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Pre-semihyperadditive Categories

H. Shojaei, R. Ameri and S. Hoskova-Mayerova

Abstract

In this paper we extend the notion of classical (pre-)semiadditive
category to (pre-)semihyperadditive category. Algebraic hyperstruc-
tures are algebraic systems whose objects possessing the hyperopera-
tions or multi-valued operation. We introduce categories in which for
objects A and B, the class of all morphisms from A to B denoted by
Mor(A,B), admits an algebraic hyperstructures, such as semihyper-
group or hypergroup. In this regards we introduce the various types of
pre-semihyperadditive categories. Also, we construct some (pre-)semi-
hyperadditive categories by introducing a class of hypermodules named
general Krasner hypermodules. Finally, we investigate some properties
of these categories.

1 Introduction

In 1934, the concept of hypergroupoid was introduced by Marty [23] based on
a ”hyperoperation” (or ”hypercompositin”) on a nonempty set. In fact, a hy-
peroperation on a nonempty set H is a mapping say ◦ on H×H, which assigns
to each pair (a, b) in H×H a nonempty subset a◦b of H. By this way we obtain
a new algebraic system (H, ◦) which is called a hypergroupoid. This definition
has resulted in a new branch of mathematics named Hyperstructures Theory.
This theory has been developed in view points of theory and applications by
many researchers in this area (for more see [7, 10, 11, 13, 14, 16, 24, 25, 33]).
One of the important area of algebraic hyperstructures is the interaction be-
tween hyperstructure theory and category theory [5, 8, 9, 15, 26–28].
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It is well known a category C consists of a class of objects and a class of
morphisms with some data ([2]). In the classical study of category theory for
two objects A and B of category C, the class of morphisms from A into B
is denoted by MorC(A,B). Also, for some categories such as the category
of abelian groups, (MorC(A,B),+) is an abelian group. But when we deal
with the categories of hyperstructures, such as the category of hypergroups,
with hypergroups as objects and usual homomorphisms as morphisms, f + g
does not belong to MorC(A,B), since f(a) + g(a) is a nonempty subset of H.
This leads us to investigate a suitable hyperoperations on MorC(A,B), say
?, such that the system (MorC(A,B), ?) admits a hyperstructure such as a
semihypergroup or hypergroup.

This paper is divided as follows. In Section 2, we give some basic definitions
and results of hyperstructure theory, which we need to develop our paper. In
Section 3, first we investigate some hyperstructures on MorC(A,B) to gen-
eralize the notion of (pre-)semiadditive category to (pre-)semihyperadditive
category (or hypercategory). Then by introducing some examples, we illus-
trate these categories. For example, we introduce some categories of hyper-
modules named general Krasner hypermodules denoted by RG.mod and

RG.mod based on different kinds of morphisms and study some basic prop-
erties of these categories.

2 Preliminary

Let us recall some basic notions and definitions. H be a nonempty set and
P ∗(H) be the set of all nonempty subsets of H. A hyperoperation · on H is a
map

· : H ×H −→ P ∗(H), (a, b) 7→ a · b ⊆ H

Then (H, ·) is called a hypergroupoid. The hyperoperation · is extended
to subsets of H in a natural way, so that A ·B or AB is given by

AB =
⋃

(a,b)∈A×B

a · b. (2 .1)

A hypergroupoid (H, ·) is said a semihypergroup if · is associative. A
hypergroupoid (H, ·) is said a hypergroup if it is a semihypergroup satisfying
(reproductivity property) Hx = xH = H, for every x ∈ H. A semihypergroup
or hypergroup H is called commutative if xy = yx for every x, y ∈ H. An
element y of semihypergroup (H,+) is called an identity if for all x ∈ H,
y ∈ x+ y ∩ y + x.
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Definition 2.1. Let x be an element of semihypergroup (H,+) (resp., (H, ·))
such that x + y = y (resp., x · y = y). Then x is called a left scalar identity
(resp., unit). Similarly, a right scalar identity (resp., unit) is defined by the
affection on the right.

An element x of semihypergroup (H,+) (resp., (H, ·)) is called a scalar
identity (resp., unit) if it is a left and right scalar identity (resp., unit). We
denote the scalar identity (resp., unit) of H by 0H (resp., 1H). Every scalar
identity or scalar unit in a semihypergroup H is unique.

Definition 2.2. A nonempty set H together with the hyperoperation + is
called a canonical hypergroup if the following axioms hold:

1. (H,+) is a commutative semihypergroup,

2. there is a scalar identity 0H ,

3. for every x ∈ H, there is a unique element denoted by −x such that
0H ∈ x+ (−x) which for simplicity we write 0H ∈ x− x,

4. x ∈ y + z implies y ∈ x− z (and thus z ∈ −y + x).

A nonempty subset K of a canonical hypergroup H is called a canonical
subhypergroup denoted by K ≤ H if K is a canonical hypergroup itself.

Definition 2.3. [20] A nonempty set R together with the hyperoperation +
and the operation · is called a Krasner hyperring if the following axioms hold:

1. (R,+) is a canonical hypergroup (with scalar identity 0R),

2. (R, ·) is a semigroup including 0R as a bilaterally absorbing element, i.e.,
0R · a = a · 0R = 0R for all a ∈ A,

3. (y+ z) ·x = (y ·x) + (z ·x) and x · (y+ z) = x ·y+x · z for all x, y, z ∈ R.

We say a Krasner hyperring (R,+, ·) has 1R if (R, ·) has the (scalar) unit
1R that is 1R · r = r · 1R = r for all r ∈ R.

Definition 2.4. [29] Let R be a Krasner hyperring. A nonempty set A is
called a Krasner hypermodule over R, for short a left Krasner R-hypermodule,
if (A,+) is a canonical hypergroup together with the map ∗ : R × A −→ A
satisfying the following axioms for all r1, r2 ∈ R and a1, a2 ∈ A:

1. r1 ∗ (a1 + a2) :=
⋃

b∈a1+a2
r1 ∗ b = r1 ∗ a1 + r1 ∗ a2,

2. (r1 + r2) ∗ a1 :=
⋃

r∈r1+r2
r ∗ a1 = r1 ∗ a1 + r2 ∗ a1,
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3. (r1 · r2) ∗ a1 = r1 ∗ (r2 ∗ a1),

4. 0R ∗ a1 = 0A.

A left Krasner R-hypermodule A is called unitary if R has 1R and 1R∗a =
a for all a ∈ A.

Example 2.5.

(i) Every left module over a ring R is a left Krasner R-hypermodule.

(ii) Every ring R is a left Krasner R-hypermodule.

(iii) Every Krasner hyperring R is a left Krasner R-hypermodule. As a special
case, consider the set of nonnegative real numbers denoted by R+0. It is easy
to verify that R+0 under the hyperoperation + defined by x + y = max{x, y}
if x 6= y, and [0, x] if x = y, is a canonical hypergroup. Defining ∗ : R+0 ×
R+0 −→ R+0 as the usual multiplication, we can check that R+0 satisfies
all axioms mentioned in Definition 2.4. Consequently, R+0 is a unitary left
Krasner R+0-hypermodule (see [32]).

(iv) Let (R,+, ·) be a division ring and M be an R-module. Consider G as a
normal subgroup of multiplicative semigroup R \ {0}. Define the equivalence
relation ρ as follows:

xρy ⇐⇒ ∃t ∈ G : x = ty.

Let M̄ = M/ρ and R̄ = R/G. Then M̄ together with +′ is a canonical
hypergroup as follows (see [21]):

∀x̄, ȳ ∈ M̄ : x̄+′ ȳ := {z̄ ∈ M̄ | z̄ ⊆ x̄+ ȳ}.

Also, M̄ is a left Krasner R̄-hypermodule by the external multiplication:

∀r̄ ∈ R̄,∀x̄ ∈ M̄ : r̄ ∗ x̄ := rx.

(v) Let (R,+, ·) be a ring and N be a normal subgroup of semigroup (R\{0}, ·).
Let R̄ = R/N be the set of classes of the form x̄ = x · N . If for all x̄, ȳ ∈
R̄, we define x̄ +′ ȳ = {z̄| z ∈ x̄ + ȳ}, and x̄ ∗ ȳ = x · y as the external
multiplication, then R̄ is a left Krasner R̄-hypermodule (for more details about
hyperstructures, see [1, 6, 7, 16–18, 21, 29, 33]).

3 Category theory and hyperstructures theory

3.1 Categories motivated by hyperstructures

In category theory, a pre-additive category is a category C in which for all
A,B ∈ Ob(C), (MorC(A,B),+) is an abelian group and the composition ◦ is
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distributive with respect to the operation + on the left and right, i.e.,

f ◦ (g + h) = f ◦ g + f ◦ h

(g + h) ◦ f = g ◦ f + h ◦ f.

Motivated by hyperstructures theory, we can define a hyperoperation
on MorC(A,B).

In this section, we introduce some new categories in which (MorC(A,B),+)
is a hyperstructure. First we start with the following concept.

Definition 3.1. A category C is called pre-semihyperadditive, for short PSHA,
if for all A,B ∈ Ob(C),

1. (MorC(A,B),⊕) is a commutative semihypergroup having a scalar iden-
tity with:

⊕ : MorC(A,B)×MorC(A,B) −→ P ∗(MorC(A,B))

(f, g) 7→ f ⊕ g ⊆MorC(A,B);

2. the composition ◦ is distributive with respect to the hyperaddition ⊕ on
the left and right , i.e.,

f ◦ (g ⊕ h) ⊆ f ◦ g ⊕ f ◦ h,

(g ⊕ h) ◦ f ⊆ g ◦ f ⊕ h ◦ f,

with definable domain and codomain for morphisms f, g, h;

3. the zero morphism 0A,B ∈MorC(A,B) satisfies f⊕0A,B = f = 0A,B⊕f
for all f ∈MorC(A,B).

In second property of Definition 3.1, if the equality holds, then C is called
strong pre-semihyperadditive, for short s− PSHA.

Also, if
f ◦ (g ⊕ h) ∩ f ◦ g ⊕ f ◦ h 6= ∅,

(g ⊕ h) ◦ f ∩ g ◦ f ⊕ h ◦ f 6= ∅,

then C is called weak pre-semihyperadditive, for short w − PSHA.
To avoid any confusion, sometimes we use i− PHA instead of PHA.

Definition 3.2. A PSHA (resp., s−PSHA, w−PSHA) category C in which
(MorC(A,B),⊕) is a

(i) hypergroup is called a (resp., strong, weak) pre-hyperadditive category, for
short PHA (resp., s− PHA, w − PHA) category.



PRE-SEMIHYPERADDITIVE CATEGORIES 274

(ii) canonical hypergroup is called a (resp., strong, weak) canonical
pre-hyperadditive category, for short CPHA (resp., s − CPHA, w − CPHA)
category.

Remark 3.3. In some categories, only the first containment of the second
property of Definition 3.1 is considered and holds (see Theorem 3.22). We
denote such categories by i1 − PSHA (resp., s1 − PSHA, w1 − PSHA)
depending on the first containment (resp., equality, nonempty intersection).
Also, i1 − CPHA (resp., s1 − CPHA, w1 − CPHA) categories are defined in
an obvious way.

We just considered some generalizations of (classical) category. But there
is a different kind of such generalization and that is when ◦ is a hyperoperation.
So we can generalize the above definitions and apply the word ”hypercategory”
instead of word ”category” to show that we mean ◦ is a hyperoperation. Thus
similarly one can define PSHA, PHA, and CPHA hypercategory. For example,
one s− CPHA hypercategory is defined as follows:

Definition 3.4. A s− CPHA hypercategory denoted by C consists of

1. a class of objects: A,B,C, . . .

2. a class of morphisms or arrows: f, g, h, . . . with the following data:

• given morphisms f : A −→ B and g : B −→ C, that is, with:
cod(f) = dom(g) there is given a ”subset” g ◦ f of morphisms from
A to C called the composition of morphisms f and g;

• (MorC(A,B), ◦) is a semihypergroup: h ◦ (g ◦ f) = (h ◦ g) ◦ f for
all f : A −→ B, g : B −→ C and h : A −→ C;

• (MorC(A,B), ◦) has a scalar unit: for every two objects A and B
and every morphism f ∈ MorC(A,B), there are morphisms idA
and idB such that f ◦ idA = f = idB ◦ f for all f : A −→ B;

3. (MorC(A,B),⊕) is a canonical hypergroup having a scalar identity;

4. the composition ◦ is distributive with respect to the hyperaddition ⊕ on
the left and right , i.e.,

f ◦ (g ⊕ h) = f ◦ g ⊕ f ◦ h,

(g ⊕ h) ◦ f = g ◦ f ⊕ h ◦ f,
with definable domain and codomain for morphisms f, g, h;

5. the zero morphism 0A,B ∈MorC(A,B) satisfies f⊕0A,B = f = 0A,B⊕f
for all f ∈MorC(A,B).
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For the complexity of hypercategories we leave the concept of hypercate-
gory and only refer to an example of a hypercategory will be mentioned in
Example 3.11.

Definition 3.5. We say C has (finite) product (resp., coproduct), if every
(finite) family of objects has (finite) product (resp., coproduct).

Definition 3.6. A pre-semihyperadditive category (PSHA) is called semi-
hyperadditive, for short SHA category if it has a zero object as well as finite
product.
Similarly, every i1 − PSHA (resp., s1 − PSHA, w1 − PSHA, CPHA, i1 −
CPHA, s1 − CPHA, w1 − CPHA) category is called i1-semihyperadditive
(resp., s1-semihyperadditive, w1-semihyperadditive, canonical hyperadditive,
i1-canonical hyperadditive, s1-canonical hyperadditive, w1-canonical hyperad-
ditive), for short i1 − SHA (resp., s1 − SHA, CHA, i1 − CHA, s1 − CHA,
w1 − CHA) category if it has a zero object as well as finite product.

3.2 Examples in pre-semihyperadditive categories

Now we are chiefly planning to exhibit some examples in new categories men-
tioned in the previous part by introducing a new class of hypermodules. Before
giving some examples, it is necessary to emphasize the condition 3 of Defini-
tion 3.1 by an example. The following example is a sample of a category that
is not PSHA.

Example 3.7. It is easy to check that the category with only one object X to-
gether with the set of morphisms {idX , 0, b} equipped with the (hyper)operations
defined by

+ idX 0 b
idX b 0 idX

0 0 0 0
b idX 0 b

and

◦ idX 0 b
idX idX 0 b

0 0 0 0
b b 0 b

is a category that is not PSHA since the zero morphism 0 is not an iden-
tity element of (MorC(X,X),+). Indeed, (MorC(X,X),+) is a commutative
monoid with identity b and the third condition of Definition 3.1 is not satisfied.
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Example 3.8. As the first available example, any Krasner hyperring (R,+, ·)
with 1R can be seen as a PSHA category having a unique object, written ?,
together with the elements of R as morphisms. Clearly, (Mor(?, ?),+) is a
semihypergroup (canonical hypergroup). Also, by taking · as the composition
of morphisms, clearly, · is left and right distributive with respect to +. The
element 1R acts as the unit morphism of this category. Clearly, 0R is the
scalar identity of (Mor(?, ?),+) and the zero morphism is 0R. Moreover, this
category is a s− PHA category as well as a s− CPHA category.

To give another example, we introduce the following concept as a general-
ization of a Krasner hyperring.

Definition 3.9. A nonempty set R together with two hyperoperations + and
· is called a general Krasner hyperring if the following axioms hold:

1. (R,+) is a canonical hypergroup (with scalar identity 0R),

2. (R, ·) is a semihypergroup including 0R as a bilaterally absorbing element,
i.e., 0R · a = a · 0R = 0R for all a ∈ A,

3. (y+ z) ·x ⊆ (y ·x) + (z ·x) and x · (y+ z) ⊆ x ·y+x · z for all x, y, z ∈ R.

We say a general Krasner hyperring (R,+, ·) has the scalar unit 1R if
1R · r = r · 1R = r for all r ∈ R.

In what follows, by a Krasner hyperring we construct a general Krasner
hyperring in which the inclusions above are equality.

Example 3.10.

(i) Let (R,+, ·) be a Krasner ring with 1R. Suppose RN be the set of all se-
quences of the form a := (a0, a1, a2, . . .) where ai ∈ R for all i ∈ N ∪ {0}.
Define hyperoperations +′ and ·′ on RN as follows:
a+′b = (a0+b0, a1+b1, . . .) and a·′b is all (c0, c1, . . .) where cj ∈

∑
k+l=j ak ·bl

for j ∈ N ∪ {0}. In what follows, (a +′ b)i is the set of all ci ∈ ai + bi,
i.e., (a +′ b)i = ai + bi. Also, by (a ·′ b)j we mean the set of all cj which
cj ∈

∑
k+l=j ak · bl that simply we write (a ·′ b)j =

∑
k+l=j ak · bl.

Immediately, (RN,+′) is a canonical hypergroup with scalar identity 0 =
(0R, 0R, . . .).

Also, (RN, ·′) is a semihypergroup in which 0 acts as an absorbing element.
Suppose that a, b, c ∈ RN, and i ∈ N ∪ {0}. Then

((a+′ b) ·′ c)j =
∑
k+l=j

(a+′ b)k · cl

=
∑
k+l=j

(ak + bk) · cl =
∑
k+l=j

(ak · cl + bk · cl)
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=
∑
k+l=j

ak · cl +
∑
k+l=j

bk · cl = (a ·′ c)j +′ (b ·′ c)j .

This shows that (a +′ b) ·′ c = a ·′ c +′ b ·′ c. By a similar argument one can
prove c ·′ (a+′ b) = c ·′ a+′ c ·′ b and the associativity of ·′ on RN.

(a ·′ (b ·′ c))j =
∑
k+l=j

ak · [(b ·′ c)]l

=
∑
k+l=j

ak · [
∑
r+s=l

br · cs] =
∑
k+l=j

∑
r+s=l

ak · (br · cs).

By a simple calculation we have (a ·′ (b ·′ c))j =
∑
k+r+s=j ak · (br · cs).

Similarly, we obtain ((a ·′ b) ·′ c)j =
∑
k+r+s=j(ak · br) · cs. Since (R, ·) is

associative, we have (a ·′ (b ·′ c))j = ((a ·′ b) ·′ c)j. Consequently, a ·′ (b ·′ c) =
(a ·′ b) ·′ c.
So (RN,+′, ·′) is a general Krasner hyperring. Clearly, 1 = (1R, 0R, 0R, . . .) is
the scalar unit of RN. This general Krasner hyperring is well known as R[[x]].
Similarly, the set all elements a := (a0, a1, a2, . . .) ∈ RN where ai = 0R for
all but finitely i ∈ N∪ {0} denoted by R(N) forms a general Krasner hyperring
well known as R[x].

(ii) Let (R,+, ·) be a Krasner hyperring with 1R and (for n ∈ N) Mn(R) be
the collection of all matrices of size n × n over R. Then, it is easy to check
that Mn(R) is a general Krasner hyperring with the scalar unit (aij)n×n where
aij = 1R if i = j, otherwise aij = 0R.

Example 3.11. Similar to Example 3.8, any general Krasner hyperring with
1R leads to a ”hypercategory”. Moreover, this hypercategory is s−CPHA (see
Definition 3.4).

In the sequel, we are interested to give examples of categories introduced
above by some hypermodules. Among the various types of hypermodules over
a hyperring, we chiefly work with a kind of hypermodules (Definition 3.12)
inspired by the definition of general Krasner hyperring. We call such hyper-
modules ”left general Krasner hypermodules”. Indeed, the following concept
is the generalization of Definition 2.4.

Definition 3.12. Let R be a general Krasner hyperring. A nonempty set A is
called a general Krasner hypermodule over R, for short a left general Krasner
R-hypermodule, if (A,+) is a canonical hypergroup together with the map
∗ : R × A −→ P ∗(A) satisfying the following axioms for all r1, r2 ∈ R and
a1, a2 ∈ A:

1. r1 ∗ (a1 + a2) :=
⋃

b∈a1+a2
r1 ∗ b ⊆ r1 ∗ a1 + r1 ∗ a2,
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2. (r1 + r2) ∗ a1 :=
⋃

r∈r1+r2
r ∗ a1 ⊆ r1 ∗ a1 + r2 ∗ a1,

3. if (r1 · r2) ∗ a1 :=
⋃

r∈r1·r2
r ∗ a1 and r1 ∗ (r2 ∗ a1) :=

⋃
a∈r2∗a1

r ∗ a, then

(r1 · r2) ∗ a1 ⊆ r1 ∗ (r2 ∗ a1),

4. 0R ∗ a1 = 0A.

A general Krasner R-hypermodule A is called unitary if R has the scalar
unit 1R with 1R ∗a = a for all a ∈ A. Every general Krasner hyperring R with
1R is a unitary left general Krasner R-hypermodule.

As a motivation for Definition 3.12, note that an abelian group can be
considered a unitary Z-module. Inspired by this fact, one may tempt to gen-
eralize a similar statement for a canonical hypergroup to obtain a unitary left
Krasner Z-hypermodule (Definition 2.4). But this may not be true in general.
For example, let (A,+) be a canonical hypergroup and |a − a| ≥ 2 for some
a ∈ A. Then by the second axiom of Definition 2.4, we obtain the contradiction
a− a = (1− 1) ∗ a = 0 ∗ a = 0A.

Remark 3.13. In an obvious way, one can consider the external multipli-
cation map ∗ : A × R −→ P ∗(A) to define the right general Krasner R-
hypermodule. From now on, R denotes a general Krasner hyperring. Also,
for convenience, by hyperring R and an R-hypermodule we mean a general
Krasner hyperring and a left general Krasner R-hypermodule, respectively.

In order to have a category whose objects are the class of allR-hypermodules,
we need morphisms. For this, we start with the following concept.

Definition 3.14. For two R-hypermodules A and B, let f be a function from
A into P ∗(B) that satisfies the conditions

1. f(x+ y) ⊆ f(x) + f(y),

2. f(r ∗ x) ⊆ r ∗ f(x),

for all r ∈ R and all x, y ∈ A. In this case, f is said a multi-valued R-
homomorphism, for short R −mv-homomorphism from A to B. Sometimes
an R−mv-homomorphism is called an inclusion R−mv-homomorphism.

Note that + in Definition 3.14 is given by (2 .1). If f satisfies the conditions

1. f(x+ y) = f(x) + f(y),

2. f(r ∗ x) = r ∗ f(x),

for all r ∈ R and all x, y ∈ A, then it is called a strong R−mv-homomorphism.
Also, if f satisfies the conditions
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1. f(x+ y) ∩ [f(x) + f(y)] 6= Ø,

2. f(r ∗ x) ∩ r ∗ f(x) 6= Ø,

for all r ∈ R and all x, y ∈ A, then f is said to be a weakR−mv-homomorphism.
The class of all R−mv-homomorphisms, strong R−mv-homomorphisms and
weak R − mv-homomorphisms from A to B as morphisms from A to B is
denoted by HomR(A,B), Homs

R(A,B) and Homw
R(A,B), respectively.

Let f ∈ HomR(A,B) and g ∈ HomR(B,C). Define the composition g ◦ f
as:

(g ◦ f)(a) =
⋃

b∈f(a)

g(b), ∀a ∈ A. (3 .2)

Throughout the paper, RG.mod, Rs
G.mod and Rw

G.mod denote the
categories formed by the class of all R-hypermodules together with the class of
all R − mv-homomorphisms, strong R − mv-homomorphisms and weak
R − mv-homomorphisms, respectively, with the composition of morphisms
as (3 .2).

One can consider a function f from A into B satisfying two conditions
in Definition 3.14 as a morphism. We call such morphism an (inclusion)
R-homomorphism. Similarly, we can define strong R-homomorphisms and
weak R-homomorphisms from A to B. We use homR(A,B), homs

R(A,B)
and homw

R(A,B) for the class of (inclusion) R-homomorphisms, strong R-
homomorphisms and weak R-homomorphisms from A to B, respectively. Also,
we denote the corresponding categories by RG.mod, Rs

G.mod and

Rw
G.mod, respectively.

Any singleton set is identified with its element. Thus we may write f(a) = b
instead of f(a) = {b}. Therefore, any single-valued f ∈ HomR(A,B) is an
element of homR(A,B), and conversely, any element of homR(A,B) is a single-
valued element of HomR(A,B).

Let f, g ∈ HomR(A,B). Define the relation ≤ on HomR(A,B) in which
f ≤ g means f(x) ⊆ g(x) for all x ∈ A. Clearly (HomR(A,B),≤) is a poset.

Let f, g, h ∈ HomR(A,B). Define the formal operation + on HomR(A,B)
as

+ : HomR(A,B)×HomR(A,B) −→ HomR(A,B)

(f, g) 7−→ f + g

with (f + g)(x) := f(x) + g(x) for all x ∈ A.
Note that the hyperoperation + in f(x)+g(x) is indeed the hyperoperation

of canonical hypergroup (B,+) that for convenience, we identify it with the
formal notation + in f + g.
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Remark 3.15. Let f, g ∈ homR(A,B). Then f + g sends an element x ∈ A
to an element of P ∗(B). Thus we can think of homR(A,B) as a motivation
for HomR(A,B). Indeed, R-homomorphisms imply R−mv-homomorphisms.

Clearly, h ≤ f + g if and only if h(x) ⊆ f(x) + g(x) for all x ∈ A.
Now define the hyperoperation ] on HomR(A,B) as follows:

f ] g = {h ∈ HomR(A,B) | h ≤ f + g},

or equivalently,

f ] g = {h ∈ HomR(A,B) | h(x) ⊆ f(x) + g(x) ∀x ∈ A}.

Note that the hyperoperation ] on homR(A,B) is reduced to the following:

f ] g = {h ∈ homR(A,B) | h(x) ∈ f(x) + g(x) ∀x ∈ A}.

Notation 3.16. We denote the category of all R-hypermodules whose mor-
phisms are all single-valued R-homomorphisms by the notation RG.mod.

Proposition 3.17.

(i) The categories RG.mod and RG.mod have the zero object.

(ii) For every R−mv-homomorphism f ∈ HomR(A,B), f(0R) = 0B.

Proof.

(i) Define 0 := {0} with 0 + 0 = {0} and r ∗ 0 = {0} for every r ∈ R.

(i) From the fourth condition of Definition 3.12 together with f(r∗x) ⊆ r∗f(x),
we have f(0A) = 0B , for every morphism f ∈ HomR(A,B). Indeed if a ∈ A,
then 0R ∗ a = 0A implies f(0A) = f(0R ∗ a) ⊆ 0R ∗ f(a). On the other
hand, 0R ∗ f(a) ⊆ 0R ∗ B and 0R ∗ B = {0B} imply 0R ∗ f(a) = {0B}. So
f(0A) = 0B .

Remark 3.18. Every morphism from A to B in RG.mod is an R − mv-
homomorphism f ∈ HomR(A,B) or a multi-valued function from A into B as
mentioned in Definition 3.14. So for convenience, when speaking of morphisms
(arrows) and dealing with diagrams, by a morphism f : A −→ B in RG.mod,
we mean a function from A into P ∗(B) as Definition 3.14.

Proposition 3.19. 1. In the category RG.mod, HomR(A,B) is nonempty
and
(HomR(A,B),]) has a scalar identity that is a zero morphism.

2. In the category RG.mod, homR(A,B) is nonempty and (homR(A,B),])
has a scalar identity that is a zero morphism.
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Proof. Note that 0A ∈ A 6= Ø 6= B 3 0B . Consider the morphism 0: A −→ B
given by 0(a) = 0B for every a ∈ A. Clearly, we have g ◦ 0(a) = 0(a) for every
g ∈ HomR(B,C). So g ◦ 0 = 0. Also, 0 ◦ h = 0 for every h ∈ HomR(C,A).
Hence 0 is a zero morphism denoted by 0A,B .
On the other hand, for every f ∈ HomR(A,B) (or f ∈ homR(A,B)), we have

f(a) = 0A,B(a) + f(a) = f(a) + 0A,B(a).

Thus f = 0A,B ] f = f ] 0A,B . So the zero morphism 0A,B acts as a scalar
identity in (HomR(A,B),]) (or (homR(A,B),])).

Now for an element f ∈ HomR(A,B), we encounter a question related to
defining −f as follows.

Let x ∈ A and −x ∈ A be its inverse and f ∈ HomR(A,B). Are two
definitions (−f)(x) := −f(x) and (−f)(x) := f(−x) the same?

Clearly for every f ∈ HomR(A,B), we have

−f(x) = {−y ∈ B | y ∈ f(x)},

f(−x) = {y ∈ B | y ∈ f(−x)}.

Now according to Proposition 3.17 and since f is an R−mv-homomorphism,
0A ⊆ x+ (−x) implies

0B = f(0A) ⊆ f(x+ (−x)) ⊆ f(x) + f(−x).

So there are b1 ∈ f(x) and b2 ∈ f(−x) such that 0B ∈ b1 + b2. From the
reversibility axiom b2 ∈ −b1 + 0B and thus b2 = −b1. This means that
−f(x) ∩ f(−x) 6= Ø. Although we do not answer the question, certainly
−f(x) ∩ f(−x) 6= Ø implies the following statement.

Proposition 3.20. Let f ∈ HomR(A,B) be such that |f(x)| = 1 for all x ∈ A.
Then (−f)(x) := f(−x) is equivalent to (−f)(x) := −f(x). In particular, for
every f ∈ homR(A,B) the result is true.

Proposition 3.21. Let A and B be two R-hypermodules. Then

(i) (homR(A,B),]) is a canonical hypergroup.

(ii) (HomR(A,B),]) is a semihypergroup with a scalar identity.

Proof.
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(i) The associativity of ] is obtained from the associativity of + in A. More
precisely, if f, g, h ∈ homR(A,B), then

(f ] g) ] h =
⋃

u∈f]g

{k ∈ homR(A,B) | k ≤ u+ h}

=
⋃

u∈f]g

{k ∈ homR(A,B) | k(x) ⊆ u(x) + h(x)}

= {k ∈ homR(A,B) | k(x) ⊆ (f(x) + g(x)) + h(x)}
= {k ∈ homR(A,B) | k(x) ⊆ f(x) + (g(x) + h(x))}

=
⋃

v∈g]h

{k ∈ homR(A,B) | k(x) ⊆ f(x) + v(x)}

=
⋃

v∈g]h

{k ∈ homR(A,B) | k ≤ f + v} = f ] (g ] h).

Commutativity of homR(A,B) similarly follows from f(x)+g(x) = g(x)+
f(x) for all x ∈ A. According to (existing the scalar identity 0 in) Proposition
3.19, it is enough to prove that there exists a unique inverse element −f for
every f ∈ homR(A,B), and also (homR(A,B),]) is reversible.
Let a ∈ A and f ∈ homR(A,B). If y = f(a) ∈ B, then −y = −f(a). Thus

0B ∈ y + (−y) = f(a) + (−f(a)) and 0B ∈ (−y) + y = (−f(a)) + f(a)

Equivalently, by Proposition 3.20

0A,B(a) ∈ f(a) + (−f)(a) and 0A,B(a) ∈ (−f)(a) + f(a)

⇐⇒ 0A,B(a) ∈ [f + (−f)](a) and 0A,B(a) ∈ [(−f) + f ](a)

⇐⇒ 0A,B ≤ f + (−f) and 0A,B ≤ (−f) + f

⇐⇒ 0A,B ∈ f ] (−f) and 0A,B ∈ (−f) ] f.

The uniqueness of −f is followed by the uniqueness of inverse of y in B.
Let a ∈ A, f, g, h ∈ homR(A,B) and suppose f ∈ g ] h. Then clearly, f(a) ∈
g(a) + h(a) implies h(a) ∈ g(a) − f(a) = g(a) + (−h)(a). Thus h ∈ g ] (−f)
and (homR(A,B),]) is reversible.

(ii) It is similarly proved.

Thus we have the following result:

Theorem 3.22. Let R be a hyperring. Then

(i) The category RG.mod is i1 − CPHA.
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(ii) The category RG.mod is i1 − PSHA.

(iii) The category Rs
G.mod is i1 − CPHA.

(iv) The category Rs
G.mod is i1 − PSHA.

Proof. We only prove items (i) and (ii). The rest of proof is similar.
Let A and B be two R-hypermodules. By Proposition 3.21,
(homR(A,B),]) (resp., (HomR(A,B),])) is a canonical hypergroup (resp.,
semihypergroup with scalar identity).
Now we prove f ◦ (g ] h) ⊆ f ◦ g ] f ◦ h for all definable R-homomorphisms
(resp., R −mv-homomorphisms) f, g and h. Let k ∈ f ◦ (g ] h). Then there
exists some k′ ∈ g ] h such that k = f ◦ k′. Let x be an arbitrary element of
domain of k′. Since k′(x) ⊆ g(x) + h(x) and f is an R-homomorphism (resp.,
R−mv-homomorphism), we get

k(x) = f(k′(x)) ⊆ f(g(x) + h(x))

⊆ f(g(x)) + f(h(x))

= (f ◦ g)(x) + (f ◦ h)(x).

Thus according to the definition of ], k ∈ f ◦g]f ◦h and the result is clear.

Remark 3.23. Recall that a left (resp., right) pre-semiring ([19]) is a nonempty
set S together with operations + and · such that (S,+) and (S, ·) are semi-
groups having the property a·(b+c) = a·b+a·c (resp., (b+c)·a = b·a+c·a) for
all a, b, c ∈ S. According to the proof of Theorem 3.22, (HomR(A,B),]) has
a limited and more general structure rather than the classical case. Indeed, the
operation ◦ on semihypergroup (HomR(A,B),]) with property f ◦ (g ] h) ⊆
f ◦g]f ◦h gives us a new hyperstructure that we call ”left pre-semihyperring”.

Proposition 3.24. All categories RG.mod, Rs
G.mod, RG.mod and

Rs
G.mod have product.

Proof. Let {Ak}k∈I be a family of R-hypermodules of category RG.mod.
Consider the cartesian product

∏
k∈I Ak := {(ak)k∈I | ak ∈ Ak}. Clearly,∏

k∈I Ak is an R-hypermodule. We claim that
∏
k∈I Ak with the (natural)

projection R-homomorphisms πj :
∏
k∈I Ak −→ Aj is the product of {Ak}k∈I .

A
fj

zz
f

��

fj′

$$
Aj

∏
k∈I Ak

πj′ //πjoo Aj′

Indeed, if we define f(a) := (fk(a))k∈I (in which fk(a) ⊆ Ak), then clearly,
f ∈ HomR(A,

∏
k∈I Ak) and πj ◦ f = fj .
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Let f ′ ∈ HomR(A,
∏
k∈I Ak) with f ′(a) = (A′k)k∈I for a ∈ A and some

A′k ⊆ Ak (as another morphism in RG.mod) such that πj ◦ f ′ = fj . Then

A′j = πj((A
′
k)k∈I) = πj(f

′(a)) = fj(a)

for every j ∈ I. So

f ′(a) = (A′k)k∈I = (fk(a))k∈I = f(a).

Hence f ′ = f and f is unique. So RG.mod has product.
Similarly, Rs

G.mod, RG.mod and Rs
G.mod have product.

Thus, according to Definition 3.6, Theorem 3.22, and Proposition 3.24, we
have the following result:

Theorem 3.25. Let R be a hyperring. Then

(i) Both RG.mod and Rs
G.mod are i1 − CHA.

(ii) Both RG.mod and Rs
G.mod are i1 − SHA.

Proposition 3.26. Both categories RsG.mod and RsG.mod have coprod-
uct.

Proof. Let {Ak}k∈I be a family of R-hypermodules of category Rs
G.mod.

Then we claim that the coproduct of {Ak}k∈I is the R-hypermodule∐
k∈I

Ak := {(ak)k∈I ∈
∏
k∈I

Ak | ak = 0Ak
for all but finite k}

with the (natural) injection R-homomorphisms ij : Aj −→
∐
k∈I Ak.

Aj

fj
$$

ij // ∐
k∈I Ak

f

��

Aj′
ij′oo

fj′zz
A

Indeed, if we define f((ak)k∈I) :=
∑
k∈I fk(ak), then clearly,

f ∈ Homs
R(

∐
k∈I Ak, A) and

f(ij(aj)) = f((0, 0, . . . , 0, aj , 0, . . . , 0)) = fj(aj) +
∑
j 6=k∈I

fk(0) = fj(aj)

implies f ◦ ij = fj .
Let f ′ ∈ Homs

R(
∐
k∈I Ak, A) (as another morphism in Rs

G.mod) such that
f ′ ◦ ij = fj . Then

f ′((ak)k∈I) = f ′(
∑
k∈I

ik(ak)) =
∑
k∈I

f ′(ik(ak)) =
∑
k∈I

fk(ak) = f((ak)k∈I).
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Hence f ′ = f and f is unique. So RsG.mod has coproduct.
Similarly, RsG.mod has coproduct.

In the end, for completeness, we state the following straightforward results
in which ”�” means ” is subcategory of ”.

Theorem 3.27. Let R be a hyperring. Then

RG.mod � RG.mod,

Rs
G.mod � Rs

G.mod,

Rw
G.mod � Rw

G.mod,

Rs
G.mod � RG.mod � Rw

G.mod,

RsG.mod � RG.mod � RwG.mod.

4 Conclusion

We considered the influence of hyperstructures theory on category theory
and introduced some generalizations of the well-known categories (e.g. pre-
semiadditive, semiadditive, pre-additive, additive, etc. categories) in which
the class of all morphisms between two objects forms an algebraic structure.
In this approach, first we introduced and formulated such new categories and
then gave some examples of these categories. As a main example, we pro-
ceeded to introduce and study the category of general Krasner hypermodules
with both single-valued and multi-valued homomorphism. For completeness,
we stated some properties of morphisms in this category in [30, 31]. In the
study of this category, we encounter two complexities named hyperoperation
and multi-valued homomorphism. This fact makes some difficulties in investi-
gating some categorical structures such as kernel, cokernel, equalizer, coequal-
izer, etc. So, this area can be a suggested field of research in future.
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