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First-order systems of linear partial differential
equations: normal forms, canonical systems,
transform methods

Abstract. In this paper we consider first-order systems with constant co-
efficients for two real-valued functions of two real variables. This is both
a problem in itself, as well as an alternative view of the classical linear partial
differential equations of second order with constant coefficients. The classi-
fication of the systems is done using elementary methods of linear algebra.
Each type presents its special canonical form in the associated characteristic
coordinate system. Then you can formulate initial value problems in appro-
priate basic areas, and you can try to achieve a solution of these problems
by means of transform methods.

1. Introduction

We consider first-order linear systems of partial differential equations

Awg + Bwy = Qu + ¢(&, n). (1)

Given A, B, @ as real, constant (2,2)-matrices, A, B both not singular, and
functions

(¢1(§an)7¢2(£777))T = ¢(§a77)7 ¢Z € C(RJr X RJr)a L= ]-723

we are looking for functions

(w1(£777>7w2(5777))T = ’lU(f,T]), w; € Cl<R+ X R+)7 1= 172

satisfying the differential equation . From we derive the corresponding
normal form, which is essentially determined by the eigenvalues of AB~!. From
the respective normal form we derive the canonical systems with respect to by
means of the eigenvalues and the eigenvectors. In the hyperbolic and elliptic case
these canonical systems have long been known, regardless of their relationship to
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and there are theorems concerning the existence of a solution, see e.g. [1], [11],
[2], [13], [16], [23], 28], [29].

We will write down the steps in the way that one can track the impact to
the canonical system of each individual coefficient from A, B, ). Here, there
arise aspects, especially in the case of parabolic and elliptic systems, which lead
to a more consistent view of the characteristics (this also affects the consideration
of the classical heat equation).

Once the canonical systems are present we can formulate initial value prob-
lems. These tasks are handled with transform methods (Laplace transform, Fourier
transform). In the hyperbolic case you can specify the solution of the initial value
problem in a axially parallel rectangle completely.

2. Normal forms and canonical systems

2.1. Normal forms

Lets start with and assume w.l.o.g. that B is not singular and that the
first columns of A and B are linearly independent. We multiply both sides of
equation on the left by a matrix T', which we will determine straightaway

T Awg + TBw, = TQuw + T¢(&, ). (2)

Let A1, Mg, where A1 # Ay, denote the eigenvalues of AB~! and let D be a diagonal
matrix D = diag(A1, A2). We impose on T the requirement

TA=DTB andthus TAB 'T~!=D, (3)

so T is chosen as the matrix (line by line) of the left-hand eigenvectors of AB~!
and T'A is eliminated in .

Denote det(B) = |B|, 20 = (b11a22 + b22a11 — a12b21 — a21b12). Then as
a solution of |A — AB| = A\?|B| — 2b\ + |A| = 0 we have

1
M2 = o {b /b2 — A Bl}.
|B|
We now provide the left-hand eigenvectors t?, i = 1,2, as a function of the elements
of the matrices. Using the first formula in , we get

t11a11 + t12a21 t11012 + t12022
tora11 + tooa21 t21G12 + to2a22

_ |AM O [t11bin + tagbar t11big 4 t12bao
0 Az |t21bi1 + taobor t21b12 + ta2boo

(4)

If we equate the corresponding elements of the first line in the matrix equation
we obtain a homogeneous linear system for [t11,#12]. Solving it we obtain

th = [t11, t12] = [a21 — Aibar, —ag1 + Aibyi]
and accordingly

t? = [t21,t22] = [ag1 — A2ba1, —a11 + A2b11].
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Thus overall
7 — |21~ Atb21  —ai1 + Aibiy
a1 — Agbar  —air + Aebir|
Therefore with TB = B* = [bj;], TQ = Q" = [¢j;] and T¢ = ¢, i,j = 1,2 we
have

_. bl €2+ M|B|

B* — a21b11 — a11b21 az1b12 — a11ba + )\1|B| _ (5)
07 cla + AeBl)C

a21b11 — a11b21 az1b12 — a11ba2 + )\2|B|

O = (@21 — Ab21)qu1 + (—a11 + Ab11)ga1 (@21 — Aib21)qiz + (—a11 + A1bi1)gee
(@21 — A2bo1)qu1 + (—a11 + A2b11)ga1 (@21 — Aabai)qiz + (—a11 + A2bi1)go2

and so we obtain as the normal form of in the case A\; # A9 the following
formula

DB*we + B*w, = Q*w + ¢*,
or in component wise notation the formula

bii(Mwi e +wip) +big(Mwae +w2y) = g w1 + ¢lawe + @7,

NFHE
b1y (haws ¢ +wng) + Ba(Aswag +wny) = ghws + glown 463, O D)

Note the directional derivatives of w; and we which are now present in (NFHE]).
This normal form is valid for

A1 # g, A €R,i=1,2, (hyperbolic case)

M =p+iv, Ay =p—iv, wv R, v#£0. (elliptic case)
The special case A} = A2 = A indicates that there is only one direction of differen-
tiation in the (£, n)-plane. It leads to a system of ordinary differential equations
and this system should not be automatically associated to the parabolic case, but

see, among others, [30], [13].
For the elliptic case we provide ¢* element wise

(@21 — pbo1)d1 + (—ai1 + pbi1)p2 + iv[bi1 2 — bayd1]

To&m) = 9" (&m) = (@21 — pbo1)d1 + (—a11 + pbi1)de — iv[biige — bar ]|

There remains the case that A\ = Ay = Aand AB~!in is not diagonalizable.
We will then set up the matrix T' = T}, in so that T}, enforces the Jordan normal
form

i A0
T,AB~'T, " = J, J= L A} : (6)
Instead we have now

tiiain +ti2a21 triaiz +tizags| A 0] [t11b11 + ti2ba1 ti11b12 + t12boo
tor1a11 + togaor tora12 + ta2ao2 1 A [ta1bi1 + t22bar to1bio + tooboa |’

and calculate once again the eigenvector

t' = [t11,t12] = [a21 — Abar, —aq1 + Abyy].
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If we equate the corresponding elements of the second line in the matrix equa-
tion @ we obtain a homogeneous linear system for [to7, tas],

(@11 — Abi1)tar + (ag1 — Abgr)tae = t11b11 + ti2ban,
(@12 — Ab12)ta1 + (@22 — Abaz)tas = t11b12 + t12b2o,

that is a linear inhomogeneous system with a rank-deficient coefficient matrix for
determining the left-hand generalized eigenvector t2 (see [31]),

(t21,t22)(A — AB) = (t11,t12)B.

If we assume w.l.o.g. that bj; — Aa11 # 0, we can specify the solution in the form

T
[t21]T 22—y [ a1 — Abay }

tao —ai1 + Abiy
1 T
_ — Aba21)b — Ab11)b
T v [(a21 21)b11 + (—a11 + Ab11)bai] . ceR
0
‘We choose ¢ = 1. Thus we have
a1 — Abay —ai1 + Abi1

[@11 — Ab11 + b11] —bar —a11 + Ab1s

Let us denote (now * instead of * in ) T,B = B* = [b;], T,Q = Q" = [g}}],
Tpd = ¢*, 4,5 = 1,2, and we use in the same time also the elements b from ||
(with A\; = Ay = A), so we obtain

e [bﬁ bfz}

b3y b3y
b’{lAb bis “
= a21 — AD21 a21 — AD21
b, + b2, —— = —by1b b1y + bi1bio———— — b1ab
11 11a11 SV 11021 12 11 12a11 ~Ab1y 12021

e e ]
bi1 + Ba1 biy + Bas
So we have in the case A\; = Ao as a normal form of the formula
JB*w¢ + B*w, = Q" w + ¢*,
or component wise the formula

bi1(Awre +wiy) + b (Awe e +w2y) = ¢iwr + gihws + 7,

biy (w1 e +wiy) + (b1 + Bai)[Awy ¢ + w1 4] (NFP)
+(biy + Baz)[Awa e + wa ] + biawi ; = g3 w1 + goaws + @5

Thus, the normal form in the parabolic case is therefore characterized by
1. /\1:/\22/\€R,

2. X has an eigenvector and moreover a generalized eigenvector.
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2.2. Canonical systems
2.2.1. The hyperbolic case

Our starting point in the hyperbolic case is (NFHE|) and we consider in the
(&,m)-coordinate-system two families of lines in the plane, these are the character-
istics of the hyperbolic case

%2)\17 E—%=M(n—m), E—AMn=E& — A =: x,

(7)
d
%:/\2, §— & = Xa(n—no), §—Aan = &0 — Aamo =1 .

We introduce the family parameters x and y as new coordinates (x, y), also referred
to as the characteristic or the canonical coordinates

e ey Y 4 RS

In the (z,y)-system the characteristics appear as families of lines parallel to the
respective axes. In a change for coordinates, we note

w(&,n) = w(E(z,y),n(z,y) = a(z,y) = a(x(&n),y(&n)), 9)

and thus we(§,m) = Uy - 1+ 4y - 1, and wy(&,n) = Uy - (—A1) + Gy - (—A2). After
the transformation and (@ the normal form (NFHE) appears as follows

by (A — A2y + bia (A1 — Ao)liny = ¢fyiia + ¢iplia + &5,
b1 (A1 = A2)tin o + b35(A1 — A2)lia,e = —q51T1 — G300 — @3-

We are combining linearly new functions
biitin + bayts = —u(z,y), bi1tin + bipts =: v(z, y).

So we achieve
us] _ [a5 @] [@] |, [
o] = i ) )+ [
( ) Uy 411 q12] (U2 o1

_ [‘I;l 922] . 1 . [ bia _b32- {—u] + [:ﬂ
a1 912 bﬁ(bfz *bzz) —bj; bY4 1LY T ’
and we have

H S S [b*{lqé‘z ~biadsr bz — bzgqsl} {u Lo H
Uy b1 (A1 — A2)?|B| [b11¢12 — bi2qi1 bi2qis — b352q71] V) (A — A9) ’

or in new, obvious designations

Uy = hiu(z,y) + higv(z,y) + fi(z,y),
vy = horu(z,y) + hoov(z,y) + fo(z,y).

Equations (CHS) are called the canonical normal form of in the hyperbolic
case or the canonical-hyperbolic system.

(CHS)
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An initial value problem (Cauchy problem) for (CHS) is given, provided:

— wu is given in an interval which is not a part of any x-characteristic, say on
the interval (0,b) of the y-axis (y-characteristic).

— v is given in an interval which is not a part of any y-characteristic, say on
the interval (0,a) of the z-axis (z-characteristic). See also chapter 3.3.

Such problems are often referred to in the literature as the characteristic initial
value problems, this term is slightly misleading, see e.g. [23], [25].

EXAMPLE
We consider in a (£, n)-coordinate-system the inhomogeneous wave equation

Uny — Ugg = —k*u+ p(&,m).

Such a representation is often referred to in the literature as the canonical form of
the wave equation, see [27]. We do not use this way of speaking, because we tie on
the canonic form to the canonical coordinates. With [16], charcteristic coordinates

(z,t) and (@), (), (9) and A1 =1, Ao = —1 we put

U(fﬂ?) = U1(§,77) = U1(£($>t)777(m7t)) = U(:L‘,t) = U(iﬂ(fvn),t(&n)),
Ug +u7’l = UQ(&»”) = UZ(f(x,t)aW(x,t)) = V((E,t) = V(x(&??)»t(faﬂ))a

and so, we have firstly a system in the normal form (NFHEJ|) in the (£, 7)-coordi-
nate-system

Uie+ Uiy =Ua(&,n),
—Use + Usyy = —K*Ur(&,m) + p(€,m),

and after the transition to the characteristic coordinates and with p(&,n) = p(z, t)
the canonical-hyperbolic system

1
Ut=§V7

1
Vr = §k2U - ﬁ(xat)

2.2.2. The elliptic case

We are investigating the elliptic case in (NFHE]), i.e. A\ = X = p + iv,
Ao =A=p—iv, u,v € R, v # 0, and have in the (£, n)-coordinate-system:
LI
dn
§—& = (n+iv)(n—mo),
§—pn—ivn =& — pno — wino =: T + 1y,

d.gX

£— fo = (n—iv)(n —no),
§— pun+ivn = o — o + wio =: T — iy.
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Using the z and y again as parameters of the families of straight lines so we
have, after fission of the right-hand sides of into real part and imaginary
part, two families of straight lines in the coordinates (£,7), which are called the
characteristics in the elliptic case. The connection between the (£,7)- and the

(x,y)-coordinate systems is given by
x| |1 —p| (€ &1 [—v oy |=
Rt 1 E A P R

In the (z,y)-system the characteristics appear as lines parallel to the respective
axes.
At change of coordinates, we note @, and thus

we(§m) = e -1, wy(§,m) = Uo - (—p) + Uy - (1) (12)

Using and the transformation , the normal form (NFHE|) appears as
follows: first line of (NFHE])

bilivin  — v y] + [l o + (p +iv)|B||[ivis,. — vi,,]
= [(a21 — (u 4+ iv)bo1)qu1 + (—a11 + (p + iv)bi1) g1 ]t (z, y) (13)
+ [(a21 — (1 + ww)ba1)qrz + (—a11 + (i + iv)b11)gaz]tz(x, y) + @7 (z, y),
and the second line of (NFHE))

bl [—iviy o — vy | + [c] o + (1 — )| B|[~iviig e — Vg,
= [(a21 — (e — i)bo1)qu1 + (—a11 + (p — iv)bi1) g1 ]t (2, y) (14)
+ [(a21 — (p — w)ba1)q12 + (—a11 + (p — iv)bi1)gaz]ta(, y) + 5(z,y).
From we have

[—b1 Vi ,y — Clovla,y — V| Bllg,y — 1/2\B|ﬂ27z]
+- [bflyﬁl,x + ciaviia & + VﬂlBlﬂZx - V2|B|ﬁ2,y]

15
= Re{right side of (14)} + iIm{right side of (1)} (15)
= 2A+ B
with
A = [(a21 — pb21)q11 + (—a11 + pbi1)goalin + [(a21 — puba1)gio
+ (—a11 + pb11)ga2)ts + (a21 — 1)1 + (—a11 + pbi1)da,
B = v{(b11g21 — b21q11)U1 + (b11g22 — ba1q12) U2 + (b11d2 — b2191) }.
Analogous we have with
(=07 vy — Claviny — vp|Bligy — V2|B|a2,m]
+ i+ [=b Vi — CioVilln,e — viu| Blila o + 1?|Bliia,y] (16)

= Re{right side of (15)} + {Im{right side of (L5)}
=2 —iB.
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We introduce new functions
w(z,y) = bi vy + cavie + vu|Blis, v(x,y) := v?|Bli, (17)

and we obtain from the following formulas for the real parts and for the
imaginary parts
—Uy — Vp =, Uy — Uy = ‘B.

Similarly from we get
—Uy — Uy = A, —Ug + vy = —B.

We see that the corresponding splitting of the two different formulas (14)),
into real part and imaginary part does not lead to a contradiction, but to the
same result.

Now we express the functions (i1, ag) in terms of (u,v),

| 1 V3Bl —vbi — w|Bl] [u
ay|  v3bH, Bl | 0 vbi, v’

and summarize the coefficients at u, v in 2, 9B in the quantities e;; as well as the
inhomogeneities in f;, ¢ = 1,2. So we obtain the known system

Uy + vy = enru(x,y) + env(z,y) + fi(z,y),

CES
e — vy = coru(a, ) + essole.y) + fole,y). (CES)

(ICES) is called the canonical normal form of (1)) in the elliptic case or the canonical-
elliptic system.

REMARK 2.1
If we replace in (17)) u(x,y) by —u(z,y), we obtain (CES|) modified in a form which
we will use later in .

2.2.3. The parabolic case
We start from the normal form (NFP)) and put

biiwi + biwe = U(§(x, ), n(x,y)) = u(z, y) = w(@(& ), y(&,n)),
Bajwy + Baawy =: V(g(xay)vn(xay)) = U('%ZU) = U@(fvﬂ)ﬂ(fﬂ?))

So that with A = b}, Bas — bj5Ba; and (NFP)) arises

)\Ug-‘rUn :lQ* Bas _b}lkZ U + (b’f (19)
Ue+ N + NV + Uy + V| — A [=Ba b3, | V] 7 [5]°

Note please also here the now present directional derivatives.
Using x and y again as parameters of families of straight lines so we have (z,y)
as characteristic coordinates, which are introduced by

% _\

= E—&=AXn—m), E-Anp=E& — A=z, n=:y, (20)
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and we have also in the parabolic case axially parallel families of lines as charac-

teristics. So we obtain with , and

Uy
Uy + Uy
_ 1 { qi1B22 — ¢i2 B2 qi2b11 — q11012 } {U]
A [(g31 — q11)Baz + (12 — 452)B21 (433 — ai2)bl1 + (¢51 — @51)bia] v
N [ o1 (2,y)
¢5(x,y) — ¢1(z,y)]
or in new designations regarding the coefficients and the inhomogeneities
Uy = u\x, + v\x, + xZ, 9
y = Pr1u( y) + pr2v(z,y) + fi(z,y) (CPS)

Uy + vy = poru(z,y) + paov(z,y) + folx,y).

This is the canonical normal form for in the parabolic case or the canonic-
parabolic system.

REMARK 2.2
Use we slightly more general than (18] the substitution.

lewl + bT2w2 =ip- U(E(.T, y)777(xay)) =P U(:L‘,y) =p U(x(f»n); y(fﬂ?))

for p € {R\0}, so we have now (CPS)) for the pair (pu,v)?, and particularly for
p = —1 the formula (CPS]) is modified on the left-hand side by a sign and on the
right-hand side in the coefficients and in the inhomogeneities

uy = mllu(‘ray) + m12v($,y) + fl(xay)v

; (CWS)
Uy — Vy = m21u(gjay) + m22v(xa y) + fZ(Ia y)

The formula (CWS)) facilitates our connection to the usual formulation of the heat
conduction problems (with: y as spatial coordinate, x as time coordinate), see [26].

REMARK 2.3

Our treatment of (1) according to and is to some extent a division-free
method. Alternatively, in we can immediately with w = Su move to a new pair
of functions (&, n) = (41(&,n), (wa(&,n))T. The matrix S is still undetermined.
The resulting equation will be left-hand multiplied by S~'B~! and we have

S™'B7'ASu¢ + ST'B'BSu, = ST'B7'QSu(¢,n) + ST'Bre(¢,n).  (21)

Creates S the Jordan form of B~'A, then we have immediately the analogue

of (NFHE)), respectively (NFP|); however the right-hand sides now require more
effort. In concrete practical cases (fixed values, possibly sparse matrices A, B, Q)

formula produces often faster the characteristic systems.



[118] Heinz Toparkus

3. Transform methods

3.1. The canonic-parabolic system
3.1.1. Treatment with the Laplace transform

We start from 7 using its right-hand side in a new designation, and we
investigate the following initial value problem P! in the strip S = (0,1) x (0, c0)
(P! means that the solution (u,v)T) is calculated so that the first component u
on the left border and on the right border of the strip in each case a given initial
condition must fulfil, see the problems P4 in [26]), so we consider

Uy = quu+ qi2v + fi(z, 1), u,v € CH[(0,00) x (0,00)],
Ut — Vg :(J21U+Q22U+f2(l’at)a fl S C[(07OO) X (Oa OO)]7
lim wu(z,t) =u®(t), lim wu(z,t) = (1), u®,u' € C[(0,00)], (22)
z—+0 z—1—0

thn+10 u(x,t) = f(x), where f € C[(0,1)], u°,u' € C[(0,00)] are given,
—
qij S Ra Zv] S {172}7 qi2 > 07 q21 S 07 (“heat typ”)

We will treat this problem by means of the one-dimensional Laplace trans-
form [7]. Let

Llu(z,t);t](s) = /000 e Tu(z,7)dr = wi(x,s),

which will be abbreviated as u(x,t) o — ew;(x,s). For the other parts in we
have

v(x,t)o = ewy(x,s), vy(x,t)o— ews(x,s), uo(t) o — ow?(s),
up(z,t)o — @s-wi(z,s) — f(z), uz(z,t)o— ew(x,s), ul(t)o%owll(s),
filz,t)o = ep;(x,s), i=12.

We obtain in the (z, s)- image range of the Laplace transform a system of ordinary
differential equations

Wiz| q11 q12 w1 ¥1 e
[wz,z] = L . _q22] [wz] + [—f ~ @J (abbrev. w,; = Q*w + r(z, s)),
(23)
wi(0,8) = w(s), wi(l,s) =wl(s), (a parameter-dependent
boundary value problem).
Notice that (23) is called IT*1, the problem, which is associated to P11, see [26].
Using the two “border matrices” Bi' und B}' we write on the border in

problem
o o] b0+ [t o (05 =[] + o 2465 = 5]

The matrix Q°® from has the following eigenvalues

q11 — ¢ 1
A2 = % + 5\/((111 + ¢22)? — 4q12¢21 + 4qu25,
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and the eigenvectors

1_ q12 2 _ —4q12
¢ [)\1 - %1] ’ N [—A2 + Chl} '

With the abbreviations

q11 + q22 qi1 — g22
q12921 =: ¢, T s, s =:d, s —q=:0,

we write the general solution of the homogeneous system to as follows

wl,hom(x7 8) — Clquedw . e\/é"ﬂhzsw _ nglzedz . e—\/5+qusm7
Wa hom (2, 8) = c1(—85 4+ /0 + qias)e™ - eVt mzse
+ceo(s++/0+ qlgs)ed‘” LTV OotmesT c1,c2 € R.

We solve the homogeneous problem concerning IT*! by determining the quantities
c1(s), ca(s) from the boundary conditions. We have with v/ + q125 =: 05,

oJl,hom(xy 3)
= m [e% sinh(6,(1 — x)) - w(s) + e~ 40=2) sinh(6,2) -wi(s)],
WZ,hom(x; 5) (24)
- m [¢**[=s -sinh(d (1 — @) — 8, cosh (8, (1 — z) ] (5)

+ e~ =) 5. sinh(J,z) + 4, cosh(ésx)]wll(s)] .

Now we give a particular solution of the inhomogeneous problem , see [14],
[26]. Let W be the fundamental matrix belonging to the homogeneous problem

to , thus

A1z Aoz
_ qi1e —(qi2€
W(xas) - |:()\1 _ qll)e)\lx (_)\2 + qll)e)\2x:|

_ q12€dm+5sx _q12edr—6sx
(=5 + 05)ed®H0T (54§ )edv—dsw

With

My = BEW(0,5) + BIW(1, ) = {O O} W(0, s) + ﬁ 8} W(l, s)

we obtain by means of the method “variation of constants”, see [14], as a particular
solution of the inhomogeneous system ,

l T l
winn (@, 5) = / GV (x. €, 5)r(€. 5) dE = / GLL (€. s) dé + / GIL (€, ) de,
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with

>Wa@Mﬁ{3ﬂ>wa@W1@w» e<n

gll(x7£’8) = 00
Wit |0 i sw i, @<
10 (25)
G2 (0.65) = Wt g 0| W), e<a

Gile(x,&,5) = —W(z, )M, [(1) 8} W, s)W7LE s), z<E&.

Since the function G!! describes the influence of the left-hand and the right-hand
boundary of S on the solution of the problem IT'! at the position x, z € (0,1),
it is named influence function or Green’s function. Because all W-quantities and
My in are well known, we can specify the matrix G!! with its four elements.
We abbreviate

S(x) o sinh(d,x), C(x) o cosh(d,z),

and we have

gl — ed@=9) G G2
8= 7 95,8(1) |G2r Gao

where

Gu =slClr+E—1)—Cla—&— D] = 8,[Sx+E— 1) + Sz — € 1),

G2 = q2[Clx + & —=1) = C(xz — € = 1)],

Gor = —qua(s® +02)C(x + & — 1) + q12(s® — 62)C(x — € — 1) + 2¢1250:S(x + € — 1),
Goo =5[-Clx+E-1D)+C(x—E=D]+ 0[S+ E-1) - Sz — £ -1)]

and

no_ eteo [Hn Hm]
7<¢ 7 25,8(1) |Ha1 Haz)’
where
Hiy = s[C(a+ €~ 1) — Clo — € +1)] ~ S + & — 1) + S(& — £ )],
Hiz = q2[C(x +§ 1) = C(z — £+ 1),
Hop = —qua(s? + 62)C(x + € — 1) + qua(s® — 62)C(x — € +1) + 2q1250,S(x + € — 1),
Hyy=s[-Clx+&—-1)4+Clx—E—-D]+6[S(z+&—1) —S(x—E+1))].

With respect to and and the specialization d = 0, s = 0, g21 = O,
q12 = 1, we are falling back on the prototype, which was treated in [26] (classical
heat conduction problem as a first-order system, but complete inhomogeneity).
We still have to provide the inverse Laplace transform of the solution for IT'1.
Then we have the (formal) solution in the (z,t)-original domain. It can be noted
that the functions that occur in and G'1(x,&, s) are not inherently more dif-
ficult than the functions occurring in [26] (essentially inverse Laplace transforms
for quotients of hyperbolic functions). We obtain formal solutions for the prob-
lem , i.e. for P!, In a similar way you can treat the problems P4, see [26].
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3.1.2. Treatment with the Fourier transform

We treat again as an example the problem P1!, i.e. problem , but initially
we not impose conditions on the coefficients ¢;; € R (“heat type” is no longer
precondition). We use the Fourier cosine transform F. with respect to ¢ and the
Fourier sine transform F, with respect to ¢ of a function w(x,t) with the following
designations:

oo
Felw(z,t)] = We(z,w) = / w(z,t) coswt dt,
0
(abbrev. w(z,t)o ey o 0 (z,w)),

2

Fo Fow(z, b)) = Frl[oo(z, w)] = w(z,t) = - /OOO We(x, w) coswt dw,
(26)

Fulw(a, t)] = iy (2,0) = /0 " (e, t) sinwt di,

(abbrev. w(z,t)o ELN o W(x,w)),

FF (e )] = F (0] = w( ) = 2 [ b0 sinet do,
™ Jo

If we apply line by line to system the transformation F., so we have
o0
/ [ur — qriu — q12v — fi(x,t)] coswt dt
0
= '&cm - q11ﬂc - q12ﬁc - fl,c = 07
oo
/ [us — v — @a1u — g22v — fo(z,t)] coswt dt
0

= was - f(l’) - ﬁc,w - Q21@c - q22@c - f2,c =0.

If we apply line by line to system the transformation F, so we have
oo
/ [uz — qr1u — q12v — fi(x,t)] sinwt dt
0
= as,z - qllﬁs - qu’lA)s - fl,s =0,
o0
/ [us — vy — ga1u — goov — fa(x,t)] sinwt dt
0

= _Wac - @s,x - q21ﬁs - q22@s - f2,s =0.
The rules on the use for the transform of derivatives wy(x,t) have been complied

with, see e.g. [24], [2I]. So we have in the Fourier (x, s)-image range the following
boundary value problem IT'! for a system of linear ordinary differential equations

/LALC q11 q12 0 0 ’ac . fl,c

1:)(; (w,w) = | 921 T2 W@ 0 1:)c " —fa.e — f(7)

Us 0 0 qu1  qoo Us fis ’

s —w 0 —g21 —q22 s _f2,s (27)

x

ac(O,w) = ag(“)? ac(lvw) = ﬁlc(("))’ a8(07w) = ﬂg(w), ’&S(l’w) = aé(w)a
(a parameter-dependent boundary value problem).
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Gradually we will take back the difficulty level of the problem (27)), so we can keep
our approach clearly and obtain simpler results. In this sense, we consider now in
the original (z,t)-domain the simple parabolic system

1
Uy = —, k € R\{0},
K
ur — vy = fo,
which corresponds to the following equation
Ut = KlUgy + fo(x,t). (28)

The system will appear in the following form (the stripped-down problem
IT'! in the (z,s)-image range)

U 0 L0 0] [t 0

De 10 0w 0f [0 —fa.e — f(2)

a| @9= 10 00 2| |a] T 0 ’ (29)
o) . —w 00 0] |0 o

4:(0,w) = 4(w), dc(l,w) = W), 4s(0,w)=a(w), s(l,w)=al(w).

Let D be the matrix of the coefficients of (29). The equation [D — X -I| =0 gives
with k = %, k = +£1, the eigenvalues

k=1: )\172 = (]. + Z)\/oj, )\354 = (—1 + Z)\/(TJ,
k=-1: )\172 = (1 + Z)\/a, )\374 = (71 + Z)\/LT)

Both sets of eigenvalues are identical, they have been numbered for £ = 1 and
k = —1 in the same way. However, the eigenvectors are still a function of the
coefficients of the matrix D. These coefficients are different for £k = £1 .

Let Xj—1 be the matrix of the eigenvectors %, i =1,...,4 of D for k = +1
and Xj—_; the matrix of the eigenvectors x!, i = 1,...,4 of D for k = —1, so we
have

2 2 2 2
5= | AEOve L=V (14 i)Ve (-1 - v

_ 1 2
Xp=t1 =[x, %7, %%, x 2i —92i —2i %

(l+iVe (-l—ie Q+ive 1-ive

and
2 2 2 2
Xpo 1 =[x, x2, %% x4 = [(TT VW (F1H Ve (- a)ve (T i)ve
e T B R0S —2i 2 2i —2i

(—1+ivw (1= (1+i)Vw (1-i)Vw

The general solutions of the two problems for k = £1 appear, with ¢;, d; € R,
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i=1,...,4, therefore as follows
T
Z: (7, w) = c1x1eMT 4 cox2er2® 4 e3x3eMT 4 cyxterT =:
[0s ] ke
o]
zz (x,w) — dllle)\lm + d2§2€>\2m + d3§3€A3z + d4§4€>\4z =
_@5- k=-1

Now we give real fundamental systems for the solutions of , see [15],

Qe 2 cos \Jwzx
O | o1 oV Vwlcos y/wx — sin y/wz]
= C1€ .
—2sin wz
0s] —y/w[cos ywz + sin y/wz]
2sin \J/wz
Vwlsin y/wx + cos y/wi]
2 cos yJwx
Vwlcos ywax — sin y/w]
[ 2 cos /wx
Vw[— cos \/wz — sin y/wx]
2sin \/wz
| Vwlcos y/wx — sin \/wx]
[ 2sin \Jwz
Vw[—sin Jwz + cos y/wx]
—2 cos/wr
| Vwlcos \/wx + sin \/wz]

a, 2 cos \Jwz
o, di eV Vw[— cos wz + sin /wx]
a,| 1€ +2sin y/wx
Vw[— cos /wr — sin y/wz]
2sin y/wzx
Vw[—sin \Jwz — cos /wx]
—2 cos/wx
Vw(cos ywx — sin /wz]
[ 2 cos /wx
Vw[+ cos ywz + sin \/wx]
—2sin /wz
| Vwlcos y/wx — sin \/wz]
[ 2sin /wx
Vw4 sin Jwz — cos y/wx]
2 cos /wx
| Vwlcos y/wx + sin \/wz]

+ Cgeﬁm

+ 036_\/5“'

+ 646*\/‘7”

S —

+ d26\/5z

+ d3€_\/‘;x

+ d467\/aa:

[123]
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with ¢;,d; e R, 1 =1,...,4.

We need to fulfil the boundary conditions in the case P! for the functions
Ue, U, Us, U, for our problems , k = +1. We have linear algebraic systems for
¢, d;,i=1,...,4, from the real fundamental systems and and from the
specified boundary conditions .

(0, w) = 2c1 + 2c3 = 2 (w),
fie(l,w) = 2[cos VwleV¥ley + sin vwleY¥ ey + cos vwle™V¥es + sin vwle™Veley)

— i),
(0,6) = 203 — 201 = (),
is(1,w) = 2[— sin wleV¥!e; + cos vwleV ey

+ sin y/wle™V¥les — cos wle™V¥ey]
— il (w),
0,(0,w) = 2d; + 2d3 = @ (w),
(L w) = 2[cos wleV¥ldy + sin v/wleV@ldy + cos v/wle™V¥lds + sin v/wle™ V! dy]
= f(w),
5(0,w) = —2dy + 2dy = 42(w),

a,(l,w) = 2[sin ywleV®'d; — cos ywleV®!dy — sin ywle™Veldy + cos Vwle™Veldy)

=l (w).

>

>

a

We finally get (the other components are not taken into account at this point)
with A(l,w) := cosh 2/wl — cos 2\/wl,

+ 4L (w)[cosh V(I 4 z) - cos Vw(l — z)
— cosh vw(l — z) - cos Vw(l + z)] (33)
+ @2 (w)[sinh vwz - sin v/w (2l — x) — sinh v/w(2] — ) - sin y/wz]
!

— sinh w(l + z) - sin Vw(l — )],
and
A(l,w) - G, (z,w)
= 42(w)[cosh v/w (2l — z) - cos y/wx — cosh y/wz - cos vw(2l — )]

+ 4L (w)[cosh vw(l + z) - cos vV (l — )
—cosh vw(l — ) - cos Vw(l + )] (34)

+ 4%(w)[sinh v (21 — z) - sin v/wz — sinh vwz - sin v/w (2] — z)]

+ @l (w)[= sinh vw(l — x) - sin V(I + )
+sinh Vw(l + z) - sin Vw(l — z)].

Thus, the problems IT!!, k = £1, in (29)) are solved in the Fourier image range,
with the restriction to the homogeneous case and to the component . resp. 4.
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There remains the inverse transformation according (26)), i.e.

2 oo 2 o0
u(zx,t) = 7/ Gie (2, w) cos wt dw, u(z,t) = 7/ 4, (x,w) coswt dw.
T Jo T Jo
Unfortunately, the tables for the inverse Fourier transform of the quotients of
hyperbolic and trigonometric functions are not so well developed that one could
write down the solutions in the Fourier (z,t)-domain immediately. In [8] methods
are shown in a broader context (Cauchy’s residue theorem) in order to accomplish
this back-transformations in special cases.
A further simplification of the homogeneous problem that belongs to :
We consider the limiting case | — oo, that is, we go over from the strip with
width [ into the quarter plane. With , we have

0 (x,w) = lm G, (z,w, 1) = 0%(w)e™ V¥ cos oz — 00(w)e” V¥ sin wz, (35)

l—o0

420 (2, w) = llim i (z,w,1) = 02(w)e™ V¥ cos vwr + 42 (w)e™ Ve sin . (36)
— 00
We will now try to specify the Fourier originals to 42°(z,w) and 4.°(z,w). For
this purpose, the transformation F. ! on both sides of and is applied. It
is known (see [I9]) that

N

T e 5w Fe _ o
glx,t) == —  —5—o0 < e cos Vwr =: g.(z,w),
V2m otz
.L2
5
g(z,t) = \/% : etgt oLt eV sin vwr =: gs(x,w).
T 3

For the solution in the quarter plane (k = 1), we then obtaining by ,
Fo e (z,w)] = u™(z,t) = F; i (w)ge(z, )] — FoHag(w)gs(z,w)]-

We apply on the right-hand side of this representation the relevant competent
convolution theorem for the inverse transformation of a product [4], [5], [9], [21],
[24] and obtain

(a,t) = 1 / (r) - glt —7)dr = = / <>6_2(f”d
u x’ = : Uo(7) - - T T = —F U\T ) ——= 7_;
0 0 g V2w Jo 0 (th)%

and this is the known solution of for the quarter plan in the homogeneous
case with u(z,0) = f(z) =0, k = 1, see [20].

One would expect with , that one can find analogously the solution in the
(x,t)-domain for the quarter plane (now k = —1, see also [I0] as a singular hint):

Foags (z,w)] = u™(x,1) = FoHa(w)ge(x, w)] + F a3 (w)gs (2, w)].

This is so far not succeeded, but the following term occurs

__=?
e 2B

w(z,t) = m/t uo(T)m dr,

which satisfies the homogeneous diffusion equation with kK = —%.



[126] Heinz Toparkus

3.2. The canonic-elliptic system: Treatment with the Fourier
transform

We start from (CES)) in a local coordinate system (z,y) and with our standard
designations, note Remark and investigate analogous to problem the fol-
lowing initial value problem P for the elliptic case in the strip S = (0,1) x (0, 00):

Uy +uz = Q11U+ q12v + f1($7y)7 u,v € Cl[(07oo> X (0,00)],
uy—vm:(I21U+Q22U+f2(way)» fZEC[(O,OO)X (0700)],

lim u(z,y) =u’(y), lim uz,y)=u'(y), u’u' €C[0,00)], (37)
x—+0 z—1—0

yli}IEO U(I‘,y) = fO(x)a y1—1>I£O’U(x7y) = go(x)7 fO(x)agO<x) € C[(O7l)]7
f03907u07ul given, qij € Ra Zaj S {172}

We apply the transformation F, and the transformation F; line by line and
completely to the system and obtain, similarly to the procedure in the parabolic
case in the Fourier image range, the system of ordinary differential equations

T i g2z 0 —w | | fie + go(x)

1:)c (2, 0) = —Q21 —Qa2 W 0 1:1c " —fa.e Jo(x)

Ug ’ 0 w Q11 q12 Ug fis ’

Os] —w 0 —g21 —q22] |0s —fQ,S (38)

ﬁc(ovw) = ﬁ(c)(w)7 ﬁc(l’w> - ﬁlc(w)v ﬁs(oaw) - ﬁg(w)a ﬁs(lvw) - 7:Lls((“))a
(a parameter-dependent boundary value problem).

Equations are the problem IT'! in the Fourier image range, which is
assigned to problem P!,

Gradually we will take back the difficulty level of the problem (37)), so we can
keep our approach clearly and obtain simpler results.

We put in " qi2 = q21 = 07 q11 = q22 = ¢, fl(‘T,y) - f(xay)7 fQ(xay) = 07
and so we consider the initial value problem P! for the following system

Uy+uz:qu+f(x7y)a
Uy — Vg = ¢ - V.

(39)
We transfer the system into the Helmholtz equation, what is easily achieved
by additional differentiations in ,

Use + Uyy = U+ qf + fa.
Conversely, is given a differential equation

Ugy + Uyy = ¢*u+ h(z,7),

we can determine f from f, = —qf + h(x,y) and work with . We proceed as
already described in the treatment of . From the simplified system we
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get
Ue q 0 0 —w Ue fc + go (‘T)
Ve 0 —qw 0 e —fo(z)
= O+ 2 ,
Us 0 w qg O Us fs (61)
D —w 0 0 —q| |7s 0

U0(0,w) = 20(w), e(l,w) =l (w), ©s(0,w)=10(w), ds(l,w)=1aL(w).
From the system we only solve the homogeneous problem, that is fo = go = 0,
and we only give the components i, (z,w) and 9.(z,w). With ¢ := y/¢% + w? and
Ay := cosh2y/¢? + w2l — 1 we have
Al

0
Gs(x,w) = %{— coshdx + cosh6(20 — z)} + %{coshd(l + ) —coshd(l — x)},
q

q

A al fq J q 5
ez, w) = A—q{a cosh ox — asmhéx - acosh6(2l —x)— asmh5(2[ - :1:)}
ol
+Z‘;{jsinhé(l-l—x)%—isinhé(l—x)

q q
— =cosh (! =coshdo(l —z) ;.
_cos (I+2x)+ ~cos ( :v)}

And again we are missing powerful tables to the Fourier transform.
In the case ¢ = 0 (Laplace equation) we obtain

~0
Gs(z,w) = Z—z —coshwz + coshw(2] — x)}
-l
n %{coshw(l + 1) — coshw(l — 2)},
0
~0

De(z,w) = u—‘;{—sinhwx —sinhw(2l — z)}

(40)

ol
+ %{Sinhw(l + ) +sinhw(l — 2)}.
0

For the Laplace equation, we restrict the problem even more by u!(y) = 0 in ,
so we have from by means of F, ! as a representation of the solution, see [S],

2 [ 4(w)?
u(z,y) = ;/0 U(Awo)s - [coshw(2l — x) — cosh wz] sin wy dw. (41)

From the representation is easily shown that wu(x,y) satisfies the Laplace
equation and the required initial conditions. If we go over from the strip with
width [ into the quarter plane, (I — o0), we obtain

T S

2 oo
u™(x,y) = f/ 02 (w) - €797 - sinwy dw.
0
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If we note and
0(w) = / u® (1) sinwn dn and —————o0 ¢S e YT

0

so comes as the solution for the quarter plane, in accordance with [5],

oL c
u™(x,y) = 7T/O 0(77)[(y_77)2+$2 (y+n)? + 22 dn.

3.3. The canonic-hyperbolic system: Treatment with the Laplace
transform

We start from and use now because of the close relationship to the
wave equation, the time coordinate ¢ instead of y, we again use the matrix @ for
our linear problem and formulate the following initial value problem in a rectangle
R =1(0,z.) x (0,t.),

Uy = qriu(z, t) + grov(a, t) + fi(x,t),

v = quu(@,t) + qo(e ) + fol@t),  (x.t) € R, fi, f2 € CRS],
u(0,t) = ug(t), t €[0,t.], te >0, ug € C[R}],
v(z,0) = vo(x), z €[0,2], T >0, v € C[RY].

This problem we will treat with the one-dimensional Laplace transform. Let
oo
L{u(x,t); x](s) = / e SSu(&,t) dE = wi(s,t), (abrrev. u(z,t)o — ew(s,t)),
0
be the Laplace transform with respect to . We have then for the other quantities
in ,

v(x,t) o — ewy(s,t), ve(x,t) 0 — ewa (s, 1),
Ug(x,t) 0 — o5 wi(s,t) — ug(t), filz,t)o — o ;(s,t), 1=1,2.

So we get in the image range

s-wi(s,t) —uo(t) = qriwi + qrawa + @i (s, t),
wa,t(8,t) = gaiwi1 + gaowa + pa(s, 1), (43)
wa(s,0) = wa o(s) := Llvo(z); z](s).

We eliminate in w1(s,t) and obtain a parameter-dependent first order differ-
ential equation in the variable ¢ for w(s,t) together with the initial value

5 —
_ q22 |Q|w2(s,t)+ g21
S —qu1 S —qu1
wa(s,0) = wa o(s).

w27t(57t) [@1(5715) +U0(t)] +902(5at)7
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We solve this initial value problem for an inhomogeneous linear ordinary differen-
tial equation of first order with respect to the identity

228 — |Q| _ d124¢21

+ qo2, q12q21 =: q # 0,

S —q11 S — (11
and so we have
wa(s,t)
= 922t . [e(%) — 1wz o(s) + e®2'wy o(s) (44)
. (q(tff))
. e s§—q11
+ o / 2 (=) [0 (5, 7) + uo(T) + (5 — 1) (s, 7)] T —dr.
: —q11

This is the solution in the image range. She is now transformed back into the
original Laplace domain. For this we need the Bessel functions J, (z), the modified
Bessel functions I, (z), the entire transcendental function oFj(c;x), see [17], we
need them on this place only for real arguments, x € R, ¢ > 0,

SC2

x = T'(c)a!
Fgr)=1+—+——7r—<+...= _— rig+1)=I.
oFi(c;) + 1le + 2le(c+ 1) + ; IC(c+1)’ (t+1)

We use the following correspondences [18], [22]
1 a
—es @ — o ly(2y/ax), a>0,
s

1 -«
—e= o — oJy(2v/ax), a>0,
s

oo

€

—lo%o\/gll(%/ax), a>0,

esalo%o\/EJl@ ax), a>0
x

and we will continue to work with the hypergeometric function ¢F1, it seems our
problem to be more appropriate because of the simpler arguments

2

I(z) = ﬁ (%)VoFl (1/ + 1 Zz)a
2

Ju(2) = ﬁ(g)yoﬂ (1/ +1; —Zz)a

In(2V/qtz) = oF1(1;qt, x),
lqlt

711(2\/th) = qt - o F1(2; qtx),
Jo(2+/|qltz) = o F1 (15 —|qltx),

qit
9 1o /le) = lal o3 2 ~lalto)

In there are five additively related items. These are now individually inverse
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transformed according to the rules of the Laplace transform (concerning damping,
folding) in accordance with the formula groups , . This gives

v(x,t)

¢
= €q22tvo(l‘) +/ quz(t_T)fQ({Eﬂ') dr
0
t
+ q21 / 6811$+q22(t_T)F1(1; q12G217(t — 7))uo(T) d
0
+ q12qo1 - t - / 6811(%5”(1221&5&(2; q12q21(x — §)t)vo(€) d
0
t x
+m / / e @ OT T B (1 1o (2 — €)(t — 7)) a6, 7) ddr
0.Jo

t x
+ q12¢21 / / (t— T)eg“(mfg)ﬂ”(t#)ﬂ(2; qi2q21(x — §)(t — 7)) f2(&, 7) d&dr.
0 Jo

Analogously, we obtain wu(x,t), if we apply the Laplace transform with respect
to the variable ¢ and then eliminate the function ws(z, s) (it remains an ordinary
differential equation for wq(z,s)). After the back transformation, we obtain

u(x,t)

= eMyq(t) + /w e 8 £y (1) dE

0

+Q12/ 68“(1_5)+q22tF1(1;qmqm(ﬂf—f)t)vo(ﬁ) d§
0
t
+ quagor -7 / (T (00 0 e o — 1) Yuo () d
0
t x
+ s / / (g ORI B (1o (0 — €)(t — 7)) fu (€, 7) dédr
0 JO

t x
+ q12921 /0 /0 (z — &)ed =TT b (9 g ogor (w — €)(t — 7)) f2(&, 7) dEdr.

Hereby the known solution pair (u,v)? [25], [6], [2] is again derived in a different
way.

By inserting the solution pair (u,v)? into the differential equation one
shows that (u,v)T solves the initial value problem and (u,v)T is thus not only
a formal solution. Numerical procedures of Runge-Kutta type for the treatment of

problem with general nonlinear right-hand sides and vector valued functions
u and v can be found in [3].
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