

# On the generators of a generalized numerical semigroup

Carmelo Cisto, Gioia Failla and Rosanna Utano

#### Abstract

We give a characterization on the sets  $A \subseteq \mathbb{N}^d$  such that the monoid generated by A is a generalized numerical semigroup (GNS) in  $\mathbb{N}^d$ . Furthermore we give a procedure to compute the hole set  $\mathbb{N}^d \setminus S$ , where S is a GNS, if a finite set of generators of S is known.

## 1 Introduction

Let  $\mathbb N$  be the set of non negative integers. A numerical semigroup is a submonoid S of  $\mathbb N$  such that  $\mathbb N\setminus S$  is a finite set. The elements of  $H(S)=\mathbb N\setminus S$  are called the holes of S (or gaps) and the largest element in H(S) is known as the Frobenius number of S, denoted by F(S). The number g=|H(S)| is named the genus of S. It has been proved that every numerical semigroup S has a unique minimal set of generators G(S), that is in S every element is a linear combination of elements in G(S) with coefficients in  $\mathbb N$ . Furthermore the set of minimal generators of a numerical semigroup is characterized by the following: the set  $\{a_1,a_2,\ldots,a_n\}$  generates a numerical semigroup if and only if the greatest common divisor of the elements  $a_1,a_2,\ldots,a_n$  is 1. For the background on this subject, a very good reference is [9].

In [3] it is provided a straightforward generalization of numerical semigroups in  $\mathbb{N}$  for submonoids of  $\mathbb{N}^d$ : a monoid  $S \subseteq \mathbb{N}^d$  is called a generalized numerical semigroup (GNS) if  $H(S) = \mathbb{N}^d \setminus S$ , the set of holes of S, is a finite set. Also

Received: 27.01.2018 Accepted: 27.04.2018

Key Words: Generalized numerical semigroup, minimal generators. 2010 Mathematics Subject Classification: Primary 20M14, 05A15; Secondary 05A16, 1D07.

in this case the cardinality of  $\mathbb{N}^d \setminus S$  is called the *genus* of S. In [3] the tree of generalized numerical semigroups is efficiently calculated up to a given genus and asymptotic properties of the number of generalized numerical semigroups of a given genus are discussed. In this paper we want to extend some ideas and results for classical numerical semigroups to generalized numerical semigroups. We study basic properties of a GNS in order to characterize its minimal system of generators. More precisely, in Section 2 we prove first that every GNS in  $\mathbb{N}^d$  has a unique minimal system of generators. Then we investigate under which conditions a finite set  $A \subseteq \mathbb{N}^d$  generates a GNS. In Section 3, by using a connection between submonoids of  $\mathbb{N}^d$  and power series expansions of rational functions, we deduce an algorithm to compute the set of holes of a GNS, if a finite set of generators of S is given.

## 2 Minimal generators

Throughout the paper we denote by  $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_d$  the standard basis vectors in  $\mathbb{R}^d$  (that is, for  $i = 1, \dots, d$ ,  $\mathbf{e}_i$  is the vector whose i-th component is 1 and the other components are zero). Furthermore, if  $A \subseteq \mathbb{N}^d$ , we denote  $\langle A \rangle = \{\lambda_1 \mathbf{a}_1 + \dots + \lambda_n \mathbf{a}_n \mid \lambda_1, \dots, \lambda_n \in \mathbb{N}, \mathbf{a}_1, \dots, \mathbf{a}_n \in A\}$ , that is the submonoid of  $\mathbb{N}^d$  generated by the set A. Moreover if  $\mathbf{t} \in \mathbb{N}^d$ , its i-th component is denoted by  $t^{(i)}$ .

**Lemma 2.1.** [9, Lemma 2.3] Let S be a submonoid of  $\mathbb{N}^d$ . Then  $S^* \setminus (S^* + S^*)$  is a system of generators for S. Moreover, every system of generators of S contains  $S^* \setminus (S^* + S^*)$ .

**Lemma 2.2.** Let S be a GNS of genus g with  $H(S) = \{\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_{g-1}, \mathbf{h}\}$ . Let  $\mathbf{h}$  be a maximal element in H(S) with respect to the natural partial order in  $\mathbb{N}^d$ . Then  $S' = S \cup \{\mathbf{h}\}$  is a GNS, in particular  $H(S') = \{\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_{g-1}\}$  and S' has genus g - 1.

Proof. Let  $S' = \langle S \cup \{\mathbf{h}\} \rangle$ . S' is a GNS since  $S \subseteq S' = \langle S \cup \{\mathbf{h}\} \rangle$ , in particular  $H(S) \supseteq H(S')$ . Let us prove that S' has genus g-1. We suppose there exists  $\mathbf{h}_j \in H(S)$ ,  $j \in \{1, \ldots, g-1\}$ , such that  $\mathbf{h}_j \in S' = \langle S \cup \{\mathbf{h}\} \rangle$ . Then  $\mathbf{h}_j = \sum_k \mu_k \mathbf{g}_k + \lambda \mathbf{h}$ , with  $\mathbf{g}_k \in S$ . If  $\lambda = 0$  then  $\mathbf{h}_j \in S$ , contradiction. If  $\lambda \neq 0$  then  $\mathbf{h}_j \geq \mathbf{h}$  against the maximality of  $\mathbf{h}$  in H(S). So  $\mathbf{h}_j \notin S'$  for  $j \in \{1, \ldots, g-1\}$ , hence  $H(S') = \{\mathbf{h}_1, \mathbf{h}_2, \ldots, \mathbf{h}_{g-1}\}$ .

**Proposition 2.3.** Every GNS admits a finite system of generators.

*Proof.* Let  $S \subseteq \mathbb{N}^d$  be a GNS. We prove the statement by induction on the genus g of S. If g = 0 then  $S = \mathbb{N}^d$ , that is generated by the standard basis vectors  $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_d\}$ . Let  $S \subseteq \mathbb{N}^d$  be a GNS of genus g + 1 and let  $\mathbf{h}$  be a

maximal element in H(S) with respect to the natural partial order in  $\mathbb{N}^d$ . By Lemma 2.2  $S' = S \cup \{\mathbf{h}\}$  is a GNS in  $\mathbb{N}^d$  of genus g, that is finitely generated by induction hypothesis. Hence let G(S') be a finite system of generators for S'. We have  $\mathbf{h} \in G(S')$  because  $\mathbf{h}$  cannot belong to S. So  $G(S') \subset S \cup \{\mathbf{h}\}$  and we can denote  $G(S') = \{\mathbf{g_1}, \mathbf{g_2}, \dots, \mathbf{g_s}, \mathbf{h}\}$  with  $\mathbf{g_i} \in S$  for every  $i = 1, 2, \dots, s$ . Let  $\mathcal{B} = \{\mathbf{g_1}, \dots, \mathbf{g_s}, \mathbf{h} + \mathbf{g_1}, \mathbf{h} + \mathbf{g_2}, \dots, \mathbf{h} + \mathbf{g_s}, 2\mathbf{h}, 3\mathbf{h}\}$ . By the maximality of  $\mathbf{h}$  in H(S) we have  $\mathcal{B} \subset S$  and furthermore it is easy to prove that  $\mathcal{B}$  is a system of generators for S. Hence S is finitely generated.

Corollary 2.4. Every GNS admits a unique finite system of minimal generators.

*Proof.* By Lemma 2.1 every GNS admits a unique system of minimal generators, that is  $S^* \setminus (S^* + S^*)$ , which is contained in every system of generators. By Proposition 2.3 such a system of generators is finite.

**Definition 2.5.** Let  $\mathbf{t} \in \mathbb{N}^d$ , we define the set  $\pi(\mathbf{t}) = {\mathbf{n} \in \mathbb{N}^d \mid \mathbf{n} \leq \mathbf{t}}$  where  $\leq$  is the natural partial order defined in  $\mathbb{N}^d$ .

**Remark 2.6.** Notice that for every  $\mathbf{t} \in \mathbb{N}^d$  the set  $\pi(\mathbf{t})$  is finite and it represents the set of integer points of the hyper-rectangle whose vertices are  $\mathbf{t}$ , its projections on the coordinate planes, the origin of axes, and the points in the coordinate axes  $(t^{(1)}, 0, \dots, 0), (0, t^{(2)}, 0, \dots, 0), \dots, (0, \dots, 0, t^{(d)})$ . If  $\mathbf{s} \notin \pi(\mathbf{t})$  then  $\mathbf{s}$  has at least one component larger than the respective of  $\mathbf{t}$ .

**Lemma 2.7.** Let  $S \subseteq \mathbb{N}^d$  be a monoid. Then S is a GNS if and only if there exists  $\mathbf{t} \in \mathbb{N}^d$  such that for all elements  $\mathbf{s} \notin \pi(\mathbf{t})$  then  $\mathbf{s} \in S$ .

Proof. Let S be a GNS in  $\mathbb{N}^d$  whose hole set is  $H(S) = \{\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_g\}$ . Let  $t^{(i)} \in \mathbb{N}$  be the largest number appearing in the i-th coordinate of elements in H(S) for  $i \in \{1, \dots, d\}$ , in other words  $t^{(i)} = \max\{h_1^{(i)}, h_2^{(i)}, \dots, h_g^{(i)}\}$ . It is easy to see that  $\mathbf{t} = (t^{(1)}, t^{(2)}, \dots, t^{(d)}) \in \mathbb{N}^d$  fulfils the thesis. Conversely, let  $\mathbf{t} \in \mathbb{N}^d$  be an element such that for every  $\mathbf{s} \notin \pi(\mathbf{t})$  it is  $\mathbf{s} \in S$ . Therefore if  $\mathbf{h} \in \mathbb{N}^d \setminus S$  then  $\mathbf{h} \in \pi(\mathbf{t})$ , that is  $(\mathbb{N}^d \setminus S) \subseteq \pi(\mathbf{t})$  and since  $\pi(\mathbf{t})$  is a finite set then S is a GNS.

For the proof of the next theorem, that is the main result of this paper, we consider that the Frobenius Number of  $\mathbb{N}$  (the trivial numerical semigroup) is 0, although it is usually defined to be -1 in the existing literature.

**Theorem 2.8.** Let  $d \geq 2$  and let  $S = \langle A \rangle$  be the monoid generated by a set  $A \subseteq \mathbb{N}^d$ . Then S is a GNS if and only if the set A fulfils each one of the following conditions:

- 1. For all j = 1, 2, ..., d there exist  $a_1^{(j)} \mathbf{e}_j, a_2^{(j)} \mathbf{e}_j, ..., a_{r_j}^{(j)} \mathbf{e}_j \in A$ ,  $r_j \in \mathbb{N} \setminus \{0\}$ , such that  $GCD(a_1^{(j)}, a_2^{(j)}, ..., a_{r_j}^{(j)}) = 1$  (that is, the elements  $a_i^{(j)}$ ,  $1 \le i \le r_i$ , generate a numerical semigroup).
- 2. For every  $i, k, 1 \leq i < k \leq d$  there exist  $\mathbf{x}_{ik}, \mathbf{x}_{ki} \in A$  such that  $\mathbf{x}_{ik} = \mathbf{e}_i + n_i^{(k)} \mathbf{e}_k$  and  $\mathbf{x}_{ki} = \mathbf{e}_k + n_k^{(i)} \mathbf{e}_i$  with  $n_i^{(k)}, n_k^{(i)} \in \mathbb{N}$ .

*Proof.*  $\Rightarrow$ ) If A does not satisfy the first condition for some j then there exist infinite elements  $a\mathbf{e}_i$ ,  $a \in \mathbb{N} \setminus \{0\}$ , which do not belong to S. If A does not satisfy the second condition for some  $i \neq j$ , then there are infinite elements  $\mathbf{e}_i + n\mathbf{e}_k$  with  $n \in \mathbb{N} \setminus \{0\}$  which do not belongs to S.  $\Leftarrow$ ) For every j = 1, 2, ..., d, let  $S_j$  be the numerical semigroup generated by

 $\{a_1^{(j)}, a_2^{(j)}, \dots, a_{r_j}^{(j)}\}$ . We denote with  $F^{(j)}$  the Frobenius number of  $S_j$ . It is easy to verify that for all  $n \in \mathbb{N} \setminus \{0\}$ , the element  $(F^{(j)} + n)\mathbf{e}_j \in \mathbb{N}^d$  belong to S. Let  $\mathbf{v} = (v^{(1)}, v^{(2)}, \dots, v^{(d)}) \in \mathbb{N}^d$  be the element defined by

$$v^{(j)} = \sum_{\substack{i=1\\i\neq j}}^{d} F^{(i)} n_i^{(j)} + F^{(j)}$$

for any j = 1, 2, ..., d. Let us prove that  $\mathbf{x} \in S$  for all  $\mathbf{x} \notin \pi(\mathbf{v})$  so, by Lemma 2.7, S is a GNS.

Let  $\mathbf{x} = (x^{(1)}, x^{(2)}, \dots, x^{(d)}) \in \mathbb{N}^d$  such that  $x^{(j)} > v^{(j)}$  for some  $j \in \{1, \dots, d\}$ .

Then there exists  $m_j \in \mathbb{N} \setminus \{0\}$  such that  $x^{(j)} = v^{(j)} + m_j$ . If  $k_1, k_2, \dots, k_r \in \{1, 2, \dots, d\} \setminus \{j\}$  are such that  $x^{(k_i)} \leq F^{(k_i)}$  for every  $i \in \{1, 2, \dots, r\}$ , so  $x^{(k_i)} n_{k_i}^{(j)} \leq F^{(k_i)} n_{k_i}^{(j)}$  for every  $i = 1, \dots, r$ , then for every i there exists  $p_i \in \mathbb{N}$  such that  $F^{(k_i)} n_{k_i}^{(j)} = x^{(k_i)} n_{k_i}^{(j)} + p_i$ .

Moreover let  $h_1, \dots, h_s \in \{1, \dots, d\} \setminus \{j\}$  be the components of  $\mathbf{x}$  such that

 $x^{(h_i)} > F^{(h_i)}$  for every  $i \in \{1, \dots, s\}$ , hence  $x^{(h_i)} \mathbf{e}_{h_i} \in S$ , for all i.

Then we consider the following equalities:

$$\mathbf{x} = \sum_{i=1}^{d} x^{(i)} \mathbf{e}_{i} = \sum_{i=1}^{r} x^{(k_{i})} \mathbf{e}_{k_{i}} + \sum_{i=1}^{s} x^{(h_{i})} \mathbf{e}_{h_{i}} + x^{(j)} \mathbf{e}_{j}$$

$$= \sum_{i=1}^{r} x^{(k_{i})} \mathbf{e}_{k_{i}} + \sum_{i=1}^{s} x^{(h_{i})} \mathbf{e}_{h_{i}} + \left(\sum_{i \neq j}^{d} F^{(i)} n_{i}^{(j)} + F^{(j)} + m_{j}\right) \mathbf{e}_{j}$$

$$= \sum_{i=1}^{r} \left(x^{(k_{i})} \mathbf{e}_{k_{i}} + F^{(k_{i})} n_{k_{i}}^{(j)} \mathbf{e}_{j}\right) + \sum_{i=1}^{s} x^{(h_{i})} \mathbf{e}_{h_{i}} + \left(\sum_{i=1}^{s} F^{(h_{i})} n_{h_{i}}^{(j)} + F^{(j)} + m_{j}\right) \mathbf{e}_{j}$$

$$= \sum_{i=1}^{r} \left(x^{(k_{i})} \mathbf{e}_{k_{i}} + (x^{(k_{i})} n_{k_{i}}^{(j)} + p_{i}) \mathbf{e}_{j}\right) + \sum_{i=1}^{s} x^{(h_{i})} \mathbf{e}_{h_{i}} + \left(\sum_{i=1}^{s} F^{(h_{i})} n_{h_{i}}^{(j)} + F^{(j)} + m_{j}\right) \mathbf{e}_{j}$$

$$= \sum_{i=1}^{r} x^{(k_{i})} \left(\mathbf{e}_{k_{i}} + n_{k_{i}}^{(j)} \mathbf{e}_{j}\right) + \sum_{i=1}^{s} x^{(h_{i})} \mathbf{e}_{h_{i}} + \left(\sum_{i=1}^{s} F^{(h_{i})} n_{h_{i}}^{(j)} + \sum_{i=1}^{r} p_{i} + F^{(j)} + m_{j}\right) \mathbf{e}_{j}.$$

Therefore  $\mathbf{x}$  is a sum of elements in S (note that the first sum is a linear combination of elements in A, whose coefficients are non negative integers). So S is a GNS.

**Corollary 2.9.** Let  $S \subseteq \mathbb{N}^d$  be a GNS and let A be a finite system of generators of S. With the notation of the previous theorem for the elements in A, let  $S_j$  be the numerical semigroup generated by  $\{a_1^{(j)}, a_2^{(j)}, \dots, a_{r_j}^{(j)}\}$  and  $F^{(j)}$  the Frobenius number of  $S_j$ , for  $j = 1, \dots, d$ . Let  $\mathbf{v} = (v^{(1)}, v^{(2)}, \dots, v^{(d)}) \in \mathbb{N}^d$  defined by:

$$v^{(j)} = \sum_{i \neq j}^{d} F^{(i)} n_i^{(j)} + F^{(j)}.$$

Then  $H(S) \subseteq \pi(\mathbf{v})$ .

*Proof.* It easily follows from the proof of Theorem 2.8.  $\Box$ 

**Example 2.10.** Let  $S \subseteq \mathbb{N}^4$  be the GNS generated by  $A = \{(1,0,0,0), (1,0,0,1), (0,1,0,0), (0,1,0,1), (0,0,2,1), (0,0,0,2), (0,0,1,3), (0,0,0,5)\}.$  Actually S is a GNS and its hole set is  $H(S) = \{(0,0,0,1), (0,0,0,3), (0,0,1,1)\}.$  Let us verify that the conditions of Theorem 2.8 are satisfied. The generators described in condition 1) of the previous theorem are  $\{(1,0,0,0), (0,1,0), (0,0,0,2), (0,0,0,5)\}.$  About the condition 2) we have to verify that A contains at least one element of the following shapes:

$$(n_2^{(1)},1,0,0),\,(1,n_1^{(2)},0,0),\,(1,0,n_1^{(3)},0),\,(n_3^{(1)},0,1,0),\\(1,0,0,n_1^{(4)}),\,(n_4^{(1)},0,0,1),\,(0,1,n_2^{(3)},0),\,(0,n_3^{(2)},1,0),\\(0,1,0,n_2^{(4)}),\,(0,n_4^{(2)},0,1),\,(0,0,1,n_3^{(4)}),\,(0,0,n_4^{(3)},1).$$

The generators described in condition 2) of the previous theorem are  $\{(1,0,0,0), (0,1,0,0), (0,0,1,0), (1,0,0,1), (0,1,0,1), (0,0,2,1)\}$ . Observe that the set  $A' = A \setminus \{(0,0,1,3)\}$  is a set of generators of a GNS S', different from S, with a greater number of holes.

**Example 2.11.** Let  $S \subseteq \mathbb{N}^2$  be the GNS whose hole set is  $H(S) = \{(1,0), (2,0), (2,1)\}$ . The set of minimal generators of S is  $\{(0,1), (1,1), (3,0), (4,0), (5,0)\}$ . We can identify  $F^{(1)} = 2$ ,  $F^{(2)} = 0$ ,  $n_2^{(1)} = 0$ ,  $n_1^{(2)} = 1$  so  $\mathbf{v} = (F^{(2)}n_2^{(1)} + F^{(1)}, F^{(1)}n_1^{(2)} + F^{(2)}) = (2,2)$ . In Figure 1 the point  $\mathbf{v}$  is marked in red, the couples of nonnegative integers in the red area represent the elements in  $\pi(\mathbf{v})$ .

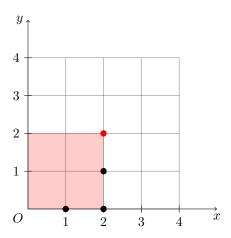


Figure 1:

The holes of S are marked in black and we can see that they are all in the red area, that is  $\pi(\mathbf{v})$ . Moreover all the points overside the red area are in S. Indeed  $\mathbf{v}'=(2,1)$  satisfies Lemma 2.7 too and  $|\pi(\mathbf{v}')|<|\pi(\mathbf{v})|$ . Anyway this fact does not always occur, as we will see in the next example.

**Example 2.12.** Let  $S \subseteq \mathbb{N}^2$  be the monoid generated by  $G(S) = \{(2,0), (0,2), (3,0), (0,3), (1,4), (4,1)\}$ . By Theorem 2.8 S is a GNS. Actually the hole set of S is  $H(S) = \{(0,1), (1,0), (1,1), (1,2), (1,3), (1,5), (2,1), (3,1), (5,1)\}$ . We have  $F^{(1)} = 1$ ,  $F^{(2)} = 1$ ,  $n_1^{(2)}=4, n_2^{(1)}=4$ , so we consider  $\mathbf{v}=(F^{(2)}n_2^{(1)}+F^{(1)},F^{(1)}n_1^{(2)}+F^{(2)})=(5,5)$ . The set H(S) is contained in  $\pi(\mathbf{v})$ :

In this case we can argue that it does not exist an element  $\mathbf{w} \in \mathbb{N}^2$  such that  $\pi(\mathbf{w})$  contains every hole of S and  $|\pi(\mathbf{w})| < |\pi(\mathbf{v})|$ .

**Remark 2.13.** Let  $S = \langle A \rangle$  be a monoid generated by  $A \subseteq \mathbb{N}^d$ . For every  $j = 1, 2, \ldots, n$ , we denote with  $A_j \subseteq \mathbb{N}^{d-1}$  the set of the elements in  $\mathbb{N}^{d-1}$ , obtained from the elements in A removing the j-th component. Then the condition 2) of Theorem 2.8 is equivalent to the following statement: for every  $j = 1, 2, \ldots, d$ ,  $\langle A_j \rangle = \mathbb{N}^{d-1}$ .

# 3 Linear combinations in $\mathbb{N}^d$ with coefficients in $\mathbb{N}$

Let  $S \subseteq \mathbb{N}^d$  be a finitely generated monoid and  $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$  be a system of generators for S. We denote by M the  $d \times n$  matrix whose i-th column is the vector  $\mathbf{a}_i \in \mathbb{N}^d$  for  $i = 1, \dots, n$ . It is easy to see that an element  $\mathbf{b} \in S$  if and only if the system  $M\mathbf{x} = \mathbf{b}$  admits solutions in  $\mathbb{N}^n$ . In fact this statement is equivalent to say that  $\mathbf{b}$  is a linear combination of  $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\} \subseteq \mathbb{N}^d$  with nonnegative integer coefficients.

**Definition 3.1.** Let  $A \subseteq \mathbb{N}^d$  be a finite set. We define the polynomial:

$$F_A = \sum_{\mathbf{v} \in A} x^{\mathbf{v}},$$

where  $x^{\mathbf{v}} = x_1^{v^{(1)}} x_2^{v^{(2)}} \cdots x_d^{v^{(d)}}$  is the monomial in  $K[X_1, \dots, X_d]$  associated to  $\mathbf{v} = (v^{(1)}, v^{(2)}, \dots, v^{(d)})$ . We consider the power series expansion of  $1/(1 - F_A)$  the following formal series:

$$P(F_A) = \sum_{k=0}^{\infty} (F_A)^k.$$

The following lemma ([5, Lemma 2.2] for d=1) is obtained by applying Leibnitz's rule:

$$(a_1 + a_2 + \dots + a_m)^n = \sum_{h_1 + h_2 + \dots + h_m = n} \frac{n!}{h_1! h_2! \dots h_m!} a_1^{h_1} a_2^{h_2} \cdots a_m^{h_m}.$$

**Lemma 3.2.** Let  $A = \{a_1, a_2, \dots, a_n\} \subseteq \mathbb{N}^d$  and  $b \in \mathbb{N}^d$ . Then b is a linear combination of  $a_1, a_2, \dots, a_n$  with nonnegative integer coefficients if and only if the coefficient of  $x^b$  in  $P(F_A)$  is nonzero.

*Proof.* By Leibnitz's rule we obtain:

$$(F_A)^t = (x_1^{a_1^{(1)}} x_2^{a_1^{(2)}} \cdots x_d^{a_1^{(d)}} + x_1^{a_2^{(1)}} x_2^{a_2^{(2)}} \cdots x_d^{a_2^{(d)}} + \cdots + x_1^{a_n^{(1)}} x_2^{a_n^{(2)}} \cdots x_d^{a_n^{(d)}})^t =$$

$$= \sum K \cdot x_1^{a_1^{(1)}h_1 + a_2^{(1)}h_2 + \cdots a_n^{(1)}h_n} \cdot x_2^{a_1^{(2)}h_1 + a_2^{(2)}h_2 + \cdots a_n^{(2)}h_n} \cdots \cdot x_d^{a_1^{(d)}h_1 + a_2^{(d)}h_2 + \cdots a_n^{(d)}h_n}$$

where the sum is extended to  $h_1, \ldots, h_n \in \mathbb{N}$  with  $h_1 + \cdots + h_n = t$  and K is a nonzero coefficient.

If  $\mathbf{b} = \sum_{i=1}^{n} \lambda_i \mathbf{a}_i$ , set  $t = \sum_{i=1}^{n} \lambda_i$ , then  $x^{\mathbf{b}}$  is a monomial in  $(F_A)^t$ . Conversely, if  $x^{\mathbf{b}}$  has nonzero coefficient in  $P(F_A)$  then

$$x^{\mathbf{b}} = x_1^{a_1^{(1)}h_1 + a_2^{(1)}h_2 + \cdots + a_n^{(1)}h_n} \cdot x_2^{a_1^{(2)}h_1 + a_2^{(2)}h_2 + \cdots + a_n^{(2)}h_n} \cdot \cdots \cdot x_d^{a_1^{(d)}h_1 + a_2^{(d)}h_2 + \cdots + a_n^{(d)}h_n}$$

with  $h_i \in \mathbb{N}$  for i = 1, ..., n that is  $\mathbf{b} = \sum_{i=1}^n h_i \mathbf{a}_i$ .

**Definition 3.3.** Let  $A = \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\} \subseteq \mathbb{N}^d$  with  $\mathbf{a}_i = (a_i^{(1)}, a_i^{(2)}, \dots, a_i^{(d)})$ for i = 1, 2, ..., n, and let  $\mathbf{b} \in \mathbb{N}^d$ . Let  $t = \min\{\sum_{j=1}^d a_i^{(j)} \mid i = 1, 2, ..., n\}$ . We define the positive integer

$$N_{\mathbf{b}} := \left| \frac{\sum_{j=1}^d b^{(j)}}{t} \right|.$$

**Proposition 3.4.** Let  $A = \{a_1, a_2, \dots, a_n\} \subseteq \mathbb{N}^d$  and  $b \in \mathbb{N}^d$ . Then  $b \in \langle A \rangle$ if and only if the coefficient of  $x^b$  is nonzero in the polynomial:

$$F(x_1, x_2, \dots, x_d) = \sum_{k=0}^{N_b} (F_A)^k.$$

*Proof.* By lemma 3.2 it is enough to show that the coefficient of  $x^{\mathbf{b}}$  is zero in  $F(x_1,\ldots,x_d)$  if and only if it is zero also in  $P(F_A)$ , that is  $\sum_{k=0}^{\infty} (F_A)^k$ . We suppose that the coefficient of  $x^{\mathbf{b}}$  is nonzero in  $P(F_A)$ . Then there exists  $r \in \mathbb{N}$  such that  $x^{\mathbf{b}}$  is a monomial in  $(F_A)^r$ . By Leibnitz's rule we obtain:

$$(F_A)^r = (x_1^{a_1^{(1)}} x_2^{a_1^{(2)}} \cdots x_d^{a_1^{(d)}} + x_1^{a_2^{(1)}} x_2^{a_2^{(2)}} \cdots x_d^{a_d^{(d)}} + \cdots + x_1^{a_n^{(1)}} x_2^{a_n^{(2)}} \cdots x_d^{a_d^{(d)}})^r$$

$$=\sum_{\mathbf{h}}K\cdot x_1^{a_1^{(1)}h_1+a_2^{(1)}h_2+\cdots a_n^{(1)}h_n}\cdot x_2^{a_1^{(2)}h_1+a_2^{(2)}h_2+\cdots a_n^{(2)}h_n}\cdots \cdot x_d^{a_1^{(d)}h_1+a_2^{(d)}h_2+\cdots a_n^{(d)}h_n},$$

where  $\mathbf{h} = (h_1, \dots, h_n)$  with  $h_1 + h_2 + \dots + h_n = r$  and K is the correspondent

coefficient, but we do not need its exact value. If  $x_1^{b^{(1)}}x_2^{b^{(2)}}\dots x_d^{b^{(d)}}$  appears in the sum, then there exist  $h_1,h_2,\dots,h_n$  with  $h_1+h_2+\dots+h_n=r$ , such that the following equalities are satisfied:

$$a_1^{(1)}h_1 + a_2^{(1)}h_2 + \cdots + a_n^{(1)}h_n = b^{(1)}$$

$$a_1^{(2)}h_1 + a_2^{(2)}h_2 + \cdots + a_n^{(2)}h_n = b^{(2)}$$

$$\vdots$$

$$a_1^{(d)}h_1 + a_2^{(d)}h_2 + \cdots + a_n^{(d)}h_n = b^{(d)}.$$

We sum the righ-hand side and the left-hand side of all equalities, obtaining that:

$$r = h_1 + h_2 + \dots + h_n \le$$

$$\le (a_1^{(1)} + a_1^{(2)} + \dots + a_1^{(d)})h_1 + (a_2^{(1)} + a_2^{(2)} + \dots + a_2^{(d)})h_2 + \dots +$$

$$+ (a_n^{(1)} + a_n^{(2)} + \dots + a_n^{(d)})h_n = b^{(1)} + b^{(2)} + \dots + b^{(d)}.$$

Eventually, if  $t = \min\{\sum_{j=1}^d a_i^{(j)} \mid i=1,2,\ldots,n\}$  then  $\frac{\sum_{j=1}^d a_i^{(j)}}{t} \geq 1$  for  $i=1,2,\ldots,d$ . So we can divide the right-hand side of inequality by t and we

$$r = h_1 + h_2 + \dots + h_n \le$$

$$\le \frac{\sum_{j=1}^d a_1^{(j)}}{t} h_1 + \frac{\sum_{j=1}^d a_2^{(j)}}{t} h_2 + \dots + \frac{\sum_{j=1}^d a_n^{(j)}}{t} h_n = \frac{b^{(1)} + b^{(2)} + \dots + b^{(d)}}{t}$$

It follows that  $r \leq N_{\mathbf{b}}$ . So, if the coefficient of  $x^{\mathbf{b}}$  in  $P(F_A)$  is nonzero then the greatest power in which it is obtained is at last  $N_{\mathbf{b}}$ , for greater powers we are sure that monomial does not appear.

An application of the previous proposition is the following criterion for the existence of  $\mathbb{N}$ -solutions in a linear system with nonnegative integer coefficients.

Corollary 3.5. Let M be a  $d \times n$  matrix with entries in  $\mathbb{N}$  whose columns are the vectors of the set  $A = \{a_1, a_2, \dots, a_n\}$  and let  $b \in \mathbb{N}^d$ . Then the linear system  $M\mathbf{x} = \mathbf{b}$  admits solutions  $\mathbf{x} \in \mathbb{N}^n$  if and only if the coefficient of  $\mathbf{x}^{\mathbf{b}}$  is nonzero in the polynomial:

$$F(x_1, x_2, \dots, x_d) = \sum_{k=0}^{N_b} (F_A)^k.$$

The previous arguments suggest the following results.

**Corollary 3.6.** Let  $S \subseteq \mathbb{N}^d$  be a GNS,  $A = \{a_1, a_2, \dots, a_n\}$  be a finite system of generators for S and  $v \in \mathbb{N}^d$ . Then  $v \in S$  if and only if the coefficient of  $x^v$  is nonzero in the polynomial:

$$F(x_1, x_2, \dots, x_d) = \sum_{k=0}^{N_v} (F_A)^k.$$

If S is a GNS and a finite system of generators for S is known, then Corollary 3.6 provides a way to establish whether an element  $\mathbf{v} \in S$ . Furthermore it can be done with a finite computation, that is the building of a polynomial.

**Remark 3.7.** Recall that if  $S \subseteq \mathbb{N}^d$  is a GNS and A a finite system of generators for S, by Theorem 2.8 A satisfies the following conditions:

- 1. For all j = 1, 2, ..., d, there exist  $a_1^{(j)} \mathbf{e}_j, a_2^{(j)} \mathbf{e}_j, ..., a_{n_j}^{(j)} \mathbf{e}_j \in A$  such that  $GCD(a_1^{(j)}, a_2^{(j)}, ..., a_{n_j}^{(j)}) = 1$
- 2. For every  $i, k \in \{1, 2, ..., d\}$  with i < k there exist  $\mathbf{x}, \mathbf{y} \in A$  such that  $\mathbf{x} = \mathbf{e}_i + n_i^{(k)} \mathbf{e}_k$  and  $\mathbf{y} = \mathbf{e}_k + n_k^{(i)} \mathbf{e}_i$  with  $n_i^{(k)}, n_k^{(i)} \in \mathbb{N}$ .

For every  $j=1,2,\ldots,d$ , let  $S_j$  be the numerical semigroup generated by  $\{a_1^{(j)},a_2^{(j)},\ldots,a_{n_j}^{(j)}\}$ . We denote by  $F^{(j)}$  the Frobenius number of  $S_j$ . Let  $\mathbf{v}=(v^{(1)},v^{(2)},\ldots,v^{(d)})\in\mathbb{N}^d$  be the element defined by

$$v^{(j)} = \sum_{i \neq j}^{d} F^{(i)} n_i^{(j)} + F^{(j)}.$$

It is proved that  $H(S) \subseteq \pi(\mathbf{v})$  (Corollary 2.9), and  $\pi(\mathbf{v})$  is a finite set.

We conclude giving a simple algorithm to compute the set of holes of S, that is H(S), if a finite system of generators for S is known.

### Algorithm.

Let  $S \subseteq \mathbb{N}^d$  be a GNS and  $A = \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$  be a finite system of generators of S. To compute H(S) we have to do the following steps:

- 1. Compute the element  $\mathbf{v}$  of the Remark 3.7.
- 2. For all  $\mathbf{x} \in \pi(\mathbf{v})$  we verify: if  $\mathbf{x}$  is not a  $\mathbb{N}$ -linear combination of elements in A then  $\mathbf{x} \in H(S)$ . This check can be done by Corollary 3.6.

At the end of the second step the set H(S) is computed.

## References

- [1] Bras-Amorós, M.: Fibonacci-like behavior of the number of numerical semigroups of a given genus. Semigroup Forum **76**, 379–384 (2008).
- [2] Bras-Amorós, M.: Bounds on the number of numerical semigroups of a given genus. J. Pure Appl.Algebra **213**, 997–1001 (2009).
- [3] Failla, G., Peterson, C., Utano, R.: Algorithms and basic asymptotics for generalized numerical semigroups in N<sup>d</sup>, Semigroup Forum 92(2), 460– 473 (2016).
- [4] Fröberg, R., Gottlieb, C., Häggkvist, R.: On numerical semigroups. Semigroup Forum **35**, 63–83 (1986/1987).
- [5] Martino, I., Martino, L.: On the variety of linear recurrences and numerical semigroups. Semigroup Forum 88, 569–574 (2014).
- [6] Pisón-Casares, P., Vigneron-Tenorio, A.: N-solutions to linear systems over Z. Linear Algebra Its Appl. **384**, 135–154 (2004).
- [7] Rosales, J.C.: On finitely generated submonoids of  $\mathbb{N}^k$ . Semigroup Forum **50**, 251–262 (1995).
- [8] J. C. Rosales, P. A. García-Sánchez, On Cohen-Macaulay and Gorenstein simplicial affine semigroups, Proc. Edinburgh Math. Soc. 41 (1998), 517– 537
- [9] Rosales, J.C., García-Sánchez, P.A.: Numerical Semigroups, Developments in Mathematics, vol. 20. Springer, New York (2009).
- [10] Rosales, J.C., García-Sánchez, P.A., García-García, J.I., Jiménez Madrid, J.A.: The oversemigroups of a numerical semigroup, Semigroup Forum 67(1), 145–158, (2003).

#### Carmelo CISTO

Universitá di Messina,

Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e

Scienze della Terra,

Viale Ferdinando Stagno D'Alcontres 31,

98166 Messina, Italy

Email: carmelo.cisto@unime.it

Gioia FAILLA,

Universitá Mediterranea di Reggio Calabria,

Dipatimento DIIES,

Via Graziella, Feo di Vito,

Reggio Calabria, Italy.

Email: gioia.failla@unirc.it

Rosanna UTANO

Universitá di Messina,

Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e

Scienze della Terra.

Viale Ferdinando Stagno D'Alcontres 31,

98166 Messina, Italy

Email: rosanna.utano@unime.it