z).

Theorem 1.1
For any z ∈ [0, 1] we have∣∣∣∣F (z)− exp

( N∑
i=1

pi(z − 1)
)∣∣∣∣ 6 N∑

i=1

p2
i

2(1− pi)2 .

Proof. Since

F (z) =
N∏
i=1

Fi(z) =
N∏
i=1

(1− pi + piz),

we get

log(F (z)) =
N∑
i=1

log(1 + pi(z − 1)), (1)

where log is the natural logarithm.
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Let us fix some i ∈ {1, . . . , N} and expand the function gi : [0, 1]→ R, gi(z) =
log(1 + pi(z − 1)) into the first order Taylor polynomial centered at a = 1

gi(z) = gi(1) + g′i(1)(z− 1) + g′′i (ξ)
2 (z− 1)2 = pi(z− 1)− p2

i

2(1 + pi(ξ − 1))2 (z− 1)2

for a certain ξ ∈ [z, 1]. Owing to the nature of the domain of gi we can estimate
the remainder term ∣∣∣ −p2

i

2(1 + pi(ξ − 1))2 (z − 1)2
∣∣∣ 6 p2

i

2(1− pi)2 .

We have therefore shown that gi(z) can be approximated with pi(z − 1) and the
error is not greater than p2

i

2(1−pi)2 .
Getting back to formula (1) we may now estimate∣∣∣∣ log(F (z))−

N∑
i=1

pi(z−1)
∣∣∣∣ =

∣∣∣∣ N∑
i=1

log(1+pi(z−1))−
N∑
i=1

pi(z−1)
∣∣∣∣ 6 N∑

i=1

p2
i

2(1− pi)2 .

The above means that log(F (z)) can be approximated with
∑N
i=1 pi(z−1) and the

error is not greater than
∑N
i=1

p2
i

2(1−pi)2 . Since log(F (z)) 6 0,
∑N
i=1 pi(z − 1) 6 0,

and et 6 1 for all t ∈ (−∞, 0], the Lagrange mean value theorem yields∣∣∣∣F (z)− exp
( N∑
i=1

pi(z − 1)
)∣∣∣∣ =

∣∣∣∣elog(F (z)) − exp
( N∑
i=1

pi(z − 1)
)∣∣∣∣ 6

6

∣∣∣∣ log(F (z))−
N∑
i=1

pi(z − 1)
∣∣∣∣

6
N∑
i=1

p2
i

2(1− pi)2 .

The proof is complete.

Let µ =
∑N
i=1 pi. Theorem 1.1 implies that

F (z) ≈ eµ(z−1) = e−µeµz =
∞∑
n=0

e−µµn

n! zn

whenever the probabilities pi are small. This means that the number of defaulted
debtors might be approximated with the Poisson distribution with the above pa-
rameter µ. For more detailed information about using the Poisson distribution as
an approximation to the binomial distribution with unequal probabilities we refer
to [2].

Theorem 1.1 is an essential improvement of the analysis presented in [3]. It
allows us to estimate the discrepancy between the actual probability distribution
and its approximation.
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2. Setup for the main theorem

2.1. Partition of an interval containing all possible individual losses

Let us now consider a family of independent random variables Y = {Yi; i =
1, . . . , N} such that P (Yi = yi) = pi and P (Yi = 0) = 1 − pi for some yi ∈ R+
(we denote by R+ the set of positive real numbers). In the CreditRisk+ model, Yi
represents the loss from the ith debt. The debtor’s probability of default is still
equal to pi and the event of default causes the loss of yi monetary units. Our aim
is to determine the probability distribution of R =

∑N
i=1 Yi, i.e. the aggregated

loss for the whole portfolio of credits.
Let M be an arbitrarily chosen positive number such that yi ∈ [0,M ] for

i = 1, . . . , N . We also choose the following:
(i) L ∈ R+, m ∈ N \ {0},

(ii) ξ0, . . . , ξm ∈ R, ν1, . . . , νm ∈ N \ {0} such that

(a) 0 = ξ0 < . . . < ξm = M ,
(b) ξj−1 < νjL 6 ξj , j = 1, . . . ,m.

In other words we have picked a real number L and a partition of [0,M ] that
allows us to approximate all values within any interval (ξj−1, ξj ] with a multiple
of L.

In the sequel we will assume that if yi ∈ (ξj−1, ξj ], then yi can be approximated
with νjL. Let us therefore introduce a family of independent random variables

Y = {Yi; i = 1, . . . , N}

such that P (Yi = νj) = pi and P (Yi = 0) = 1− pi whenever yi ∈ (ξj−1, ξj ].

2.2. Calculation within (ξj−1, ξj]

We take into consideration the interval (ξj−1, ξj ] for some j ∈ {1, . . . ,m} and
define

Yj = {Yi; yi ∈ (ξj−1, ξj ]}.
We have therefore identified those debts within the portfolio for which the amount
of potential loss falls into (ξj−1, ξj ].

We can now perform the same analysis as in Section 1 and obtain the Poisson
distribution as an approximation of the number of defaults, say Zj , within the
chosen subset of credits. The parameter is equal to

µj =
∑
Yi∈Yj

pi.

Since we assume a constant amount of loss for each debt within the subset, we can
easily translate the number of defaults into the aggregated loss suffered from this
subset. Namely, if we denote the aggregated loss by Rj , we have Rj = νjLZj .

Next we apply the same reasoning to every other interval (ξj−1, ξj ]. Thanks
to the above simplification we reduce the number of random variables that sum
up to the total loss from N to m.
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3. Probability distribution of the total loss

Now, our goal is to find the probability distribution for the random variable
R =

∑N
i=1 Yi. It will be approximated with the probability distribution of

R :=
N∑
i=1

LYi =
m∑
j=1

Rj .

Since we have assumed that random variables Y1, . . . , YN are independent, we can
conclude that so are R1, . . . , Rm.

Let us consider the probability generating function G of the random variable
1
LR. Recall that G(z) =

∑∞
n=0 qnz

n with qn = P (R = nL). In other words qn is
the probability of the event that the aggregated loss from the entire portfolio is
equal to n units L.

We are in a position to state and prove the main result of the paper.

Theorem 3.1
Under the above assumptions and notations the following recursion formula holds
true 

q0 = e−µ,

qn =
∑
νj6n

µjνj
n

qn−νj for n > 1, (2)

where µ =
∑m
j=1 µj.

Proof. As we concluded in Section 2.2, we have Rj = νjLZj and Zj ∼
Pois(µj), where j = 1, . . . ,m. The probability generating function Gj of the
random variable 1

LRj has the following form

Gj(z) =
∞∑
n=0

znνjP (Zj = n) =
∞∑
n=0

e−µjµnj
n! znνj = e−µj

∞∑
n=0

(µjzνj )n

n! = e−µj+µjzνj .

The independence of R1, . . . , Rm yields

G(z) =
m∏
j=1

Gj(z) =
m∏
j=1

e−µj+µjzνj = exp
(
− µ+

m∑
j=1

µjz
νj

)
.

Defining

f(z) = 1
µ

m∑
j=1

µjz
νj

leads us to the following simplification

G(z) = exp
(
− µ+ µ

1
µ

m∑
j=1

µjz
νj

)
= eµ(f(z)−1).

Consequently,
q0 = G(0) = eµ(f(0)−1) = e−µ.
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Now, pick any n > 1. It is obvious that

qn = 1
n!
dnG(z)
dzn

∣∣∣∣
z=0

.

Let us calculate the nth derivative

dnG(z)
dzn

= dn−1

dzn−1
dG(z)
dz

= dn−1

dzn−1
d
(
e−µ+µf(z))
dz

= dn−1

dzn−1

(
µe−µ+µf(z) df(z)

dz

)
= dn−1

dzn−1

(
µG(z) 1

µ

d

dz

m∑
j=1

µjz
νj

)

= dn−1

dzn−1

(
G(z) d

dz

m∑
j=1

µjz
νj

)
.

Therefore, using the Leibniz rule, we obtain

qn = 1
n!
dnG(z)
dzn

∣∣∣∣
z=0

= 1
n!

n−1∑
k=0

(
n− 1
k

)
dn−k−1G(z)
dzn−k−1

dk+1

dzk+1

m∑
j=1

µjz
νj

∣∣∣∣∣∣
z=0

.

Observe that

dk+1

dzk+1

m∑
j=1

µjz
νj

∣∣∣∣∣∣
z=0

=
{

(k + 1)!µj , if k + 1 = νj for some j,
0, otherwise.

We also know that

dn−k−1G(z)
dzn−k−1

∣∣∣∣
z=0

= (n− k − 1)!qn−k−1

for every non-negative integer k 6 n− 1. Finally,

qn = 1
n!
∑(

n− 1
k

)
(n− k − 1)!qn−k−1(k + 1)!µj

=
∑ 1

n!
(n− 1)!

k!(n− k − 1)! (n− k − 1)!(k + 1)!qn−k−1µj ,

where the sum ranges over all non-negative k 6 n − 1 such that k + 1 = νj for
some j ∈ {1, . . . ,m}. Hence

qn =
∑
νj6n

µjνj
n

qn−νj .

The above proof is a more detailed version of the proof presented in [3]. Let us
point out that (2) is an approximate formula. It may be used when the probabilities
pi are small.
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4. An example of application of CreditRisk+

Let us present a possible real-life situation of using CreditRisk+. Suppose we
have a particular sample portfolio of 1000 debts. Due to the significant amount
of data let us just describe the main characteristics. Each debt’s amount ranges
between 0 and 110 000 monetary units and each individual probability of default
lies between 0 and 0, 25. In the first stage of the analysis we approximate the
probability distribution of the number of defaulted debtors with the Poisson dis-
tribution whose parameter µ is equal to the sum of individual probabilities. In
our set of data we have calculated that µ = 111, 4. The graph of the probability
distribution is presented in Fig. 1.

0,00

0,01

0,02

0,03

0,04

72 77 82 87 92 97 102 107 112 117 122 127 132 137 142 147 152

Figure 1: Probability distribution for the number of defaults

Next we will introduce a partition of all possible losses according to Section 2.
In the first step we split the whole portfolio into subsets of debts falling into
the same interval of exposure. For the sake of simplicity let the length of every
interval be equal to 5000. Thus the intervals would be (0, 5000], (5000, 10000] and
so on. Within each interval we calculate the sum of the probabilities of default. In
the subsequent step we fix the exposure for all debtors in the same interval. For
instance we can use the middle value, obtaining 2500, 7500 and so on. We also
choose a monetary unit L that we will use in further analysis. A suitable value
would be L = 2500 ensuring that all the exposures could be expressed as integer
multiples of L.

Finally we apply formula (2) to obtain the approximate probability distri-
bution of the sum of losses generated by all the debtors who cannot repay their
liabilities. The distribution is presented in Fig. 2. For the purpose of transparency
the values have been grouped as one can see on the horizontal axis.
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Figure 2: Probability distribution for the aggregated loss

When the approximate probability distribution for the aggregated loss is cal-
culated we can extract all the data necessary from the financial point of view.
Some of them could be the expected loss, standard deviation and the percentile
of a specified level (e.g., 95%) indicating the so-called Value at Risk. One can
observe the results of our calculations in Tab. 1.

E(R) 4 702 325 (1880, 93L)
D(R) 484 575 (193, 83L)

V aR 95% 5 515 000 (2206L)

Table 1: Parameters

5. Other applications of CreditRisk+ model

Now we will describe other possible applications of the model. Our task will
consist in defining the input data in terms of random variables Yi. Next it would
be possible to apply formula (2) to approximate the probability distribution of
their aggregate.

5.1. Insurance

As the first example let us consider an insurance company. Suppose the com-
pany offers vehicle insurance policies and attempts to estimate the aggregated
amount of compensation paid to its customers within a period of one year. This
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way the company can calculate the expected level of indemnities paid or the
amount of capital to be held as a reserve to cover an unexpected value of compen-
sation. It is also possible to compute the price of a policy and the expected profit
from this part of business activity.

Let us assume that the company has a portfolio of N policies. Each of them is
sold to a separate driver who owns a car of a certain model. Judging by the driving
history, age, health condition and possibly other criteria the company assigns to
each driver the probability of causing a car accident within a one-year period. Let
us denote this probability as pi (i = 1, . . . , N). Next the company can calculate
the historical average cost of damage that a car of a certain model suffers in an
accident. This way we obtain the values yi, thus completing the form of random
variables Yi.

5.2. Sales revenue

Let us suppose there is a company that hires sales representatives to sell pro-
ducts. Each one of the representatives has his own sales effectiveness, which is
a fraction of successful offer presentations. The company has a base of potential
clients to whom the representatives will offer one of the company’s products. Let
us denote by N the number of offers the company is hoping to present within a spe-
cified period of time. The company assigns representatives to potential clients and
selects the product each client is most likely to buy. Each successful sale brings the
company an expected revenue depending on the product. Let Yi (i = 1, . . . , N) be
the random variable of the sales revenue from one product offer. For each offer we
know which representative is trying to make a sale, thus we know the probability
pi of success and we also know the potential revenue yi being the result of a
successful sale. This way we have described the sales process in mathematical
terms of random variables Yi. Now we are able to approximate the probability
distribution of the aggregated sales revenue.

5.3. Courier company

Suppose we have a company that delivers packages. They are indexed with
i ∈ {1, . . . , N}. Each of them has its own value yi to be paid by the company
to a client in the event of delivering the defected package. The probability of
being defected is the same for every package (and equal to, say, p). In this case
although the probability is constant the values yi are not, so we cannot use any
well known distribution. However, we still can apply formula (2) to approximate
the probability distribution of aggregated amount of compensation paid to the
customers within a specified period of time, for instance a year.

5.4. The cost of flu

During the year there are some periods of high incidence of flu or a cold. Many
of us have our own methods of fighting the illness, so in many cases it is possible
to estimate the expenses caused by sickness. For a person under investigation we
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could denote the expenses as yi (i = 1, . . . , N). Next either could we assume a con-
stant probability p of catching a flu, or attempt to appraise personal probabilities
pi. Such information could be obtained in a survey of some sort. Finally we could
try to approximate the probability distribution for the aggregated cost of flu in
the examined population.

5.5. Harvest

Following the lead from the previous example we could consider an agricul-
tural territory. Each farmer has his own field where he cultivates some kind of
crop. Suppose the crops are susceptible to a specific type of disease. Each field,
depending on the crop farmed, soil condition, fertilization etc., is characterized by
its own probability pi of the disease occurrence. If the disease develops the harvest
is on average diminished by a certain amount yi (expressed either in natural or
financial units). The amount depends on the area of the field or the type of crop.
Given these data we can apply formula (2) to obtain the approximate probability
distribution for the aggregated loss caused by the disease in the whole territory.
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