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On residuated skew lattices

Arsham Borumand Saeid and Roghayeh Koohnavard

Abstract

In this paper, we define residuated skew lattice as non-commutative
generalization of residuated lattice and investigate its properties. We
show that Green’s relation D is a congruence relation on residuated
skew lattice and its quotient algebra is a residuated lattice. Deductive
system and skew deductive system in residuated skew lattices are de-
fined and relationships between them are given and proved. We define
branchwise residuated skew lattice and show that a conormal distribu-
tive residuated skew lattice is equivalent with a branchwise residuated
skew lattice under a condition.

1 Introduction

The residuation is a fundamental concept of ordered structures. The operation
� : [0, 1]× [0, 1]→ [0, 1] which makes ([0, 1],�, 1) a commutative monoid, i.e.
� is commutative, associative and x � 1 = x that means it is a t-norm. If �
is a left-continuous t-norm, then putting x → y = sup{z|z � x ≤ y} makes
([0, 1],min,max,�,→, 0, 1) a residuated lattice. If � is a continuous t-norm,
then x→ y is called residuum such that x� y ≤ z iff x ≤ y → z. Residuated
lattices were investigated by Krull (1924), then Ward and Dilworth wrote a
series of important papers in this field. Apart from their interest in logic,
residuated lattices have interesting algebraic properties and include two im-
portant classes of algebras: BL-algebra (introduced by Hajek as the algebraic
counterpart of his basic logic) and MV-algebra (correspondent to Lukasiewicz
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many-valued logic) [18].
Skew lattices were introduced for the first time by Jordan [11]. Skew lattices
are a generalization of lattices. A skew lattice is an algebra (A,∨,∧) such
that (A,∨) and (A,∧) are bands satisfying a variation of absorption laws. In
skew lattice two different order concepts can be defined: the natural preorder,
denoted by � and the natural partial order denoted by ≤, one weaker than
the other and both of them motivated by analogous order concepts defined for
bands. They generalize the partial order of the correspondent lattice. Though,
unlike lattices, the admissible Hasse diagram representing the order structure
of a skew lattice does not determine its algebraic structure, in general [19].
Green’s relation D induced by the pre-order � is a congruence on (A,∨,∧)
such that (A/D,∨,∧) is a lattice too. Leech introduced skew Boolean algebras
[16] and normal skew lattices [12]. Cvetko-Vah defined skew Heyting algebras
as dual skew Boolean algebras [8].
Skew lattices are non-commutative generalization of lattices, so we provide
non-commutative generalization of residuated lattices in this paper. By us-
ing residuum on skew lattices, we define residuated skew lattices as non-
commutative generalization of residuated lattices and obtain properties of
residuated skew lattices. The class of all conormal residuated skew lattices
forms a variety under a condition. We show that Green’s relation D is a con-
gruence on residuated skew lattice A, and A/D is a residuated lattice. We
define branchwise residuated skew lattices and show that a conormal distribu-
tive residuated skew lattice is equivalent with a branchwise residuated skew
lattice under a condition. We define deductive system and skew deductive
system in residuated skew lattices and give relationships between them.

2 Preliminaries

In this section, we review some properties of skew lattices which we need in
the sequel.

Definition 2.1. [2] A skew lattice is an algebra (A,∨,∧) of type (2, 2) satis-
fying the following identities:
(1) (x ∨ y) ∨ z = x ∨ (y ∨ z) and (x ∧ y) ∧ z = x ∧ (y ∧ z),
(2) x ∧ x = x and x ∨ x = x,
(3) x ∧ (x ∨ y) = x = x ∨ (x ∧ y) and (x ∧ y) ∨ y = y = (x ∨ y) ∧ y,
The identities found in (1−3) are known as the associative law, the idempotent
laws and absorption laws respectively. In view of the associativity (1), we can
omit parentheses when no ambiguity arises.

On a given skew lattice A the natural partial order ≤ and natural pre-
order � respectively are defined by x ≤ y iff x ∧ y = x = y ∧ x or dually
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x ∨ y = y = y ∨ x and x � y iff y ∨ x ∨ y = y or equivalently x ∧ y ∧ x = x.
Relation D is defined by x D y iff x ∨ y ∨ x = x and y ∨ x ∨ y = y or dually,
x ∧ y ∧ x = x and y ∧ x ∧ y = y. D is called the natural equivalence and it
coincides with Green’s relation D on both semigroups (A,∧) and (A,∨) [8].
For elements x and y of a skew lattice A the following are equivalent [20]:

(1) x ≤ y, (2) x ∨ y ∨ x = y, (3) y ∧ x ∧ y = x.

Leech’s first decomposition theorem for skew lattices states that the relation
D is a congruence on a skew lattice A, A/D is the maximal lattice image of A,
and each congruence class is a maximal rectangular skew lattice in A [15]. A
pair of natural congruences, L and R, refine D [7]. We say that x is L-related
to y (denoted x L y) if x ∧ y = x and y ∧ x = y, or dually, x ∨ y = y and
y ∨ x = x. Likewise, x and y are R-related (xR y) if x ∧ y = y and y ∧ x = x,
or dually, x ∨ y = x and y ∨ x = y. A skew lattice is left-handed if D = L
so that x ∧ y = x = y ∨ x on each rectangular subalgebra. Left-handed skew
lattices are characterized by various equivalent identities:

x ∧ y ∧ x = x ∧ y or x ∧ (y ∨ x) = x or x ∨ y ∨ x = y ∨ x or (x ∧ y) ∨ x = x.

For instance, if x∧y∧x = x∧y holds identically, then x∧(y∨x) = x∧(y∨x)∧x =
x∧x = x. If x∧ (y∨x) = x holds, then y∨x = (x∧ (y∨x))∨y∨x = x∨y∨x.
Similar arguments show that the third identity implies the fourth and that
the fourth implies the first. Dually a skew lattice is right-handed if D = R so
that x ∧ y = y = y ∨ x on each rectangular subalgebra. Right-handed skew
lattices are characterized by the following equivalent identities:

x ∧ y ∧ x = y ∧ x or (x ∨ y) ∧ x = x or x ∨ y ∨ x = x ∨ y or x ∨ (y ∧ x) = x.

For any elements x, y of a skew lattice A, xD y iff x∨ y = y ∧ x. Also if D is a
congruence and A/D is a lattice, for given any congruence C on A such that
A/C is a lattice, D ⊆ C, then A/D is the maximal lattice image of A [7].

Proposition 2.1. [15] Let B and C be comparable D-classes in a skew lattice
A such that B ≺ C. For all x, y ∈ A, x ≤ y implies x � y. Furthermore,
whenever x ∈ C, y ∈ B, B � C iff y � x.

Definition 2.2. [12] Skew lattice A is normal if x∧ y ∧ z ∧w = x∧ z ∧ y ∧w
and is conormal if x ∨ y ∨ z ∨ w = x ∨ z ∨ y ∨ w for all x, y, z, w ∈ A.

Proposition 2.2. [12] A skew lattice A is normal iff each sub skew lattice
(↓ x) is a sub lattice of A. Dually, A is conormal iff each sub skew lattice (↑ x)
is a sub lattice of A ((↑ x) = {y ∈ A|y ≥ x}, (↓ x) = {y ∈ A|y ≤ x}).



ON RESIDUATED SKEW LATTICES 248

A skew lattice is distributive if it satisfies x∧(y∨z)∧x = (x∧y∧x)∨(x∧z∧x)
and x ∨ (y ∧ z) ∨ x = (x ∨ y ∨ x) ∧ (x ∨ z ∨ x) [13].

A skew lattice A is quasi-distributive, if the maximal lattice image A/D is
a distributive lattice. All distributive skew lattices are quasi-distributive [13].

Theorem 2.1. [12] Given a skew lattice A, then the following are equivalent:
(1) x ∨ (y ∧ z) ∨ w = (x ∨ y ∨ w) ∧ (x ∨ z ∨ w) holds on A.
(2) A is distributive and conormal.
(3) A/D is distributive and A is conormal.

Lemma 2.1. [8] Let A be a conormal skew lattice and let C and B be compa-
rable D-classes such that B � C holds in the lattice A/D. Given b ∈ B there
exists a unique a ∈ C such that b ≤ a.

It was proved in [15] that a skew lattice always forms a regular band
for either of the operations ∧,∨, i.e x ∧ y ∧ x ∧ z ∧ x = x ∧ y ∧ z ∧ x and
x ∨ y ∨ x ∨ z ∨ x = x ∨ y ∨ z ∨ x.
A skew chain is a skew lattice where A/D is a chain i.e. for all x, y ∈ A, x � y
or y � x [8].

Definition 2.3. [18] A residuated lattice is an algebra A = (A,∨,∧,�,→, 0, 1)
of type (2, 2, 2, 2, 0, 0) satisfying the following:
(1) (A,∨,∧, 0, 1) is a bounded lattice,
(2) (A,�, 1) is a commutative monoid,
(3) � and → form an adjoint pair, i.e. z ≤ x → y iff x � z ≤ y, for all
x, y, z ∈ A.

A generalized residuated lattice is an algebra A = (A,∨,∧,→,�, 1) such
that A is a residuated lattice without the bottom element. If it also has a
bottom element, then it is a residuated lattice.

Lemma 2.2. [1] If A is a residuated lattice, then x → y = (x ∨ y) → y, for
all x, y ∈ A.

Definition 2.4. [22] A function f : A ∗ A→ P (A), of the set A ∗ A into the
set of all nonempty subsets of A, is called a hyperoperation.

3 Residuated skew lattices

In this section, we want to extend the notion of residuated lattice. We apply
the residuum on skew lattice and define residuated skew lattice. Then we
study its properties.
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Definition 3.1. A residuated skew lattice is a nonempty set A with opera-
tions ∨,∧,� and hyperoperation → and constant element 1 that satisfying the
following:
(1) (A,∨,∧, 1) is a skew lattice with top 1 (for all x ∈ A, x ≤ 1),
(2) (A,�, 1) is a commutative monoid,
(3) � and → form an adjoint pair, i.e. z � x → y iff x � z � y, for all
x, y, z ∈ A.

The relation between the pair of operations � and → expressed by (3),
is a special case of the law of residuation and for every x, y ∈ A, x → y =
sup{z ∈ A|x� z � y}. Supremum of a set in a pre-ordered set is not a unique
element, x→ y may be a D-class. Two D-classes have D-relationship when all
of their members have D-relationship with each other. Relation � between two
D-classes is defined member to member (i.e. B � C iff ∀c ∈ C,∀b ∈ B, b � c).
Also each of the ∨,∧,�,→, between two D-classes are defined member to
member (B → C = {b→ c|b ∈ B, c ∈ C}).

Example 3.1. Let A = {0, 0′,m, a, b, p, n, c, d, 1} be a skew lattice such that
0′, 0 < m < a, b < p < n < c, d < 1, 0 D 0′, aDb and Da = {a, b}, D0 = {0, 0′}.
A = (A,∨,∧,�,→, 1) is a residuated skew lattice with the following operations:

→ 0 0′ m a b p n c d 1 � 0 0′ m a b p n c d 1
0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0′ 1 1 1 1 1 1 1 1 1 1 0′ 0 0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′

m D0 D0 1 1 1 1 1 1 1 1 m 0 0′ m m m m m m m m
a D0 D0 Da 1 1 1 1 1 1 1 a 0 0′ m m m a a a a a
b D0 D0 Da 1 1 1 1 1 1 1 b 0 0′ m m m b b b b b
p D0 D0 m Da Da 1 1 1 1 1 p 0 0′ m a b p p p p p
n D0 D0 m Da Da p 1 1 1 1 n 0 0′ m a b p n n n n
c D0 D0 m Da Da p d 1 d 1 c 0 0′ m a b p n c n c
d D0 D0 m Da Da p c c 1 1 d 0 0′ m a b p n n d d
1 D0 D0 m Da Da p n c d 1 1 0 0′ m a b p n c d 1

∨ 0 0′ m a b p n c d 1 ∧ 0 0′ m a b p n c d 1
0 0 0′ m a b p n c d 1 0 0 0 0 0 0 0 0 0 0 0
0′ 0 0′ m a b p n c d 1 0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′

m m m m a b p n c d 1 m 0 0′ m m m m m m m m
a a a a a b p n c d 1 a 0 0′ m a a a a a a a
b b b b a b p n c d 1 b 0 0′ m b b b b b b b
p p p p p p p n c d 1 p 0 0′ m a b p p p p p
n n n n n n n n c d 1 n 0 0′ m a b p n n n n
c c c c c c c c c 1 1 c 0 0′ m a b p n c n c
d d d d d d d d 1 d 1 d 0 0′ m a b p n n d d
1 1 1 1 1 1 1 1 1 1 1 1 0 0′ m a b p n c d 1
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• 1

c • • d

n •

p •

a • • b

m •

0 • • 0′

In Example 3.1, A is a residuated skew lattice but is not a generalized
residuated lattice, because A is not lattice since ∨,∧ are not commutative
(a = b ∨ a 6= a ∨ b = b, b = b ∧ a 6= a ∧ b = a).

Remark 3.1. Any generalized residuated lattice is a residuated skew lattice
but the converse is not true. Indeed, if ∨,∧ are commutative, then every
residuated skew lattice is a generalized residuated lattice.

From here until the end of this section, let A be a residuated skew lattice
unless otherwise stated.

Lemma 3.1. Let x, y, z ∈ A. Then
(1) 1→ x = Dx and x→ x = 1, (Dx = {y ∈ A|y D x}),
(2) x� y � x, y hence x� y � x ∧ y, y ∧ x, y � x→ y,
(3) x� y � x→ y,
(4) x � y iff x→ y = 1 and x D y iff x→ y = y → x = 1,
(5) x→ 1 = 1,
(6) x� (x→ y) � y, x � (x→ y)→ y and (x→ y)→ y)→ y D x→ y,
(7) x→ y � x� z → y � z,
(8) x � y implies x� z � y � z,
(9) x→ y � (z → x)→ (z → y),
(10) x→ y � (y → z)→ (x→ z),
(11) x � y implies z → x � z → y and y → z � x→ z,
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(12) x� (y → z) � y → (x� z) � x� y → x� z,
(13) x→ (y → z) D (x� y)→ z D y → (x→ z),
(14) x1 → y1 � (y2 → x2)→ [(y1 → y2)→ (x1 → x2)],
(15) x ∨ y � (x→ y)→ y ∧ (y → x)→ x ∧ (x→ y)→ y,
(16) x� (x→ y) � (x ∧ y), (y ∧ x).

Proof. (1) We must show that 1 → x = sup{z ∈ A|1 � z � x} = Dx = {y ∈
A|y D x}. Let B = {z ∈ A|1 � z � x} and t ∈ Dx. Then t D x, therefore
x � t, thus t is an upper bound of B. Let t′ ∈ A be an upper bound of B i.e.
x � t′. Since t D x, then t � t′. Therefore t ∈ supB. Now, let t ∈ supB, then
t � x. Since x� 1 = x � x, then x � 1→ x i.e. x � supB. Therefore x � t,
thus t D x. Therefore t ∈ Dx. And 1�x = x � x implies 1 � x→ x, therefore
(x→ x) = 1.
(2) It is clear, by Proposition 3.1 of [5].
(3) Results of (1) and (2): x� y � y and y � x→ y so x� y � x→ y.
(4) We have x � y iff x� 1 � y iff 1 � x→ y iff x→ y = 1.
(5) Follows from (4).
(6) Concludes immediately from definition.
(7) x → y � (x � z) → (y � z) iff (x → y) � x � z � y � z iff (x →
y) � x � z → (y � z). But by (6), (x → y) � x � y, y � z → (y � z) implies
(x→ y)� x � z → (y � z).
(8) Follows from (7).
(9) x → y � (z → x) → (z → y) iff (x → y) � (z → x) � z → y iff (x →
y)� (z → x)� z � y. Which implies (x→ y)� (z → x)� z � (x→ y)�x � y
by (6).
(10− 13) are clear, by Proposition 3.1 of [5].
(14) It is enough to prove that (x1 → y1)� (y2 → x2)� (y1 → y2)� x1 � x2,
this is a consequence of applying several times (6).
(15) Since x, y � (x → y) → y and x, y � (y → x) → x, then x ∨ y � ((x →
y)→ y) ∧ ((y → x)→ x) ∧ ((x→ y)→ y).
(16) It is clear by (2), (6).

Theorem 3.1. Relation D (x � y, y � x iff x D y) is a congruence relation
on A and A/D is a residuated lattice.

Proof. By Proposition 3.3 of [5] and Corollary 3.1 of [5], it is clear.

Definition 3.2. A residuated skew lattice with 0 is a structure A = (A,∨,∧,�,
→, 0, 1) such that (A,∨,∧,�,→, 1) is a residuated skew lattice and 0 ∈ A is a
constant such that x ≥ 0, for all x ∈ A. 0 is a unique element in a residuated
skew lattice with 0.
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In a residuated skew lattice with 0, it makes sense to define a new operation
as x∗ = x→ 0.

Theorem 3.2. Let A be a residuated skew lattice with 0 and x, y ∈ A. Then
(1) x� x∗ = 0, x� y = 0 iff x � y∗,
(2) 0→ x = 1,
(3) x � x∗∗ and x∗∗ � x∗ → x,
(4) 1∗ = 0, 0∗ = 1,
(5) x � y implies y∗ � x∗,
(6) x→ y � y∗ → x∗,
(7) x∗ � y∗ � (x� y)∗,
(8) x∗∗∗ D x∗, (x� y)∗ D x→ y∗ D y → x∗ D x∗∗ → y∗,
(9) x� y = 0 iff x∗∗ � y∗∗ = 0,
(10) y D (x∗ → x)→ x implies y∗ � y.

Proof. (1) By Proposition 4.1 of [5], it is clear.
(2) By Proposition 4.2 of [5], it is clear.
(3) By Proposition 4.3 of [5] we have x � x∗∗. x∗∗ → (x∗ → x)D (x∗∗�x∗)→
x = 0→ x = 1.
(4) By Proposition 4.1 of [5], it is clear.
(5) By Lemma 3.1 (11), it is clear.
(6) It is clear, by Proposition 4.3 of [5].
(7) Since x� y � x, y, then x∗, y∗ � (x� y)∗, it is clear.
(8) By Propositions 3.1, 4.3 of [5], It is clear.
(9) Since x� y � x∗∗ � y∗∗, one direction is clear. Now, x� y = 0 iff x � y∗

implies y∗∗ � x∗ implies x∗∗ � y∗∗∗ iff x∗∗ � y∗∗ = 0 and proof is complete.
(10) Since x, x∗ � y, then y∗ � x∗ and 1 = y∗ → x∗ � y∗ → y implies
y∗ → y = 1 implies y∗ � y.

Lemma 3.2. Let A be a residuated skew lattice with 0. Then for every x, y ∈
A, we have x∗∗ � y∗∗ � (x� y)∗∗.

Proof. By (x � y)∗ D x → y∗, so (x � y)∗ � x � y∗. By Lemma 3.1 (11), we
deduce that y∗∗ � [(x�y)∗�x]∗D[(x�y)∗ → x∗], so y∗∗�(x�y)∗ � x∗. Then
x∗∗ � [y∗∗ � (x� y)∗]∗ D [y∗∗ → (x� y)∗∗], that is, x∗∗ � y∗∗ � (x� y)∗∗.

Corollary 3.1. Let A be a residuated skew lattice with 0. Then for every
x ∈ A and n ≥ 1 we have (x∗∗)n � (xn)∗∗, ((x∗∗)n = x∗∗ � · · · � x∗∗).

Theorem 3.3. Let A be a residuated skew lattice with 0. Then for every
x ∈ A, the following conditions are equivalent:
(1) x→ x∗ D x∗,
(2) (x2)∗ D x∗,
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(3) (xn)∗ D x∗,
(4) x� (x→ x∗) = 0.

Proof. (1⇒ 2) x∗ D x→ x∗ = x→ (x→ 0) D x2 → 0 = (x2)∗ by Lemma 3.1.
(2⇒ 3) By Lemma 3.1, we have (x3)∗ = (x2�x)→ 0 D x→ (x2 → 0)Dx→
x∗ = x→ (x→ 0) D x2 → 0 = (x2)∗ D x∗. Similarly, (xn)∗ D x∗.
(3⇒ 4) By Lemma 3.1, we have x�(x→ x∗) D x�(x→ (xn)∗) D x�(xn+1 →
0) = x� (xn+1)∗ D x� x∗ = 0.
(4 ⇒ 1) x � (x → x∗) = 0 implies x → x∗ � x∗. On the other hand
x∗ � x→ x∗, therefore x→ x∗ D x∗ by Lemma 3.1.

Theorem 3.4. Let x, y1, y2 ∈ A. Then
(1) x� (y1 ∨ y2) D (x� y1) ∨ (x� y2),
(2) x� (y1 ∧ y2) � (x� y1) ∧ (x� y2),
(3) x→ (y1 ∧ y2) D (x→ y1) ∧ (x→ y2),
(4) (y1 ∨ y2)→ x D (y1 → x) ∧ (y2 → x),
(5) (y1 → x) ∨ (y2 → x) � (y1 ∧ y2)→ x,
(6) (x→ y1) ∨ (x→ y2) � x→ (y1 ∨ y2),
(7) (y1 ∨ y2)∗ D y∗1 ∧ y∗2 ,
(8) (y1 ∧ y2)∗ � y∗1 ∨ y∗2 .
Parts 7, 8 are true in a residuated skew lattice with 0.

Proof. (1) Clearly x � yi � x � (y1 ∨ y2) for every (i = 1, 2). Therefore
(x� y1) ∨ (x� y2) � x� (y1 ∨ y2).
Conversely, since for every (i = 1, 2) x�yi � (x�y1)∨(x�y2), then yi � x→
(x� y1)∨ (x� y2). Which implies y1∨ y2 � x→ (x� y1)∨ (x� y2). Therefore
x�(y1∨y2) � (x�y1)∨(x�y2). So we obtain x�(y1∨y2)D(x�y1)∨(x�y2).
(2) Since y1 ∧ y2 � y1, y2, it is clear.
(3) Let y = y1 ∧ y2. Then y � y1, y2, for every (i = 1, 2), we deduce that
x → y � x → yi, hence x → y � (x → y1) ∧ (x → y2). On the other hand
(x→ y1)∧(x→ y2) � x→ y is equivalent with x�((x→ y1)∧(x→ y2)) � y.
This is true because by (2) we have x � ((x → y1) ∧ (x → y2)) � (x � (x →
y1)) ∧ (x� (x→ y2)) � y1 ∧ y2 = y.
(4) Let y = y1 ∨ y2. Since for every (i = 1, 2), yi � y, then y → x � yi → x.
Therefore y → x � (y1 → x) ∧ (y2 → x).
Conversely, (y1 → x) ∧ (y2 → x) � y → x iff y � ((y1 → x) ∧ (y2 → x)) � x.
By (2), (1), we have y � ((y1 → x) ∧ (y2 → x)) � (y � (y1 → x)) ∧ (y � (y2 →
x)) D (y1 � (y1 → x) ∨ y2 � (y1 → x)) ∧ ((y1 � (y2 → x)) ∨ (y2 � (y2 → x)) �
x ∧ x = x. So we obtain (y1 ∨ y2)→ x D (y1 → x) ∧ (y2 → x).
(5) By Lemma 3.1 (11), for every (i = 1, 2), yi → x � (y1 ∧ y2)→ x.
(6) Is similar to (5).
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(7) By taking x = 0 in (4), we obtain (y1 ∨ y2)∗ D (y∗1 ∧ y∗2).
(8) By taking x = 0 in (5), we obtain (y1 ∧ y2)∗ � y∗1 ∨ y∗2 .

Corollary 3.2. If x, x1, y, y1, z ∈ A, then
(1) x ∨ y = 1 implies (x� y) D (x ∧ y),
(2) x→ (y → z) � (x→ y)→ (x→ z),
(3) If A is conormal, then x ∨ (y � z) ∨ x � (x ∨ y ∨ x) � (x ∨ z ∨ x), hence
x ∨ yn ∨ x � (x ∨ y ∨ x)n and xm ∨ yn ∨ xm � (x ∨ y ∨ x)mn, for any m,n
natural numbers,
(4) (x→ y)� (x1 → y1) � (x ∨ x1)→ (y ∨ y1),
(5) (x→ y)� (x1 → y1) � (x ∧ x1)→ (y ∧ y1).

Proof. (1) Suppose x ∨ y = 1. Clearly x � y � x and x � y � y. Let t ∈ A
be such that t � x and t � y. By Lemma 3.1 (12), we have t → (x � y) �
x � (t → y) = x � 1 = x and t → (x � y) � y � (t → x) = y � 1 = y,
so t → (x � y) � x ∨ y = 1, hence t → (x � y) = 1 iff t � x � y, that is
(x� y) D (x ∧ y).
(2) We have by Lemma 3.1 (13): (x → (y → z)) D ((x � y) → z) and
((x → y) → (x → z)) D [x � (x → y)] → z. But x � y � x � (x → y), so we
obtain (x�y)→ z � [x�(x→ y)]→ z iff x→ (y → z) � (x→ y)→ (x→ z).
(3) By Theorem 3.4 (1) and by assumption we deduce

(x∨y∨x)�(x∨z∨x)D(x2∨(x�y)∨x2∨(x�z)∨(y�z)∨(x�z)∨x2∨(x�y)∨x2)

� (x ∨ (y � z) ∨ (x� z) ∨ x2 ∨ (x� y) ∨ x2)

= (x ∨ (x� z) ∨ (y � z) ∨ x2 ∨ (x� y) ∨ x2)

� (x ∨ (y � z) ∨ x2 ∨ (x� y) ∨ x2)

� (x ∨ (y � z) ∨ (x� y) ∨ x2)

� (x ∨ (y � z) ∨ x2)

� (x ∨ (y � z) ∨ x).

(4) From:

x� (x→ y)� (x1 → y1) � x� (x→ y) � x ∧ y � y ∨ y1

and

x1 � (x→ y)� (x1 → y1) � x1 � (x1 → y1) � x1 ∧ y1 � y ∨ y1

we deduce that
(x→ y)� (x1 → y1) � x→ (y∨y1) and (x→ y)� (x1 → y1) � x1 → (y∨y1).
So by Theorem 3.4 (4),
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(x→ y)�(x1 → y1) � ([x→ (y∨y1)]∧ [x1 → (y∨y1)])D((x∨x1)→ (y∨y1)).
(5) Lemma 3.1 (6) implies

(x ∧ x1)� (x→ y)� (x1 → y1) � x� (x→ y) � y

and

(x ∧ x1)� (x→ y)� (x1 → y1) � x1 � (x1 → y1) � y1

so we deduce that

(x→ y)� (x1 → y1) � (x ∧ x1)→ y

and

(x→ y)� (x1 → y1) � (x ∧ x1)→ y1.

So by Theorem 3.4

(x→ y)�(x1 → y1) � [[(x∧x1)→ y]∧ [(x∧x1)→ y1]] D [(x∧x1)→ (y∧y1)].

4 (Skew) deductive systems in residuated skew lattices

From here until the end of this section, let A be a residuated skew lattice
unless otherwise stated.

Definition 4.1. A nonempty subset D ⊆ A is called a deductive system (for
short ds) of A, if the following conditions are satisfied:
(1) 1 ∈ D,
(2) If x ∈ D,x→ y ⊆ D, then y ∈ D (If x→ y is a single element and is not
a D-class we write x→ y ∈ D instead x→ y ⊆ D).

Example 4.1. In Example 3.1, D = {p, n, c, d, 1} is a ds.

Remark 4.1. (1) A ds D is proper iff no bottom element belong A. If A is a
residuated skew lattice with 0, then D is a proper ds iff 0 /∈ D iff no element
x ∈ A holds x ∈ D,x∗ ⊆ D,
(2) x ∈ D iff xn ∈ D for every n ≥ 1,
(3) If x ∈ D,x D y, then y ∈ D.

Proposition 4.1. A nonempty subset D ⊆ A is a ds of A, iff for all x, y ∈ A
the following conditions are satisfied:
(1′) If x ∈ D and x � y, then y ∈ D,
(2′) If x, y ∈ D, then x� y ∈ D.
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Proof. Let D be a deductive system of A and x � y, x ∈ D. So x→ y = 1 ∈ D
therefore y ∈ D. Now, let x, y ∈ D. We must show that x � y ∈ D. Since
x � y → x � y = 1 ∈ D, x, y ∈ D and x � y → x � y D x → (y → x � y)
therefore (x→ (y → x� y)) ⊆ D. Thus we deduce x� y ∈ D.
Conversely, let (1′), (2′) be satisfied. We must show that D is a ds. Let x � 1
and x ∈ D by assumption, 1 ∈ D. Now, let x ∈ D,x → y ⊆ D. Thus
x� (x→ y) ⊆ D and since x� (x→ y) � y we get that y ∈ D.

Definition 4.2. A nonempty subset D ⊆ A is called a skew deductive system
of A, if the following conditions are satisfied:
(1) 1 ∈ D,
(2) If x ∈ D,x→ y ⊆ D, then (y ∧ (x→ y) ∧ y) ⊆ D.

Lemma 4.1. Any deductive system in A is a skew deductive system.

Proof. Let D be a deductive system in A and x ∈ D,x → y ⊆ D. Now we
show (y ∧ (x → y) ∧ y) ⊆ D. Since D is a deductive system and x ∈ D,x →
y ⊆ D, then y ∈ D. Therefore by Proposition 4.1, y � (x → y) � y ⊆ D so
(y ∧ (x→ y) ∧ y) ⊆ D.

Example 4.2. F = {n, c, d, 1} of Example 3.1, is a ds and also a skew ds.

By bi-residuum on a residuated skew lattice A we understand the de-
rived operation ↔ defined for x, y ∈ A by x ↔ y = (x → y) ∧ (y → x)
or x ↔ y = (y → x) ∧ (x → y) that (x → y) ∧ (y → x) D (y → x) ∧ (x → y),
in fact, x↔ y may be a D-class.

Theorem 4.1. Let x, y, x1, x2, y1, y2 ∈ A. Then
(1) x↔ 1 = Dx,
(2) x↔ y D y ↔ x,
(3) x↔ y = 1 iff x D y,
(4) (x↔ y)� (y ↔ z) � (x↔ z),
(5) (x1 ↔ y1) ∧ (x2 ↔ y2) � (x1 ∧ x2)↔ (y1 ∧ y2),
(6) (x1 ↔ y1) ∧ (x2 ↔ y2) � (x1 ∨ x2)↔ (y1 ∨ y2),
(7) (x1 ↔ y1)� (x2 ↔ y2) � (x1 � x2)↔ (y1 � y2),
(8) (x1 ↔ y1)� (x2 ↔ y2) � (x1 ↔ x2)↔ (y1 ↔ y2).

Proof. (1, 2, 3) are immediate consequences of Lemma 3.1.
(4) By Lemma 3.1 (10), (x→ y)� (y → z) � x→ z, therefore (x↔ y)� (y ↔
z) � (x→ y)� (y → z) � x→ z. Similarly, (x↔ y)� (y ↔ z) � z → x. We
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conclude that (x↔ y)� (y ↔ z) � x↔ z.
(5) If we denote a = x1 ↔ y1 and b = x2 ↔ y2, then

(a ∧ b)� (x1 ∧ x2) � [(x1 → y1) ∧ (x2 → y2)]� (x1 ∧ x2)

� [(x1 → y1)� x1] ∧ [(x2 → y2)� x2]

� y1 ∧ y2.

Which implies a ∧ b � (x1 ∧ x2) → (y1 ∧ y2). Analogously we deduce that
a ∧ b � (y1 ∧ y2)→ (x1 ∧ x2), hence a ∧ b � (x1 ∧ x2)↔ (y1 ∧ y2).
(6) With the notations of (5) we have

(a ∧ b)� (x1 ∨ x2)D [(a ∧ b)� x1] ∨ [(a ∧ b)� x2]

� [(x1 → y1)� x1] ∨ [(x2 → y2)� x2]

� y1 ∨ y2.

Which implies a ∧ b � (x1 ∨ x2) → (y1 ∨ y2). Analogously we deduce that
a ∧ b � (y1 ∨ y2)→ (x1 ∨ x2), hence a ∧ b � (x1 ∨ x2)↔ (y1 ∨ y2).
(7) Consider

(a� b)� (x1 � x2) � [(x1 → y1)� x1]� [(x2 → y2)� x2]

� y1 � y2.

then a � b � (x1 � x2) → (y1 � y2). Hence analogously we deduce that
a� b � (y1 � y2)→ (x1 � x2), so a� b � (x1 � x2)↔ (y1 � y2).
(8) Consider

(a� b)� (x1 → x2) � (y1 → x1)� (x2 → y2)� (x1 → x2)

� (y1 → x2)� (x2 → y2)

� y1 → y2.

The proof is similar to the proof of (7).

Proposition 4.2. Let x, y1, y2, z1, z2 ∈ A. If x � y1 ↔ y2 and x � z1 ↔ z2,
then x2 � (y1 ↔ z1)↔ (y2 ↔ z2).

Proof. From x � y1 ↔ y2 implies x � y2 → y1, thus x � y2 � y1 and
analogously we deduce that x� z1 � z2. Then x�x � (y1 → z1)→ (y2 → z2)
iff x � x � (y1 → z1) � (y2 → z2) iff x � x � (y1 → z1) � y2 � z2. Indeed
x � x � (y1 → z1) � y2 � x � (y1 → z1) � y1 � x � z1 � z2 and analogously
x� x � (y2 → z2)→ (y1 → z1).
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Proposition 4.3. Suppose x, xi, yi ∈ A, (i = 1, 2). If x � xi ↔ yi for every
(i = 1, 2), then x � (x1 ∧ x2)↔ (y1 ∧ y2).

Proof. Since x � xi ↔ yi for every i = 1, 2, we deduce that x � xi � yi and
then x�(x1∧x2) � (x�x1)∧(x�x2) � y1∧y2, hence x � (x1∧x2)→ (y1∧y2).
Analogously, x � (y1 ∧ y2)→ (x1 ∧ x2).

We denote by Ds(A) the set of all deductive systems of A.
We study connections between the congruences of A and the deductive sys-
tems of A. For any deductive systems D of A we can associate a congruence
ΘD on A by
(x, y) ∈ ΘD iff x→ y, y → x ⊆ D iff (x→ y)� (y → x) ⊆ D.
Conversely, for Θ ∈ Con(A), the subset DΘ of A defined by x ∈ DΘ iff
(x, 1) ∈ Θ is a deductive system of A. Moreover the natural maps associated
with the above are mutually inverse and establish an isomorphism between
Ds(A) and Con(A). So, we have the following result:

Theorem 4.2. If D ∈ Ds(A) and Θ ∈ Con(A), then
(1) ΘD ∈ Con(A) and DΘ ∈ Ds(A),
(2) The assignments D −→ ΘD and Θ −→ DΘ give a isomorphism between
Ds(A) and Con(A).

Proof. (1) Clearly ΘD is equivalence relation. We must show that ΘD pre-
serve operations. Let x1, x2, y1, y2 ∈ A and (x1, y1) ∈ ΘD and (x2, y2) ∈ ΘD.
We must show that (x1 ∧ x2) ΘD (y1 ∧ y2), (x1 ∨ x2) ΘD (y1 ∨ y2) and
(x1 � x2) ΘD (y1 � y2) and (x1 → x2) ΘD (y1 → y2).We only prove that
ΘD preserve ∧. Since (x1, y1) ∈ ΘD and (x2, y2) ∈ ΘD, then we have x1 ↔
y1, x2 ↔ y2 ⊆ D. Therefore by Theorem 4.1, we have (x1 ∧ x2) ΘD (y1 ∧ y2).
Conversely, let ΘD be congruence relation. We must show that DΘ is a deduc-
tive system. Since (1, 1) ∈ ΘD, then 1 ∈ DΘ. Let x ∈ DΘ and x → y ⊆ DΘ.
Since x ∈ DΘ implies x ΘD 1, on the other hand y ΘD y therefore by assump-
tion (x → y)ΘD(1 → y) which implies x → y ΘD Dy. Also (x → y) ⊆ DΘ

implies (x → y) ΘD 1 therefore 1 ΘD Dy. It implies Dy ⊆ DΘ, therefore
y ∈ DΘ.
(2) Let ϕ : Ds(A) −→ Con(A) be such that D 7−→ ΘD. It is enough to
show that ϕ is surjective and order embedding. Let ΘD ∈ Con(A) and define
D := {x ∈ A|(x, 1) ∈ ΘD}. By (1), D ∈ Ds(A) therefore ϕ is surjective.
No, we must show that D1 ⊆ D2 iff ΘD1

⊆ ΘD2
. Suppose D1 ⊆ D2 and

(x, y) ∈ ΘD1
therefore x → y, y → x ⊆ D1 ⊆ D2. This implies (x, y) ∈ ΘD2

.
If x ∈ D1, then (x, 1) ∈ ΘD1

. Which implies (x, 1) ∈ ΘD2
i.e. x ∈ D2. So ϕ is

a isomorphism.
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If D is a deductive system of A, then we define relation � on A/D as x/D �
y/D iff x→ y ⊆ D, (A/D = {x/D|x ∈ A} and x/D = {y ∈ A|x ΘD y}).

Proposition 4.4. Let D ∈ Ds(A) and x, y ∈ A. Then
(1) x/D D 1/D iff Dx ⊆ D, hence x/D �D 1/D iff Dx * D,
(2) x/D D 0/D iff x∗ ⊆ D,
(3) If D is proper and x/D D 0/D, then x /∈ D.
Parts 2, 3 are true in a residuated skew lattice with 0.

Proof. (1) We have x/D D 1/D iff (x→ 1)�(1→ x) ⊆ D iff 1�Dx = Dx ⊆ D.
(2) We have x/D D 0/D iff (x→ 0)� (0→ x) ⊆ D iff x∗ � 1 = x∗ ⊆ D.
(3) Follows from Remark 4.1.

For a nonempty subset S ⊆ A, the smallest ds of A which contains S, i.e.
∩{D ∈ Ds(A)|S ⊆ D}, is said to be the ds of A generated by S and will be
denoted by [S). If S = {x}, with x ∈ A, we denote by [x) the ds generated
by {x} ([x) is called principal). For D ∈ Ds(A) and x ∈ A, we denote by
D(x) = [D ∪ {x}) (clearly, if x ∈ D, then D(x) = D).

Proposition 4.5. Let S ⊆ A be a nonempty subset of A, x ∈ A and D,D1, D2 ∈
Ds(A). Then
(1) If S is a deductive system, then [S) = S,
(2) [S) = {y ∈ A|s1 � . . . � sn � y, for some n ≥ 1 and s1, . . . , sn ∈ S}. In
particular, [x) = {y ∈ A|y � xn, for some n ≥ 1},
(3) D(x) = {y ∈ A|y � d� xn, which d ∈ D and n ≥ 1},
(4) [D1 ∪D2) = {y ∈ A|y � d1 � d2 for some d1 ∈ D1 and d2 ∈ D2}.

Proof. (1) It is clear.
(2) Let S′ = {y ∈ A|s1 � . . .� sn � y, for some n ≥ 1 and s1, . . . , sn ∈ S}. It
is clear that S′ is a deductive system which contains the set S, hence [S) ⊆ S′.
Let D ∈ Ds(A) such that S ⊆ D and y ∈ S′. Then there exist s1, . . . , sn ∈ S
such that s1 � . . . � sn � y. Since s1, . . . , sn ∈ D, then s1 � . . . � sn ∈ D,
which implies y ∈ D, hence S′ ⊆ D, we deduce that S′ ⊆ ∩D = [S), that is,
[S) = S′.
(3), (4) prove by (2).

Definition 4.3. A ds of A is maximal if it is proper and it is not contained
in any other proper ds.

Example 4.3. In Example 3.1, D = {m, a, b, p, n, c, d, 1} is a maximal ds.
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Theorem 4.3. Let A be a residuated skew lattice with 0. If D is a proper ds
of A, then the following conditions are equivalent:
(1) D is a maximal ds,
(2) For any x /∈ D there exist d ∈ D,n ≥ 1 such that d� xn = 0.

Proof. (1 ⇒ 2) If x /∈ D, then [D ∪ x) = A, hence 0 ∈ [D ∪ x). Therefore
by Proposition 4.5, there exist n ≥ 1 and d ∈ D such that d � xn � 0. Thus
d� xn = 0.
(2 ⇒ 1) Assume that there is a proper ds D1 such that D ⊂ D1. Then there
exists x ∈ D1 such that x /∈ D. By hypothesis there exist d ∈ D,n ≥ 1
such that d � xn = 0. But x, d ∈ D1 hence we obtain 0 ∈ D1, which is a
contradiction.

Corollary 4.1. Let A be a residuated skew lattice with 0. If M is a proper ds
of A, then the following are equivalent:
(1) M is a maximal ds,
(2) For any x ∈ A, x /∈M iff (xn)∗ ⊆M , for some n ≥ 1.

5 Branchwise residuated skew lattices

Now, we consider branches in a skew lattice and clearly each of the branches
in a conormal skew lattice is a lattice. We want to define the residuum in
branches and study its properties.

Definition 5.1. A branchwise residuated skew lattice is an algebra A =
(A,∨,∧,�,→, 1) of type (2, 2, 2, 2, 0) satisfying the following:
(1) (A,∨,∧, 1) is a distributive skew lattice with top 1 (for all x ∈ A, x ≤ 1),
(2) (A,�, 1) is a commutative monoid,
(3) For any u ∈ A, two operations →u,�u can be defined on (↑ u) such that
(↑ u,∨,∧,�u,→u, u, 1) is a distributive residuated lattice by top 1 and bottom
u,
(4) x→ y = (y ∨ x ∨ y)→y y,
(5) x� y D x�u y, for every u ∈ A, x, y ∈ (↑ u).

Lemma 5.1. Let A be a (distributive) skew lattice such that (↑ u) for every
u ∈ A be a (distributive) residuated lattice and x → y = y ∨ x ∨ y →y y, for
x, y ∈ (↑ u). Then x→ y = x→u y.

Proof. Since x, y ∈ (↑ u), then x∨ y ∈ (↑ u). Thus by Lemma 2.2, assumption
and since x ∨ y →y y, x ∨ y →u y ∈ (↑ y) we have x → y = y ∨ x ∨ y →y y =
x ∨ y →y y = x ∨ y →u y = x→u y.
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Example 5.1. Let A = {D0,−∞, ... − 3,−2,−1, 0, 1} be a skew lattice such
that D0 = {−∞0,−∞′0}, −∞0 D − ∞′0 and −∞′0,−∞0 < −∞ < ... <
−1 < 0 < 1. A = (A,∨,∧,�,→, 1) is an infinitely branchwise residuated skew
lattice with the following operations:
−∞0 ∧ −∞′0 = −∞0, −∞′0 ∧ −∞0 = −∞′0, −∞0 ∨ −∞′0 = −∞′0,−∞′0 ∨
−∞0 = −∞0. Also for all x, y ∈ A, if x ≤ y, then x ∧ y = x and x ∨ y = y.

→ −∞0 −∞′
0 −∞ . . . -3 -2 -1 0 1

−∞0 1 1 1 . . . 1 1 1 1 1
−∞′

0 1 1 1 . . . 1 1 1 1 1
−∞ −∞0 −∞′

0 1 · · · 1 1 1 1 1
...

... . . . . . . . . . . . . . . . . . .
-3 −∞0 −∞′

0 −∞ . . . 1 1 1 1 1
-2 −∞0 −∞′

0 −∞ . . . -3 1 1 1 1
-1 −∞0 −∞′

0 −∞ . . . -3 -2 1 1 1
0 −∞0 −∞′

0 −∞ . . . -3 -2 -1 1 1
1 −∞0 −∞′

0 −∞ . . . -3 -2 -1 0 1

� −∞0 −∞′
0 −∞ . . . -3 -2 -1 0 1

−∞0 −∞0 −∞0 −∞0 . . . −∞0 −∞0 −∞0 −∞0 −∞0

−∞′
0 −∞0 −∞′

0 −∞′
0 . . . −∞′

0 −∞′
0 −∞′

0 −∞′
0 −∞′

0

−∞ −∞0 −∞′
0 −∞ . . . −∞ −∞ −∞ −∞ −∞

...
... . . . . . . . . . . . . . . . . . .

-3 −∞0 −∞′
0 −∞ . . . -3 -3 -3 -3 -3

-2 −∞0 −∞′
0 −∞ . . . -3 -2 -2 -2 -2

-1 −∞0 −∞′
0 −∞ . . . -3 -2 -1 -1 -1

0 −∞0 −∞′
0 −∞ . . . -3 -2 -1 0 0

1 −∞0 −∞′
0 −∞ . . . -3 -2 -1 0 1
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• 1

0 •

−1 •

−2 •

−3 •

−∞ •

−∞0 • • −∞′
0

Above example is a conormal skew chain that is distributive and any upset
(↑ u) is a distributive residuated lattice and satisfies in conditions (4), (5) of
Definition 5.1.

Lemma 5.2. If (A,∨,∧, 1) is a conormal skew lattice with top 1 that x→ y =
(y∨x∨y)→y y and (A,�, 1) is a commutative monoid, then A is a conormal
residuated skew lattice that x→ y = (y ∨ x ∨ y)→y y iff
(1) x ∧ (y → x� y) ∧ x = x,
(2) y ∨ ((x→ y)� x) ∨ y = y,
(3) x→ (y ∨ x ∨ y) = 1,
(4) (z → x)→ (z → y ∨ x ∨ y) = 1,
(5) ((x�z)∧ (y�z)∧ (x�z))∨ ((x∧y∧x)�z))∨ ((x�z)∧ (y�z)∧ (x�z)) =
(x� z) ∧ (y � z) ∧ (x� z).

Proof. Let A be a conormal residuated skew lattice that x→ y = (y∨x∨y)→y

y. Then
(1) By Definition 3.1 (3), x � (y → (x�y)) therefore x∧(y → (x�y))∧x = x.
(2) Since x→ y � x→ y, then according to Definition 3.1 (3), x�(x→ y) � y
therefore y ∨ (x� (x→ y)) ∨ y = y.
(3) Since x � y ∨ x ∨ y then by Lemma 3.1, x→ y ∨ x ∨ y = 1.
(4) Since x � y∨x∨ y implies z → x � z → y∨x∨ y implies (z → x)→ (z →
y ∨ x ∨ y) = 1 (by Lemma 3.1).
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(5) By Theorem 3.4, (x ∧ y ∧ x)� z � (x� z ∧ y � z ∧ x� z) it implies

((x� z)∧ (y� z)∧ (x� z))∨ ((x∧ y ∧ x)� z)∨ ((x� z)∧ (y� z)∧ (x� z)) =

((x� z) ∧ (y � z) ∧ (x� z)).
Conversely, replace in the definition of a conormal residuated skew lattice the
adjointness condition by (6− 8).
(6) x � y implies x� z � y � z. If x � y, then x ∧ y ∧ x = x. (5) implies

((x� z) ∧ (y � z) ∧ (x� z)) =

((x� z) ∧ (y � z) ∧ (x� z)) ∨ (x� z) ∨ ((x� z) ∧ (y � z) ∧ (x� z)) =

x� z.

that this implies x� z � y � z.
(7) x � y iff x → y = 1. If x � y, then y ∨ x ∨ y = y. According to (3),
1 = x→ y ∨ x ∨ y = x→ y. If x→ y = 1, then by (2), y ∨ (1� x) ∨ y = y. It
implies x � y.
(8) If x � y, then z → x � z → y. It is clear according to x � y iff y∨x∨y = y
and (4), (7).
(9) x� z � y iff z � x→ y. If z � x→ y, then by (6), (2), x� z � x� (x→
y) � y. Which implies x � z � y so x → x � z � x → y by (8). It implies
z � x→ y by (1).

Theorem 5.1. The class of all conormal residuated skew lattices that x →
y = (y ∨ x ∨ y)→y y forms a variety.

Proof. In previous lemma we showed that equalities (1− 5) are equivalent to
(x� z � y iff z � x → y). On the other hand (A,∨,∧, 1) is a conormal skew
lattice with top 1 and (A,�, 1) is a commutative monoid i.e. (x ∨ y) ∨ z =
x∨ (y∨ z), (x∧ y)∧ z = x∧ (y∧ z) and x∧x = x, x∨x = x, x∧ (x∨ y) = x =
x ∨ (x ∧ y), (x ∧ y) ∨ y = y = (x ∨ y) ∧ y, and x� 1 = 1� x = x. Therefore A
is equational.

Remark 5.1. If A is a branchwise residuated skew lattice and u, v ∈ A, then
(↑ u) ∪ (↑ v) is not a distributive residuated lattice but (↑ u) ∩ (↑ v) is a
distributive residuated lattice.

In Example 3.1, A is a residuated skew lattice which is not conormal, since
a = a ∨ b ∨ a ∨m 6= a ∨ a ∨ b ∨m = b. Therefore by Proposition 2.2, there is
a (↑ u) such that is not lattice so (↑ u) is not distributive residuated lattice.
Therefore A is not branchwise residuated skew lattice.
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Remark 5.2. Any branchwise residuated skew lattice is conormal.

Proposition 5.1. Relation D (x D y iff x � y, y � x) is a congruence relation
on branchwise residuated skew lattice.

Proof. Let A be a branchwise residuated skew lattice. Since D is a congruence
for distributive skew lattices with a top element, we only need to prove if
x1 D y1 and x2 D y2, then (x1 → x2) D (y1 → y2) and (x1 � x2) D (y1 � y2)
holds for every x1, x2, y1, y2 ∈ A. Without loss of generality, we may assume
x2 ≤ x1 and y2 ≤ y1. (Otherwise replace x1 by x2 ∨ x1 ∨ x2 and y1 by
y2 ∨ y1 ∨ y2.) We define a map ϕ : ↑ x2 −→ ↑ y2 by setting ϕ(x) = y2 ∨x∨ y2.
We claim that ϕ is a lattice isomorphism of (↑ x2,∨,∧) with (↑ y2,∨,∧), with
inverse ψ : ↑ y2 −→ ↑ x2 given by ψ(y) = x2 ∨ y ∨ x2. It is easily seen that ϕ
and ψ are inverses of each other. For instance,

ψ(ϕ(x)) = x2∨y2∨x∨y2∨x2 = (x2∨y2∨x2)∨x∨(x2∨y2∨x2) = x2∨x∨x2 = x

(since any skew lattice is a regular band, x2 D y2 and x ∈ (↑ x2)). ϕ must
preserve ∨,∧. Indeed by distributive condition:

ϕ(x ∧ x′) = y2 ∨ (x ∧ x′) ∨ y2 = (y2 ∨ x ∨ y2) ∧ (y2 ∨ x′ ∨ y2) = ϕ(x) ∧ ϕ(x′).

Since any skew lattice is a regular band, then

ϕ(x ∨ x′) = y2 ∨ (x ∨ x′) ∨ y2

= y2 ∨ x ∨ y2 ∨ x′ ∨ y2

= y2 ∨ x ∨ y2 ∨ y2 ∨ x′ ∨ y2

= (y2 ∨ x ∨ y2) ∨ (y2 ∨ x′ ∨ y2)

= ϕ(x) ∨ ϕ(x′).

Thus ϕ (and ψ) is a lattice isomorphism of (↑ x2) with (↑ y2). But then ϕ and ψ
are also isomorphisms of residuated lattices. That is ϕ(x→ y) = ϕ(x)→ ϕ(y)
and ϕ(x� y) = ϕ(x)� ϕ(y). Next, observe that x D ϕ(x), for all x ∈ (↑ x2).
Indeed, any skew lattice is a regular band gives:

ϕ(x) ∨ x ∨ ϕ(x) = (y2 ∨ x ∨ y2) ∨ x ∨ (y2 ∨ x ∨ y2) = y2 ∨ x ∨ y2 = ϕ(x)

and likewise

x ∨ ϕ(x) ∨ x = ψ(ϕ(x)) ∨ ϕ(x) ∨ ψ(ϕ(x)) = ψ(ϕ(x)) = x.

x1 is the unique element in its D-class belonging to (↑ x2) and y1 is the
unique element in the same D-class belonging to (↑ y2) (since each upset (↑ u)
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intersects any D-class in at most one element). But ϕ(x1) in (↑ y2) behaves
in the manner just like y1, and so ϕ(x1) = y1. Since x2 D y2, ϕ(x2) =
y2 ∨ x2 ∨ y2 = y2 and ϕ(x1 → x2) = ϕ(x1) → ϕ(x2) = y1 → y2, thus giving
x1 → x2 D y1 → y2. ϕ(x1 � x2) = ϕ(x1) � ϕ(x2) = y1 � y2, therefore
x1 � x2 D y1 � y2.

Proposition 5.2. Let A be a distributive skew lattice with top element 1.
If (A,∨,∧,�,→, 1) is a branchwise residuated skew lattice with �,→, then
(A/D,∨,∧,�,→, 1A/D) is a generalized distributive residuated lattice with the
same �,→. (A/D is maximal lattice image of A).

Proof. The induced homomorphism ϕ : A → A/D is bijective on any com-
mutative subset of A since distinct commuting elements of A lie in distinct
D-classes. It follows that for every u ∈ A, ϕ restricts to an isomorphism of
upsets, ϕu : ↑ u ∼= ↑ ϕ(u). Thus each upset (↑ u) in A forms a distributive
residuated lattice if and only if each upset (↑ v) in A/D, being some (↑ ϕ(u)),
must form a distributive residuated lattice. Since A is a distributive skew lat-
tice, then A/D is a distributive lattice, because any distributive skew lattice
is a quasi-distributive. Therefore A/D is a distributive lattice that each upset
(↑ v) is a distributive residuated lattice. Hence (A/D,∨,∧,�,→, 1A/D) is a
generalized distributive residuated lattice.

Theorem 5.2. If A is a conormal distributive residuated skew lattice which
x�y D x�u y, for every u ∈ A, x, y ∈ (↑ u), then Definitions 3.1 and 5.1 are
equivalent i.e. branchwise residuated skew lattice and residuated skew lattice
are equivalent.

Proof. Suppose that A is a branchwise residuated skew lattice. It is enough
to show that x � y � z iff x � y → z. Since the induced epimorphism
ϕ : A → A/D is a homomorphism of branchwise residuated skew lattices, we
have
x � y → z iff ϕ(x) ≤ ϕ(y)→ ϕ(z) iff ϕ(x)� ϕ(y) ≤ ϕ(z) iff x� y � z.
Let A be a residuated skew lattice. Suppose that x, y, z lie in a common
(↑ u). Since � coincide to ≤ in (↑ u) and y → z lies in (↑ u) by Lemma 3.1
we have x ≤ y → z iff x � y ≤ z in (↑ u). Then (↑ u,∧,∨,→,�, u, 1) is a
residuated lattice. Since A is distributive, then (↑ u) is distributive too. Now,
consider the derived implication →∗ given by x→∗ y = (y ∨ x ∨ y)→y y. By
assumption both y → z and y →∗ z satisfy x� y � z iff x � y → z and thus
are D-equivalent. But since both lie in the sublattice ↑ z and A is conormal,
they must be equal.
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Since any branchwise residuated skew lattice is a residuated skew lattice,
then all of the properties which were stated in residuated skew lattices will
hold in branchwise residuated skew lattices.

6 CONCLUSION

Skew Boolean algebras and normal skew lattices were defined by Leech and
skew Heyting algebras were defined by Cvetko-Vah. In this paper, the residuum
condition was applied to skew lattice and residuated skew lattice was de-
fined as an extension of residuated lattice. Its properties was investigated
and it was shown that the class of all conormal residuated skew lattices that
x→ y = (y ∨ x ∨ y)→y y forms a variety. It was shown that Green’s relation
D is a congruence on residuated skew lattice A, and A/D is a residuated lat-
tice. Deductive system and skew deductive system was defined in residuated
skew lattice. Branchwise residuated skew lattice was defined and it was shown
that Green’s relation D is a congruence on it. It was shown that a conormal
distributive residuated skew lattice is equivalent with a branchwise residuated
skew lattice under a condition and maximal lattice image of a branchwise
residuated skew lattice is a generalized distributive residuated lattice too.
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