P o= cruvTer
G

Vol. 27(1),2019, 5-33

DOI: 10.2478 /auom-2019-0001
An. St. Univ. Ovidius Constanta

Characterization of a b-metric space
completeness via the existence of a fixed point
of Ciric-Suzuki type quasi-contractive
multivalued operators and applications

Hanan Alolaiyan, Basit Ali, and Mujahid Abbas

Abstract

The aim of this paper is to introduce Ciric-Suzuki type quasi-contractive
multivalued operators and to obtain the existence of fixed points of
such mappings in the framework of b-metric spaces. Some examples are
presented to support the results proved herein. We establish a char-
acterization of strong b-metric and b-metric spaces completeness. An
asymptotic estimate of a Hausdorff distance between the fixed point sets
of two Ciric-Suzuki type quasi-contractive multivalued operators is ob-
tained. As an application of our results, existence and uniqueness of
multivalued fractals in the framework of b-metric spaces is proved.

1 Introduction and preliminaries

Let (X,d) be a metric space. Let CB(X) (P(X)) be the family of nonempty
closed and bounded (nonempty subsets of X). For A, B € CB(X), let

H(A,B) =max{6(4,B),§(B,A)}
where d(z, B) = inf,ep d(z,w) and 6(A, B) = sup d(z, B). The mapping H

€A
is said to be a Hausdorftf metric on CB(X) induced by d. The metric space

Key Words: b-metric space, multivalued mapping, fixed point, stability, multivalued

fractals.
2010 Mathematics Subject Classification: Primary 47H10, 47H04; Secondary 47HO7.

Received: 20.12.2017
Accepted: 28.02.2018



CHARACTERIZATION OF A B-MATRIC SPACE COMPLETENESS VIA THE
EXISTENCE OF A FIXED POINT OF CIRIC-SUZUKI TYPE
QUASI-CONTRACTIVE MULTIVALUED OPERATORS AND APLICATIONS 6

(CB(X), H) is complete if (X,d) is complete. For f: X - X and T : X —
P(X), the pair (f,T) is called a hybrid pair of mappings. The fixed point
problem of T is to find an € X such that € Tx (fixed point inclusion).
The solution of a fixed point inclusion problem of T is called a fixed point of
T. The set F(T') denotes the set of fixed points of T. A point z € X is a
coincidence point (common fixed point) of (f,T) if fx € Tx (v = fz € Tx).
Denote C(f,T) and F(f,T) by the set of coincidence and common fixed point
of (f,T), respectively. The hybrid pair (f,T') is w-compatible ([1]) if f(Tz) C
T(fx) for all x € C(f,T). A mapping f is T-weakly commuting at = € X if
f2(z) € T(fz). The letters RT and N* will denote the set of nonnegative real
numbers and the set of nonnegative integers, respectively.

A mapping T : X — CB(X) is called a multivalued weakly Picard operator
(A MWP operator) ([34]), if for all x € X and for some y € Tz, there exists
a sequence {z, } satisfying (a1) o =z, 1 = ¥y, (a2) Tnt+1 € Txy, n € N* (a3)
{z,} converges to some z € F(T).

The sequence {z,, } satisfying (a;) and (ag) is called a sequence of successive
approximations (ssa at (z,y)) of T starting from (x,y).

If a single valued mapping 7T satisfies (a;) to (as), then it is a Picard
operator.

Let T : X — P(X) be a MWP operator. Define the mapping T :
G(T) — P(F(T)) by

T (z,y) = {z: there is an ssa at (z,y) of T that converging to z}

where G(T) = {(z,y) : « € X,y € Tz} is called graph of T. A mapping
f:X — X is called a selection of T : X — P(X) if C(f,T) = X.

Definition 1.1. (/34]) Let (X,d) be a metric space and ¢ > 0. A MWP
operator T : X — P(X) is called c—multivalued weakly Picard (c—MWP)
operator if there exists a selection t°° of T such that d(x,t>°(z,y)) < cd(x,y)
for all (z,y) € G(T).

One of the main result dealing with c—MWP operators is the following.

Theorem 1.2. ([34]) Let (X,d) be a metric space and Ty, Ty : X — P(X).
If T; is a ¢;— MWP operator for each i € {1,2} and there exists A > 0 such
that H(Tyx, Tox) < X for all x € X. Then

H(F(Tl),F(TQ)) S )\max{cl, 02}.

Banach contraction principle (BCP) [7] states that if (X, d) is a complete
metric space and f : X — X satisfies

d(fz, fy) < rd(z,y) (1.1)
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for all z,y € X with r € (0,1), then f has a unique fixed point.

Due to its applications in mathematics and other related disciplines, BCP
has been generalized in many directions. Suzuki [39] proposed a contraction
condition that does not imply the continuity of a mapping f. Suzuki type fixed
point theorems are remarkable in the sense that these results characterize the
completeness of underlying metric spaces ([39, Theorem 3]) whereas BCP does
not ([15]).

A mapping f: X — X is called quasi-contraction [12, Theorem 1] if

d(fz, fy) < rmax{d(z,y),d(x, fx),d(y, fy),d(z, fy),d(y, fr)} (1.2)

for all z,y € X with r € [0, 1).
Nadler [31] proved a multivalued version of BCP as follows.

Theorem 1.3. Let (X,d) be a complete metric space and T : X — CB(X).
If for all x,y € X,
H(Tz,Ty) <rd(z,y)

holds for some r € [0,1), then F(T) is nonempty.
Amini-Harandi [2] generalized Theorem 1.3 as follows.

Theorem 1.4. [2] Let (X,d) be a complete metric space andT : X — CB(X).
If for all x,y € X,

H(Tz,Ty) < rmax {d(z,y),d(x,Tx),d(y, Ty),d(z, Ty),d(y, Tz)}  (1.3)

1
holds for some r € {O, 2) . Then F(T) is nonempty.

. 1
Define the mapping &;: [0,1) — (2, 1} by &1(r) = T

Kikkawa and Suzuki [28] obtained an interesting generalization of Theorem
1.3 as follows.

Theorem 1.5. [28] Let (X,d) be a complete metric space and T : X —
CB(X). If there exists an r € [0,1) such that

&(r)d(z, Tx) < d(z,y) implies that H(Tx, Ty) < rd(z,y). (1.4)
for all z,y € X. Then F(T) is nonempty.

The mapping satisfying (1.4) is called » — K .S multivalued operator.
Using axioms of choice, Haghi et al. [21] proved the following lemma.

Lemma 1.6. [21] For a nonempty set X and f : X — X, there exists a subset
E C X such that f(E) = f(X) and f : E — X is one-to-one.
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Euclidean distance is an important measure of "nearness” between two real
or complex numbers. This notion has been generalized further in one to many
directions (see [3]). Among which one of the most important generalization is
the concept of a b-metric initiated by Czerwik [17]. The reader interested in
fixed point results in setup of b-metric spaces is referred to ([3, 9, 14, 13, 16,
17, 18, 22, 29, 35]).

Definition 1.7. [16] Let X be a nonempty set. A mappingd : X x X — [0, 00)
1s said to be a b-metric on X if there exists some real constant b > 1 such that
for any x,y,z € X, the following condition hold:

(b1) d(z,y) =0 if and only if v =y,
(b2) d(.’L’, y) = d(y,x),
(b3) d(z,y) < bd(zx,z) + bd(z,y).

The pair (X, d) is termed as b-metric space with b-metric constant b. If (bs)
is replaced by

(by) d(z,y) < d(z,z)+bd(z,y)

then (X,d) is called a strong b-metric space (Kirk and Shahzad [26]) with
strong b-metric constant b > 1.

If b = 1, then strong b-metric space is a metric space. Every metric is a
strong b-metric and every strong b-metric is b-metric but converse does not
hold in general ([4, 5, 13, 16, 35]).

Consistent with [16, 17, 18, 35], the following (definitions and lemmas) will
be needed in the sequel.

Lemma 1.8. [16, 17, 18, 35] Let (X,d) be a b-metric space, x,y € X and
A, B € CB(X). The following statements hold:

c1) (CB(X),H) is a b-metric space.

c2) d(z,B) < H(A,B) for all z € A.

c3) d(z, A) < bd(x,y) + bd(y, A).

cy) For h > 1 and z € A, there is a w € B such that d(z,w) < hH(A, B).

cs) For every h >0 and z € A, there is a w € B such that d(z,w) < H(A, B) + h.

c6) d(w, A) =0 if and only if w € A = A.

c7) For{xn} C X, d(zo,zn) < bd(mo,m1)+...+b”71d(xn,2,xn,1)+b”71d(xn,1,mn).

Definition 1.9. Let (X,d) be a b-metric space. A sequence {x,} in X is
called:
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cg) a Cauchy sequence if for any € > 0, there exists n(e) € N such that for
each n,m > n(e), we have d(z,,m) <,

cg) a convergent sequence if there exists € X such that for any € > 0, there
exists n(e) € N with d(z,,x) < e for all n > n(e). In this case, we write
lim,, o0 T, = T.

Lemma 1.10. [36] If a sequence {u,} in a b-metric space (X,d) satisfies
d(Unt1, Unt2) < hd(up, uny1) for allm € N and for some 0 < h < 1, then it
is a Cauchy sequence in X provided that hb < 1.

Equivalently, a sequence {x,} in b-metric space X is Cauchy if and only
if limy,—yo0 d(Tp, Tntp) = 0 for all p € N. A sequence {z,} is convergent to
xz € X if and only if lim,,—, o d(xp, ) = 0.

Lemma 1.11. Let (X,d) be a b-metric space, A, B € P(X). If there erists a
A > 0 such that (i) for each a € A, there exists a b € B such that d(a,b) < A,
(ii) for each b € B, there exists an a € A such that d(a,b) < A, then H(A, B) <
A

A subset Y C X is closed if and only if for each sequence {z,} in ¥ which
converges to an element x, we must have x € Y. A subset Y C X is bounded if
diam(Y") is finite, where diam(Y) = sup {d(a,b),a,b € Y}. A b-metric space
(X,d) is said to be complete if every Cauchy sequence in X is convergent in
X.

An et al. [4] studied the topological properties of b-metric spaces. In a
b-metric space (X, d), d is not necessarily continuous in each variable. In a
b-metric space (X, d), If d is continuous in one variable, then d is continuous
in other variable. A ball B.(x¢) = {x : d(x,z¢) < £} in b-metric space (X, d)
is not necessarily an open set. A ball in a b-metric space (X, d) is open if d is
continuous in one variable (see [4]).

In what follows we assume that a b-metric d is continuous in one variable.

Aydi et al. [6] proved the following result as a generalization of Theorem
1.4 ([2, Theorem 1.4]).

Theorem 1.12. [6] Let (X,d) be a complete b-metric space and T : X —

1
CB(X). If there exists some r € [0,1) with r < b such that

H(Tz,Ty) < rmax {d(z,y),d(z, Tx),d(y, Ty), d(z, Ty), d(y, Tz)}
holds for all x,y € X, then F(T) is nonempty.

1
1+br

1
Define the mapping &, : [0,1) — (2, 1} by & (r) =
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Kutbi et al. [29] obtained the following Suzuki type fixed point theorem
result in the setup of b-metric spaces.

Theorem 1.13. [29] Let (X,d) be a complete b-metric space and T : X —

1
CB(X). If there exists some r € [0,1) with r < b such that

2(r)d(z, Tz) < bd(z,y) (1.5)
implies that
H(Tz,Ty) < rd(xz,y) (1.6)
for x,y € X, then F(T) is nonempty.
Let (X, d) be a b-metric space, f : X - X, T: X — CB(X) and z,y € X.
We use the notations
My(z,y) = max{d(z,y),d(z, fr),dy, fy),d(=, fy),d(y, fz)},
Mr(z,y) = max{d(z,y),d(x,Tx),d(y, Ty),d(z,Ty),d(y,Tz)},
Mf(x,y) = wmax{d(fx, fy),d(fz,Tx),d(fy, Ty),d(fz,Ty),d(fy, Tz).}
Define
A:{g:R+xR+—>R:§(s t)<f—t}
T b
where b is the b-metric constant. Note that £(bt,t) < 0 and & (s, z) <0 for
all s € RT.
Example 1.14. Fori € {3,4}, define & : Rt x Rt = R by

(1) &(s,t) = ¥(s) — @(t) , where ¥, : RT — RT are functions satisfying

b(t) < % < o(t), and b > 1.
(2) &(s,t) = % - zgz’gt , where ¥, : RT x RT — RT are functions

satisfying p(s,t) < (s, t) for all s,t > 0.
Definition 1.15. Let (X, d) be a b-metric space. A mappingT : X — CB(X)
1s called a Ciric-Suzuki type quasi-contractive multivalued operator if there

exists an r € [0,1) satisfying r < Y b such that

§(d(x, Tr), d(z,y)) <0 (1.7)

implies that

for all x,y € X, where £ € A.
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IfCB(X)={{z}:2 € X}, then T : X — CB(X) is called a Ciric-Suzuki
type quasi-contractive operator.

Definition 1.16. Let (X,d) be a b-metric space, f: X - X and T : X —
CB(X). A hybrid pair (f,T) is said to be Ciric-Suzuki type quasi-contractive

1
hybrid pair if there exists an r € [0,1) satisfying r < [ such that

§(d(fx, T), d(fz, fy)) <0 (1.9)

implies that
H(Tx,Ty) < rMf(z,y) (1.10)

for all x,y € X and for some & € A.

In this paper, we obtain fixed point results for Ciric-Suzuki type quasi-
contractive multivalued operators in b-metric space. Further, completeness
characterization of strong b-metric and b-metric spaces via the existence of
fixed point of Ciric-Suzuki type quasi-contractive operators is obtained. Our
results extend, unify and generalize the comparable results in [2, 6, 12, 27, 29,
31, 33, 39]. As applications of our results:

1 We prove the existence of coincidence and common fixed point of hybrid
pair of Ciric-Suzuki type quasi-contractive single valued and multivalued
operators.

2 We give an estimate of Hausdorff distance between the fixed point sets of
two Ciric-Suzuki type quasi-contractive multivalued operators.

3 We show that for a uniformly convergent sequence of Ciric-Suzuki type
quasi-contractive multivalued operators, the corresponding sequence of
fixed points set is uniformly convergent.

4 We obtain a unique multivalued fractal with respect to iterated multifunc-
tion system of Ciric-Suzuki type quasi-contractive multivalued operators.

2 Fixed points of Ciric-Suzuki type quasi-contractive mul-
tivalued operators

In this section, we obtain some fixed point results of Ciric-Suzuki type quasi-
contractive multivalued operators in the framework of complete b-metric spaces.
We start with the following result.

Theorem 2.1. Let (X,d) be a complete b-metric space andT : X — CB(X)
a Ciric-Suzuki type quasi-contractive multivalued operator. Then T is a MWP
operator.
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Proof. Let u and v be given points in X. If Mr(u,v) = 0, then u = v € Tu.
Define a sequence {u,} by u, = u = v, for all n € N*. Clearly, u,, € Tu,, and
{un} converges to u = v € F(T). Hence T is a MWP operator.

1
Suppose that Mr(u,v) > 0 for all u,v € X. As r < A there exist
1

1
o € RT SUChthat;Jra—Q(M

> . Clearly,

1 1
O<r+a=2 <b2+b+)5(say)<1.
Let up be any point in X and u; € Tug. Note that

1
gd(Uo,TUo) —d (Uo, ’U,l)

d(UO,TUO) - d(u07u1)
d(uo,ul) — d(’lLo7U1) =0.

5 (d (u()aTuO) 7d (UO, ul))

IN A A

As T is a Ciric-Suzuki type quasi-contractive multivalued operator, we obtain
that
H(TUo,Tul) S TMT(U(),Ul). (21)

By Lemma 1.8, there exists an element uy € T'uy such that
d(ul,ug) < H(TUO,TU1) +aMT(u0,u1). (22)
From (2.1) and (2.2), we have

d(ur,uz) < H(Tug,Tur) + aMy(ug,ur)
< rMyp(ug,u1) + aMyp(ug, ur)
= BMr(uo,u1)
= S max{d(ug,u1),d(ug, Tup), (u1, Tu1), d(ug, Tuy), d(u1, Tug)}
< Bmax {d(ug,u1), d(ug, u1), (u1,us), d(ug, uz),d(u1,ui)}
< Bmax {d(ug,u1), (u1,u),b(d(ug,ur) + d(ug,us))}
= bB(d(uo,u1) + d(ur,u2)).
That is
d(uy,us) < b8 (d(ug, ur) + d(ur,us)) . (2.3)
As
E(d(m, Tur) () < 2, Tun) — d ur,u2)
< d(ur, Tur) — d(ur, u2)
< d(u1,u2) —d(ui,uz) =0.
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We have
H(Tul,Tug) S T‘MT<’U,1,U,2). (24)

Again by Lemma 1.8, there exists an element us € T'ug such that
d(ug,u;),) < H(TU]_,TUQ) +aMT(u1,u2). (25)
By (2.4) and (2.5), we obtain that

H(Tuy, Tug) + aMr(uy,usz)

r My (u1,u2) + oMy (ug, uz)

= [BMr(uy,uz)

= Pmax{d(ui,us),d(ur,Tur), (ug, Tus),d(us, Tus), d(ug, Tur)}
Bmax {d(uy,us), d(ur, us), (uz,us), d(ui,us), d(us, uz)}

B max {d(u1, uz), (uz, us), b (d(u1,uz) + d(uz, us))}

b5 (d(u1,uz) + d(usg, us)) .

d(UQ, Ug)

IAINA

[VANVAN

That is
d(uz, uz) < bB (d(u1, uz) + d(uz, us)) . (2.6)

Continuing this way, we can obtain a sequence {u,, } in X such that u, 1 € Tu,
and it satisfies:

d(una unJrl) < bﬁ (d(unfl’ un) + d(unv unJrl)) (27)

n € N*. If §, = d(un,un+1), then from (2.7), we have 6, < vd,_1, where

1
v = Now by b > 1 and r < ———, we have

1-b8 b2 +b’
b 1 1 bg 1
b62<b2+b+r> < 1+bandﬁyil—bﬁ<g'

That is by < 1. By Lemma 1.10 , {u,} is a Cauchy sequence and hence

lim d(up,2) =0 (2.8)

n—oo

for some z € X. Now we claim that
d(z,Tx) < rmax{d(z,z),d(z,Tz)} (2.9)

for all x # z. As lim d(uy, 2z) = 0, there exists ng € N such that d(u,,z) <

n— oo
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1
%d(z,x) for all n > np and = # z. Note that

& (d(un, Tuyp), d(upn,x)) < %d(un,Tun) — d(up, x)

< g, i) — d(un,7)
< % (bd(un, 2) + bd(z tns1)) — d(un, )
< () — d(un, )
_ % (d(z,x) _ ;d(z,:v)> ~ d(un,7)
< % (d(z,7) — bd(tn, 2)) — d(un, )
< % (b (1, 7)) — d(un, 7) = 0
for all n > ng. That is
€ (d(ttn, Tutn), d{un, 2)) < 0 (2.10)

for all n > ng. Thus

d(upt1,Tz) < H(Tup,Tz)

rMr(up,x)

rmax {d(un, ), d(tn, Tty), d(z, Tx), d(ty, Tx), d(x, Tu,)}
rmax {d(un, ©), d(un, tnt1), d(x, Tx), d(tuy, Tx), d(z, uni1)}

IN

IN

for all n > ng. Now, by taking limit as n — oo on both sides of the above
inequality, it follows that

d(z,Tr) < rmax{d(z,z),d(z,Tx),d(z,Tz)} .
If max {d(z,x),d(x,Tx),d(z,Tx)} = d(z,Tx), then we obtain that
d(z,Tx) < rd(z,Tx) < Bd(z,Tx) < d(z,Tx),

a contradiction and hence (2.9) holds for all x # 2. Now we show that z € T'z.
1
Assume on contrary that z ¢ Tz. Clearly, r < s implies that 2rb < 1. We
now choose a € Tz such that a # z and d(z,a) < d(z,Tz)+ (5 — 1) d(z,T).
That is
2brd(z,a) < d(z,Tz). (2.11)
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Note that
€(d(z,T2),d(z,a)) < %d(z, Tz) — d(z,a)
< d(zTz) —d(z,a) < d(z,a) — d(z,a) = 0.
Hence
H(Tz,Ta) rMg(z,a)

rmax{d(z,a),d(z,Tz),d(a,Ta),d(z,Ta),d(a, Tz)}
rmax {d(z,a),d(z,a),d(a,Ta),d(z,Ta),d(a,a)}
rmax {d(z,a),d(a,Ta),d(z,Ta)} .

VAN VANV

If max {d(z,a),d(a,Ta),d(z,Ta)} = d(a,Ta), then we have
d(a,Ta) < H(Tz,Ta) < rd(a,Ta)
which implies either a € Ta or d(a,Ta) < d(a,Ta), a contradiction. Hence
H(Tz,Ta) < rmax{d(z,a),d(z,Ta)}.
If max {d(z,a),d(a,Ta),d(z,Ta)} = d(z,Ta), then (2.9) gives that

H(Tz,Ta) rd(z,Ta)

r? max{d(z,a),d(a,Ta)}
rmax{d(z,a),d(a,Ta)}.

IN A CIA

As max{d(z,a),d(a,Ta)} = d(a,Ta), is not possible, we have
H(Tz,Ta) < rd(z,a). (2.12)
From (2.9) and (2.12), we obtain that

d(z,Ta) < rmax{d(z,a),d(a,Ta)} <rmax{d(z,a), H(Tz,Ta)} <rd(z,a).

(2.13)
Now, by (2.11), (2.12), and (2.13), we have
d(z,Tz) < bd(z,Ta)+bH(Tz,Ta)
< brd(z,a) + brd(z,a)
= 2brd(z,a) < d(z,Tz),
a contradiction. Hence z € T'z. O

Remark 2.2. We obtain Theorem 1.12 as a special case of Theorem 2.1.
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Remark 2.3. Theorem 1.13 follows from 2.1. Indeed, define the mapping

& by &(s,t) = Ms —t, where &(r) = . Clearly, £(s,t) < % —t as

; T
&(r) < 1. Take s = d(x,Tx), t = d(z,y) and

max {d(z,y), d(z, Tz),d(y, Ty), d(z,Ty),d(y, Tz)} = d(z,y).
Corollary 2.4. Let (X,d) be a complete b-metric space and T : X —»
CB(X). If for any x,y € X, d(x,Tz) < bd(x,y) implies that

H(Tz,Ty) < rmax {d(z,y),d(z,Tx),d(y, Ty), d(z, Ty), d(y, Tz)}
b2 +b
Example 2.5. Let X = {1,272, 23,74, 75} and d : X x X — RT be defined as
d(ZEl,T,Q) = d(l‘l,.i?g) = 3, d(l’l,$4) = d(1‘1,1'5) = 12, d(IQ,xs) = d(1‘3,$4) =
d(x3,x5) =9, d(xz,x4) =3, d(x2ax3) =6, d(x4,x5) =2, d(:n,x) = 0 and

d(z,y) = d(y,z) for all z,y € X. As 12 = d(x1,24) % d(z1,22) + d(x2,24) =
11, d is not a metric on X. On the other hand, (X,d) is a complete b-metric

for some r € {0, ) . Then T is a MWP operator.

12 2
space with parameter b > T > 1. Suppose that £(s,t) = % —teN r= £

121 1
Then r < 76 - Rl Define the mapping T : X — CB(X) by
{z1} if ¥ = 21, 22, 73,
Tx = {z2} if x = x4,
{23} if v = @s.

Note that H(Tz,Ty) = 0 < rMyp(z,y) for all z,y € {x1,22,23}. If x
z1 and y € {x4,25}, then HTz,Ty) = d(z,y) = 3 < 4.8 = rd(z,y)
rMr(z,y). If © = 9 and y = x4, then we have H(Txo, Txy) = d(z71,x2)
3 < 3.2 = rd(xg,mq) < rMrp(xo,24). For, x € {29,253} and y € {x4,25}, we
have H(Tx,Ty) = 3 < 3.6 = rd(z,y) < rMr(z,y). Note that

A I

11d 1
E(d(xg,Tayg),d(zg,25)) = % —d(xg,x5) = ?6 >0, and
11d(zs, 25
¢ (d(zs, Tas), d(zs, 24)) % — d(@s, z4) = 7 > 0.

Hence, for all z,y € X, we have & (d(z,Tx),d(z,y)) < 0 implies that
H(Tz,Ty) < rMr(z,y). Thus all the conditions of Theorem 2.1 are satis-
fied. On the other hand, if we take x = x4, y = x5, then we have
H(Tzy,Txs) = d(zo,23) =6 and

My (zg,25) = max{d(z4,x5),d(xs,T2s),d(x5, Txs),d(x4, Txs5),d(xs5, Trs)}

= max{d(xy,s5),d(x4,22),d(x5,x3),d(x4,x3),d(T5,22)} = 9.
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121 1
Hence H(T'z4,Txs) =6 £ 3.6 =9 = rMyp(z4,25) for any r < 76 - P 1b
Thus, Theorem 1.12 is not applicable in this case. Hence Theorem 2.1 is a
proper generalization of Theorem 1.12 which in turn generalize Theorems 1.3,

1.4 and [12, Theorem 1].

Example 2.6. Let X = {x1,22,23} and d : X x X — R be defined as
d(-r17x2) = 4; d(xl,ﬂf?,) = la d($2,1‘3) = 2a d(x,ac) =0 and d(x,y) = d(y,ﬂ?)
forallz,y € X. As 4 = d(x1,z2) % d(z1,x3) +d(z3,22) = 3, d is not a metric

4
on X. Indeed (X,d) is a b-metric space with b > 3 > 1. Define the mapping
T:X — CB(X) by

Tx = { {z1, 23} if v = 21, 23,

{z1} if © = x9.
s 3 9 1
Let £(s,t) = 3 —teNandr = 0 Clearly, r < %P If z,y €
{z1,z3}, then H(Tz,Ty) =0 < rMp(z,y). If © € {z1,23} and y = x4, then
H(Tz,Ty) = 1 < 12 < rMyr(x,y). Hence for any z,y € X,

E(d(z,Tx),d(x,y)) < 0 implies that H(Tx,Ty) < rMy(z,y). Thus, all the
conditions of Theorem 2.1 are satisfied. On the other hand, if xt = xo, y = x3,
then &3(r)d(xs, Txg) = 0 < bd(zs, x2) = 2, and H(Tx3,Txz) = d(x1,23) = 1.

9 1
So, H(Tx3,Txs) =1 £ 0.6 = 2r = rd(x3,x2) for anyr < TR
Theorem 1.13 is not applicable in this case. This implies that Theorem 2.1
is a proper generalization of Theorem 1.13 which itself is a generalization of
Theorem 1.5, and Theorem 1.3.

Hence

Corollary 2.7. Let (X,d) be a complete b-metric space and f : X — X
a Ciric-Suzuki type quasi-contractive operator. Then F(f) = {u}, and the
sequence {f"x} converges to u for any choice of an element x € X.

Proof. 1t follows from Theorem 2.1 that F'(f) is nonempty and for all z € X,
the sequence f"x — w as n — oco. To prove the uniqueness of fixed point of
fi let u,v € F(f) with u # v. Note that & (d(u, fu),d(u,v)) < d(u, fu) —
d(u,v) = —d(u,v) < 0. Thus, we have

d(u,v) = d(fu, fv) <rMs(u,v)
= rmax{d(u,v),d(u, fu),d(v, fv),d(u, fv),d(v, fu)}
= rd(u,v) < d(u,v),

a contradiction and hence F(f) is singleton. O



CHARACTERIZATION OF A B-MATRIC SPACE COMPLETENESS VIA THE
EXISTENCE OF A FIXED POINT OF CIRIC-SUZUKI TYPE
QUASI-CONTRACTIVE MULTIVALUED OPERATORS AND APLICATIONS 18

Corollary 2.8. Let (X,d) be a complete b-metric space and f : X — X.
If for any z,y € X, d(z, fx) < bd(z,y) implies that d(fx, fy) < rd(z,y) for

some r € |0, ) . Then F(f) = {u} and the sequence {f™x} converges to

1

b2 +0b
u for any choice of an element x € X.
Corollary 2.9. Let (X,d) be a complete b-metric space and f: X — X a
mapping. If there exists a £ € A and an r € [0,1) with r < ﬁ such that
E(d(x, fx),d(x,y)) < 0 implies that d(fz, fy) < rd(z,y) for all z,y € X,.
Then F(f) = {u}, and the sequence {f"x} converges to u for any choice of
an element x € X.

Proof. Tt follows from Corollary 2.7. O

Corollary 2.10. Let (X,d) be a complete b-metric space and f: X — X
a mapping. If there exists a r € [0,1) with r < ﬁ such that n(r)d(z, fz) <
bd(x,y) implies that d(fz, fy) < rd(z,y) for all z,y € X, where n : [0,1) —
(0,1]. Then F(f) = {u}, and the sequence { f"x} converges to u for any choice
of an element x € X.

Proof. Consider £(s,t) = @s —t —t. Hence £ € A. If s = d(z, fz) and
t =d(x,y) then {(d(x, fz),d(z,y)) = %s —t < 0. Hence result follows from
Corollary 2.9. O

Corollary 2.11. Let (X,d) be a complete strong b-metric space and f :
X — X a mapping. If there exists a r € [0,1) with r < ﬁ such that
n(r)d(z, fx) < bd(z,y) implies that d(fz, fy) < rd(z,y) for all x,y € X,
where n : [0,1) — (0,1]. Then F(f) = {u}, and the sequence {f"x} converges
to u for any choice of an element x € X.

Proof. Tt follows from Corollary 2.10 as every strong b-metric is b-metric. U

3 Characterization of a b-metric space completeness

Connel studied properties of fixed point sets and presented an example [15,
Example 3] of a separable and locally contractible incomplete metric space
that has a fixed point property (FPP) for contraction mappings. This shows
that BCP does not characterize metric completeness (see also [20]). Kannan
[24, 25] proved a fixed point theorem which is independent of BCP. Subrah-
manyam [38] proved that if underlying metric space X has FPP for Kannan
type contractions, then X is complete. Suzuki [39] presented a fixed point
theorem that also characterize metric completeness of X. For more details
on FPP and completeness properties of metric spaces, see [11].
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In this section, we present some results about the strong b-metric and
b-metric completeness characterizations via fixed point results obtained in
section 2.

Jovanovic et al. [23] proved the following version of BCP in b-metric spaces.

Theorem 3.1. Let (X,d) be a complete b-metric space and T : X — X a

1
map such that d(Tz,Ty) < rd(x,y) for all x,y € X and some r € [0, b)'
Then F(T) is singleton.

1
Dung et al. [19] replaced the condition 0 < r < 3 with 0 < r < 1 and

proved that BCP can be transported in b-metric spaces without imposing any
additional condition on a contraction constant 7.
They proved the following result.

Theorem 3.2. Let (X,d) be a complete b-metric space and T : X — X a
map such that d(Tx,Ty) < rd(z,y) for all x,y € X and somer € [0,1). Then
F(T) is singleton.

Park and Rhoads [32] commented on characterization of metric complete-
ness.

We present analogous comments in b-metric spaces.

Let (X,d) be a b-metric space and B a class of mappings of a b-metric
space X such that if any map in B has a fixed point then X is complete.
Let A be a class of mappings of a b-metric space X containing B such that
completeness of X implies the existence of fixed point of any map in A.

Theorem 3.3. (compare [32]) If (X,d) is a b-metric space, then
X is complete if and only if any map in A has a fized point.

Proof. If X is complete then, any map in A has a fixed point. Conversely, let
any map in A has a fixed point, then any map in B has a fixed point. Then
by assumption on B, X is complete. O

We present the following lemma that is needed to prove the main result in
this section.

Lemma 3.4. Let (X,d) be a strong b-metric space and {x,} a Cauchy se-
quence in X. Then d(z,x,) is a Cauchy sequence in R for all z in X.

Proof. Note that
d(x,2,) < d(z, ) + bd(Tm, )
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for each n,m € N. Thus, we have
|[d(z, ) — d(z, xm)| < bd(Tpm, Tn)
for each n,m € N. The result follows as {z,} is a Cauchy sequence in X. [

The following result gives the characterization of completeness of a strong
b-metric space.

Theorem 3.5. Let (X,d) be a strong b-metric space. For r € [0,1) with

r < b%w’ let A, be a class of mappings T' on X which satisfies the following

(a) For any z,y € X
n(r)d(xz, Tx) < bd(z,y) implies that d(Tx, Ty) < rd(z,y) (3.1)
where n: [0,1) — (0,1].

Let By, be the class of mappings T on X satisfying (a) and the following:
(b) T(X) is countably infinite.
(c) Ewvery subset of T(X) is closed.

Then the following are equivalent:
(i) (X,d) is complete,
(ii) Every mapping T € A, has a fized point for all v € [0,1) with r < ﬁ.

(iii) There exists anr € (0,1) withr < ﬁ such that every mapping T' € B,
has a fixed point.

Proof. Tt follows from Corollary 2.11 that (i) implies (ii). As By, C A, so
(ii) implies (iii). We now show that (iii) implies (i). Suppose that (X,d) is
not complete. That is, there exists a Cauchy sequence {u,} which does not
converge. Define a function f : X — [0,00) by f(z) = nhHH;O d(x,uy,) forx € X.
By Lemma 3.4, {d(x,u,)} is a Cauchy sequence in R for each z € X. Hence
f is well defined. Note that f(z) > 0 for every =z € X and nlingo fluy,) = 0.

Consequently, for every x € X there exists a v € N such that

Fluy) < (%_’Z(;()) f). (32)
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Define T'(z) = u,. Then

f(Tz) < <3b3r—|7z(:7)7(r)> f(z) and Tz € {u, : n € N} (3.3)

for all x € X. From (3.3), we have f(Tz) < f(z), and hence Tx # z for all
x € X. That is, T has no fixed point. As T(X) C {u, : n € N}, so (b) holds.

It is easy to show that (c) holds. Note that, for all z,y € X
f(@) = f(y) < bd(z,y)
fy) = f(x) < bd(z,y)
f(x) — f(Txz) < bd(x, Tx) and
d

(Tz, Ty) < f(Tx) + bf (Ty).
<

Fix z,y € X such that n(r)d(z, Tx)
Observe that

bd(x,y). We now show that (3.1) holds.

atw.0) > W ae 7y > W (4(2) - ()
n(r) rn(r) _3bn(r) (3.4)
2 7 (1 g oy ) 1) = 55 Ly
We now divide the proof in two cases.
Case (1) Suppose that f(y) > 2bf(x). Then
dTz,Ty) < f(Tz)+bf(Ty)

ri(r) brn(r)

T o LT g g

< gyt fo) 4 gy - 2p0) = 1 (o G fu+ 2y = o)

= 3b YT gy 3R TR T

<5 (3rv-ira) < (Grv-jra) < vato)
Case (2) If f(y) < 2bf(x), then by (3.4) we have

d(Tz,Ty) < bf(Tz)+ f(Ty)
bra(r) ot (r) f

IN

303 + 7“7](7') 33 + 7“77(7“)
bri(r) 2brn(r)
= W) e
Sbrn(r) oy 300 e e y).

365 +rn(r)’ * T 368 1 ()
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Hence n(r)d(z, Tx) < bd(x,y) implies that
d(Tz, Ty) < rd(z,y)

for all z,y € X. From (iii), a mapping T has a fixed point which gives a
contradiction. Hence X is complete and consequently (iii) implies (i). O

Remark 3.6. Let {z,} be a Cauchy sequence in a b— metric space X. If {x,}
is convergent to some u € X, then for any x € X, {d(z,x,)} is convergent
in R and hence Cauchy in R. If {x,} is not convergent, then from triangular
inequality of b-metric, it does not follow necessarily the Cauchyness of d(x, x,,)
in R. Assume that F is the class of b-metrics d and for any Cauchy sequence
{zn} in X and for any x in X, {d(z,x,)} is Cauchy in R. Consider a metric
space (X, p) with d(z,y) = (p(x,y))? for p > 1. Then d is a b-metric on X
(see [26]). Hence F is nonempty.

Now we present the following result which deals with characterization of a
completeness of b-metric space.

Theorem 3.7. Let (X,d) be a b-metric space such that d € F. Forr €

[0,1) with r < %%’ let A, be a class mappings T on X which satisfies the

following:
(a) Forz,ye X
n(r)d(z, Tx) < bd(x,y) implies that d(Tx, Ty) < rd(z,y) (3.5)
where n : [0,1) — (0,1].

Let By, be the class of mappings T on X satisfying (a) and the following
conditions:

(b) T(X) is countably infinite.
(c) Every subset of T(X) is closed.
Then the following are equivalent:
(1) (X,d) is complete,
(ii) Every mapping T € A, has a fized point for all v € [0,1) with r < b%rb.

(iii) There exists anr € (0,1) withr < b271+b such that every mapping T € B, ,,
has a fized point.



CHARACTERIZATION OF A B-MATRIC SPACE COMPLETENESS VIA THE
EXISTENCE OF A FIXED POINT OF CIRIC-SUZUKI TYPE
QUASI-CONTRACTIVE MULTIVALUED OPERATORS AND APLICATIONS 23

Proof. By Corollary 2.10 (i) implies (ii). As By, C A, so we have (ii)
implies (ili). Now we prove that (iii) implies (i). Assume that (iii) holds.
Suppose that (X, d) is not complete. Define the function f : X — [0,00) by
flz) = nl;ngo d(x,uy) for x € X. By given assumption, {d(x,u,)} is a Cauchy
sequence in R for each x € X. Hence f is well defined. Note that f(x) > 0 for
every x € X and nh_)n;o f(u,) = 0. Consequently, for every = € X, there exists

a v € N such that

) < (gt ) £(o) (3.6

Define T'(x) = u,, then we have

f(Tx) < (35417(:5)77(7")> f(z) and Tz € {u,, : n € N} (3.7)

for all z € X. The rest of the proof is obtained following similar arguments to
those arguments similar to those in the proof of Theorem 3.7. O

4 Coincidence and common fixed point of hybrid pair of
Ciric-Suzuki type quasi-contractive operators

In this section, we apply Theorem 2.1 to obtain the existence of coincidence
and common fixed point of hybrid pair of Ciric-Suzuki type quasi-contractive
multivalued operators and single-valued self mappings in the setup of b-metric
spaces.

Theorem 4.1. Let (X, d) be a b-metric space and (f,T) a Ciric-Suzuki type
quasi-contractive hybrid pair with T(X) C f(X) and f(X) a complete subspace
of X. Then C(f,T) is nonempty. Furthermore, F(f,T) is nonempty if any
of the following conditions hold:

Ci1- The hybrid pair (f,T) is w—compatible, lim f™(x) = u for some u € X
n—oo
and x € C(f,T) and f is continuous at u.

Ca- The mapping f is T—weakly commuting at some x € C(f,T) and f?x =
fx.
Cs- The mapping [ is continuous at at some x € C(f,T) and lim f"(u) ==z
n—oo
for some u € X.

Proof. By Lemma 1.6, there is a set £ C X such that f : E — X is one-to-one
and f(F) = f(X). Define the mapping T : f(E) —» CB(X) by Tfzx = Tz for
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all f(x) € f(F). The mapping T is well defined because f is one-to-one. As
(f,T) is Ciric-Suzuki type quasi-contractive hybrid pair, for any =,y € X

§(d(fx,Tx),d(fz, fy)) <0
implies that

H(Tz,Ty) < rmax{d(fx, fy),d(fz,Tz),d(fy, Ty),d(fz,Ty), d(fy7Tx()} :
4.1

for some 1 € [0, bQi—b) and £ € A. Thus for all fz, fy € f(E),

implies the

{ E(d(fz,Tfx),d(fz, fy)) <O
H(Tfx, Tfy) < rmax{d(fz, fy),d(fz,Tfzx),d(fy, Tfy),d(fz,Tfy),d(fy, Tfzx)}

1
for some r € |0, b2+b> and £ € A. As f(X) is complete so is f(E). It follows

from Theorem 2.1 that the mapping 7 on f(E) is MWP operator. Thus we
may choose a point u € f(F) such that u € Ju. Since u € f(F) = f(X), there
exists ¢ € X such that fo = u. Hence fa € Tfx = Tz, thatis, x € C(f,T). To
prove F(f,T) # 0: Suppose that (C;) holds. Now, lim f"(x) = u for some
n—oo
u € X and the continuity of f at w imply that fu = v and hence lim f"(x) =
n—oo
fu. From w—compatibility of a pair (f,T), we have f"(x) € T (f"(x)), that is
f™"(xz) € C(f,T) for all n € N. Suppose that f™(z) # f(u) for all n. Indeed, if
f™(z) = f(u) for some n, then we have u = fu = f*(z) € T(f* *(z)) = T'(u)
and hence the result. Note that

E(d(f™ (), T (f* (@), d(f " (2), fu))
< (@) T (@) — A (@), Fu) = 0 — (5 (@), Fu) < 0.
Hence

d(f"z,Tu) < H(Tf" ‘'z, Tu)

< rmax {d(f”av7 fu),d(fx, Tf* ), d(fu, Tu), d(f"z, Tu),d( fu, Tf”_lx)}
< rmax{d(f"z, fu),d(f"z, f"z),d(fu, Tu),d(f"x, Tu),d(fu, f"x)}

< rmax{d(f "z, fu),d(f"x, f"x),d(fu, Tu),d(f "z, Tu),d(fu, ffz)}.

On taking limit as n — oo on both sides of the above inequality, we obtain that
d(fu,Tu) < rd(fu,Tu). Hence d(fu,Tu) = 0 implies that u = fu € Tu. That
is, F(f,T) is nonempty. If (Cy) holds, then f2z = fx for some x € C(f,T).

Also, f is T—weakly commuting, fr = f2r € Tfz. Hence fo € F(f,T). If
(C3) holds , then we have li_>m f™(u) = x for some v € X and z € C(f,T).

Y
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By continuity of f, * = fax € Tz. Hence in all the three cases, we have

F(f,T) # 0. O

Corollary 4.2. Let (X,d) be a b-metric space, f: X — X, T : X - CB(X)
with T(X) C f(X) and f(X) a complete subspace of X. If for any x,y € X

§(d(fz, Tx),d(fz, fy)) <0 implies that H(Tz,Ty) < rd(fz, fy)

1
where r < b and & € A. Then C(f,T) is nonempty. Furthermore, F(f,T)
is nonempty if any of the following conditions hold:
C4- The hybrid pair (f,T) is w—compatible, li_}rn f™(x) =u for someu e X
n oo

and z € C(f,T) and f is continuous at u.

Cs- The mapping f is T—weakly commuting at some x € C(f,T) and f*x =
fx.
Cs- The mapping f is continuous at at some x € C(f,T) and lim f™(u) =z
n—oo

for some u € X.

5 Stability and uniform convergence results

In this section, we find an upper bound of Hausdorff distance between the fixed
point sets of two Ciric-Suzuki type quasi-contractive multivalued operators
and then study the uniform convergence of such sets in the setup of b-metric
spaces.

Theorem 5.1. Let (X,d) be a complete b-metric space and Ty, Ty : X —
P(X). Suppose that T; is Ciric-Suzuki type quasi-contractive multivalued op-
erator for each i € {1,2}. If there exists A > 0 such that

for all x € X. Then F(T;) is closed subset of X and T; is a MWP operator
for each i € {1,2}. Also, the following holds:

A
HF(T),F(T) < ——— 2
(F(T), F(T2)) € T (5:2)
i€{1,2}
where
’Yizlﬁiﬁgﬁi, Bi =ri+ ay, Gndai;(bgl_i_bﬁ) forie{1,2}.
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Proof. By Theorem 2.1, F(T;) is nonempty for each i € {1,2}. Let {z,,} be
a sequence in F(Ty) such that 2, — z as n — co. Note that
1
Ed(xn,Tlxn) —d(z,xn)
d(xp, Thxy) — d(z,xy)

d(xp, Tn) —d(z,2y) = —d(z,2,) <0.

E(d(xn, Tixy),d(z, x))

ININ A

Hence, we have

d(z,Thz) < bd(z,xn)+bd(zy,T1z)
<bd(z,zn) +0H(T1 2z, Thzy)
< bd(z, ) 4+ bry max{d(z, z,),d(z,T12),d(T1Zn, Tn),d(xn, T12),d(z, T12,) }
< bd(z, ) + bry max{d(z, x,),d(z,T1z), d(xn, T12) }.

On taking the limit as n — oo we obtain that

d(z,T1z) < brid(z,T1z) < d(z,T1z).

1
b+1
As b >1,s0d(z,Thz) =0, that is, z € Ty z. Hence F(T}) is closed. Similarly,
F(Ty) is a closed subset of X. Following arguments similar to those in the
proof of Theorem 2.1, we conclude that T; is MWP operator for each i € {1, 2}.

1
We now show that (5.2) holds for all  in X. Asr; < b < 1, there exist
1

M) which giVeS that

1 1
ri+oa= bQ+b

We set 8; = r; + ;. Note that 0 < 5; < 1 and «; > 0. Following arguments
similar to those in the proof of Theorem 2.1 with z¢ € F(T1) and z1 € Texy,
we obtain a Cauchy sequence {z,} in X such that x,41 € Thx, for alln > 1
and it satisfies:

i 1
o; € Rt such that g+ai:2<

d(Tn, Tpi1) < V2d(Trn—1,Zn)

and

d(xnvxn+1) S '72d(xn717$n) S (’72)2 d(xnf%'rnfl) S S (’72)71 d(fEnyl)'
(5.3)
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b2

1 -5
and u € Tou. From (5.3), we obtain that

where vy, = . We choose an element « in X such that x,, — uwasn — co

d(@n, Tnip)  <bAd(Tn, Tntr) + .. + bpild(xnﬂ?f?v Tnip-1) + bpild(mnﬂ?fla Tntp)
<byyd(zo,z1) + ... + bp7173+p72d(m0,m1) + bp717§+p71d(xo,x1)

N o 1 _
< by d(wo, 1) (1+bvz+-.-+(bvz)P g (o) 1)

<bysd(zo, 1) (14 bya + ... + (b72)P 2 + (by2)" ")

)" (1= (b))
- 1-— b’}/Q

(zo,1).

Thus, we have

(by2)" (1 = (72)")

A(zy, Tntp) < T b d(xo,1). (5.4)
On taking limit as p — oo on both sides of the above inequality, we have
b n
d(zp,u) < 1<—72b)72 d(zo, x1). (5.5)

Also, from (5.1) and (5.5), we have

A
d < d < . 5.6
(Z'O,U) — l—b’}/Q (1.07‘%.1) — 1_b,_Y2 ( )
Similarly, for each zg € Thzg, we get v € Tiv such that
A
d < d < . .
(20,v) < 1— by (20,21) < 1— by (5.7)
It follows from (5.6), (5.7) and Lemma 1.11 that
H(Fiz(Ty), Fiz(Ty)) < A _ A
1 2 = 1 —max{by;,by} 1—b max v;
i€{1,2}
O

The following theorem generalizes the results in [30, 37] for a sequence of
Ciric-Suzuki type quasi-contractive multivalued operators in b-metric spaces.

Theorem 5.2. Let (X, d) be a complete b-metric space and T, : X — P(X),

a sequence of Ciric-Suzuki type quasi-contractive multivalued operator for each

n € N. If{T},} converges to Ty uniformly on X, then lim H(F(T,), F(1p)) =
n—oo

0.
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Proof. Let ~; for each i € N* be as given in the proof of Theorem 5.1. Then
~v; > 0 for i € N* and bm%x vi < 1. As {T},} converges to Ty uniformly on X,
1EN*

so for any € > 0, there exists an integer ng € N such that

sup H(T,, (z),Tp (z)) < (1 - bmax%) €
reX ieN*

for all n > ng. If we set, A = [1— bm%x'yi e, then H(T, (z),Tp (x)) < A
1eN*
for all n > ng and = € X. By Theorem 5.1, we have
A

1-0 ;

for all n > ng. O

H(F(Ty), F(To)) < =c

6 Multivalued fractals in b-metric spaces

Let (X, d) be a b-metric space and T; : X — K(X), where K(X) a collection
of nonempty compact subsets of X.

The system T = (T, Ty, ..., T}) is called an iterated multifunction system
(briefly IMS). If T; is upper semicontinuous for each i = 1,2, ..., k, then the

k
single valued operator J7 : K(X) — K(X) defined by Tr(A) = | Ti(4)
i=1

is called multi fractal generated by the IMS T = (71,75, ...,T}). Since the
image of a compact set under an upper semicontinuous multivalued mapping
is compact, therefore operator T is well defined ([8, 10, 14]).

A set A € K(X) is called multivalued fractal with respect to IMS T =
(T4, Ty, ..., Tp) if and only if A € F(Tr).

Theorem 6.1. Let (X,d) be a b-metric space and T; : X — K(X) upper
semicontinuous multivalued operators for each i € {1,2,...,k}. Suppose that
for any x,y € X,

& (d(z, Tix),d(z,y)) <0 implies that

H(Tix7 le) < T max {d($7 y)7 d(l’, le)> d(y7 CZ—‘Z',L‘)}

1 1
D for each i € {1,2,....k} and £ € A. If gd(m,Tix) < d(z,y)
forallz € A,y € B andi € {1,2,....,k}. Then Tp : (K(X),H) — (K(X),H)
is a Cliric-Suzuki type quasi-contractive operator, that is

E(H(A,TrA),H(A, B)) <0 implies that

H(T7A,TrB) < rmax {H(A, B), H(A,TrA), H(B,TrB), H(A, TrB), H(B, TrA)}
(6.1)

where r; <
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forall A, B € K(X). Also, there exists a unique multivalued fractal Ae K(X)
such that li_>m H(THEA,A) =0 for every A € K(X).
n—oo

1
Proof. For each i € {1,2,...,k}, we have gd(x,Ti:c) < d(z,y) for all z €
A,y € B. Thus ¢ (d(z, T;z),d(z,y)) <0 for all x € A,y € B. Hence, for each
ie€{1,2,..,k}
H(Tiz,Tiy) < rymax {d(z,y), d(z, T;z), d(y, Tiy), d(z, Tiy), d(y, Tz)}  (6.2)

for all x € A,y € B. By (6.2), we have

0(T;A,T;B) = sup (mf 0(T;x, Ty))
€A

= sup mf 0(Tix, Tyy) < sup mf H(T;z, Tyy)
rEAYE z€AYE

< sup mf r; max {d(z,y),d(z, T;y),d(y, T;x)}
z€AY

zeAYE r€EAYE z€AYED
< r;max{d(4, B),5(A,T;B),5(B, T; A)}
=r;max {6(A, B),5(A,TrB),5(B,TrA)}
<r;max{H(A,B),H(A,TJrB),H(B,TrA)}
< rimax {H(A, B), H(A, TrA), H(B,TrB), H(A, TrB), H(B, TrA)}
for all A, B € K(X), for each i € {1,2,...,k}. That is,

(S(TzA, TlB) § T max {H(A, B), ]:I(A7 ‘TTA), H(B, TTB), H(A, (ITB), H(B, TTA)}
(6.3)

< r; max {sup inf d(z,y), sup in]f3 d(z,T;y), sup inf d(y,Tac)}

N

for all A, B € K(X), for each i € {1,2,...,k}. Similarly,

5(TZB,T1A) S r; max {I{(A7 B), H(A, TTA), H(B,':TTB), H(A, “TTB)7 H(B,TTA)}
(6.4)
for all A,B € K(X), for each i € {1,2,...,k}. Also, from (6.3) and (6.4) we
obtain that

H(T;A, T;B) <r;max{H(A,B),H(A,TrA),H(B,TrB), H(A,TrB), H(B,TrA)}
(6.5)
for all A, B € K(X), for each i € {1,2,...,k}. Note that

k k
H <U T A, | TiB> < max {H(T,AT,B)}

,,,,,

IA
LB 7
B

_(rimax {H(A, B), H(A,TrA), H(B,TrB), H(A, TrB), H(B,Tr A)})

A
I~
:
»

k”) max {H (A, B), H(A,TrA), H(B,TrB), H(A, 71 B), H(B,Tr A)} .
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Hence

H(TrA,TrB) < rmax {H(A, B), H(A, TrA), H(B,TrB), H(A, TrB), H(B, Tr A)}
where, r = ie{glz%fk} r;. Consequently, £ (H(A,TrA), H(A, B)) <0 implies
that

H(TrA,TrB) < rmax {H (A, B), H(A, TpA), H(B,TrB), H(A,Tr B), H(B,Tr A)}

for all A, B € K(X). It now follows from Corollary 2.7 that F(TJr) = {A}
and 1i_>m H(ThA,A) =0 for every A € K(X). O
n—oo
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