
DOI: 10.2478/auom-2019-0012
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ABSTRACT LERAY–SCHAUDER TYPE
ALTERNATIVES AND EXTENSIONS

Donal O’Regan

Abstract

We present a Leray–Schauder type alternative for a general class of
maps. This enables us to obtain some Birkhoff–Kellogg type results and
a Furi–Pera result.

1. Introduction.

In this paper coincidence theory of Leray–Schauder type for a general class
of maps is presented and our theory extends and generalizes well known results
in the literature (see [1, 3, 7, 8, 10] and the references therein). The argument
presented is elementary and is based on an Urysohn type lemma. In addition
we present an abstract Furi–Pera type fixed point theorem which extends and
generalizes results in the literature (see [1, 6] and the references therein). Also
our Leray–Schauder coincidence theory is used to establish some Birkhoff–
Kellogg type theorems for a general class of maps.

2. Main results.

Let E be a completely regular topological space and U an open subset of
E. We will consider classes A, B and D of maps.

Definition 2.1. We say F ∈ D(U,E) (respectively F ∈ B(U,E)) if F : U →
2E and F ∈ D(U,E) (respectively F ∈ B(U,E)); here 2E denotes the family
of nonempty subsets of E and U denotes the closure of U in E.
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Definition 2.2. We say F ∈ A(U,E) if F : U → 2E and F ∈ A(U,E) and
there exists a selection Ψ ∈ D(U,E) of F .

We fix a Φ ∈ B(U,E).

Definition 2.3. We say F ∈ A∂U (U,E) (respectively F ∈ D∂U (U,E)) if
F ∈ A(U,E) (respectively F ∈ D(U,E)) with F (x) ∩ Φ(x) = ∅ for x ∈ ∂U ;
here ∂U denotes the boundary of U in E.

Definition 2.4. Let F ∈ A∂U (U,E). We say F : U → 2E is Φ–essential in
A∂U (U,E) if for any selection Ψ ∈ D(U,E) of F and any map J ∈ D∂U (U,E)
with J |∂U = Ψ|∂U there exists x ∈ U with J (x) ∩ Φ (x) 6= ∅.

Remark 2.1. Note if F ∈ A∂U (U,E) is Φ–essential in A∂U (U,E) and if Ψ ∈
D(U,E) is any selection of F then there exists an x ∈ U with Ψ (x)∩Φ (x) 6= ∅
(take J = Ψ in Definition 2.4; note for x ∈ ∂U that Ψ (x) ∩ Φ (x) ⊆ F (x) ∩
Φ (x) = ∅). Also note if Ψ (x) ∩ Φ (x) 6= ∅ for x ∈ U then ∅ 6= Ψ (x) ∩ Φ (x) ⊆
F (x) ∩ Φ (x).

We begin with a new nonlinear alternative of Leray–Schauder type

Theorem 2.1. Let E be a completely regular (respectively normal) topological
space, U an open subset of E, F ∈ A(U,E) and let G ∈ A∂U (U,E) be Φ–
essential in A∂U (U,E). For any selection Λ ∈ D(U,E) (respectively Ψ ∈
D(U,E)) of G (respectively F ) assume there exists a map HΛ,Ψ : U × [0, 1]→
2E with HΛ,Ψ( . , η( . )) ∈ D(U,E) for any continuous function η : U →
[0, 1] with η(∂U) = 0, Φ(x) ∩ HΛ,Ψ

t (x) = ∅ for any x ∈ ∂U and t ∈ (0, 1),{
x ∈ U : Φ(x) ∩HΛ,Ψ(x, t) 6= ∅ for some t ∈ [0, 1]

}
is compact (respectively

closed) and HΛ,Ψ
1 = Ψ, HΛ,Ψ

0 = Λ; here HΛ,Ψ
t (x) = HΛ,Ψ(x, t). Then there

exists x ∈ U with Φ(x) ∩ F (x) 6= ∅ (in fact Φ(x) ∩Ψ(x) 6= ∅).

Proof: Suppose Φ(x) ∩ F (x) = ∅ for x ∈ ∂U (otherwise we are finished). Let
Λ ∈ D(U,E) (respectively Ψ ∈ D(U,E)) be any selection of G (respectively
F ). Choose the map HΛ,Ψ as in the statement of Theorem 2.1. Let

Ω =
{
x ∈ U : Φ(x) ∩HΛ,Ψ(x, t) 6= ∅ for some t ∈ [0, 1]

}
.

Note Ω 6= ∅ since HΛ,Ψ
0 = Λ and G is Φ–essential in A∂U (U,E) (see Remark

2.1). Also Ω is compact (respectively closed) if E is a completely regular

(respectively normal) topological space. Next note Ω∩∂U = ∅ (noteHΛ,Ψ
0 = Λ

and Φ(x) ∩ G(x) = ∅ for x ∈ ∂U since G ∈ A∂U (U,E) and note HΛ,Ψ
1 = Ψ

and we assumed Φ(x)∩F (x) 6= ∅ for x ∈ ∂U). Thus there exists a continuous
map µ : U → [0, 1] with µ(∂U) = 0 and µ(Ω) = 1. Define a map J by
J(x) = HΛ,Ψ(x, µ(x)). Now J ∈ D∂U (U,E) with J |∂U = Λ|∂U (note if x ∈ ∂U
then J(x) = HΛ,Ψ

0 (x) = Λ(x) and J(x)∩Φ(x) = Λ(x)∩Φ(x) = ∅). Now sinceG
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is Φ–essential in A∂U (U,E) then there exists x ∈ U with J(x)∩Φ(x) 6= ∅ (i.e.

HΛ,Ψ
µ(x)(x)∩Φ(x) 6= ∅). Thus x ∈ Ω so µ(x) = 1. As a result HΛ,Ψ

1 (x)∩Φ(x) 6= ∅
i.e. Ψ(x) ∩ Φ(x) 6= ∅ i.e. F (x) ∩ Φ(x) 6= ∅ since Ψ is a selection of F . �

Remark 2.2. We say F ∈ MA(U,E) if F : U → 2E and F ∈ A(U,E),
and we say F ∈ MA∂U (U,E) if F ∈ MA(U,E) with F (x) ∩ Φ(x) = ∅ for
x ∈ ∂U . Now let F ∈ MA∂U (U,E). We say F : U → 2E is Φ–essential
in MA∂U (U,E) if for every map J ∈MA∂U (U,E) with J |∂U = F |∂U there
exists x ∈ U with J (x)∩Φ (x) 6= ∅. The argument in Theorem 2.1 immediately
yields the following result:

Let E be a completely regular (respectively normal) topological space,
U an open subset of E, F ∈ MA(U,E) and let G ∈ MA∂U (U,E) be Φ–
essential in MA∂U (U,E). Suppose there exists a map H : U × [0, 1] →
2E with H( . , η( . )) ∈ MA(U,E) for any continuous function η : U →
[0, 1] with η(∂U) = 0, Φ(x) ∩ Ht(x) = ∅ for any x ∈ ∂U and t ∈ (0, 1),{
x ∈ U : Φ(x) ∩H(x, t) 6= ∅ for some t ∈ [0, 1]

}
is compact (resp. closed)

and H1 = F , H0 = G; here Ht(x) = H(x, t). Then there exists x ∈ U with
Φ(x) ∩ F (x) 6= ∅.

All the results in this paper (with the exception of Theorem 2.2) have
corresponding results for the class MA (we leave the obvious statements to
the reader).

Now we consider a special case of Theorem 2.1 using the standard ho-
motopy between two maps. Note topological vector spaces are automatically
completely regular.

Corollary 2.1. Let E be a topological vector space, U an open subset of
E, F ∈ A(U,E) and let G ∈ A∂U (U,E) be Φ–essential in A∂U (U,E). For
any selection Λ ∈ D(U,E) (respectively Ψ ∈ D(U,E)) of G (respectively F )
suppose

(2.1)

{
µ( . ) Ψ( . ) + (1− µ( . )) Λ( . ) ∈ D(U,E) for any
continuous map µ : U → [0, 1] with µ(∂U) = 0

and

(2.2)

{
K = {x ∈ U : Φ(x) ∩ [tΨ(x) + (1− t) Λ(x)] 6= ∅ for
some t ∈ [0, 1]} is compact

hold. Then either

(A1). there exists x ∈ U with F (x) ∩ Φ(x) 6= ∅,
or

(A2). there exists x ∈ ∂U and λ ∈ (0, 1) with Φ(x)∩[λF (x)+(1−λ)G(x)] 6= ∅,
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hold.

Proof: Let Λ ∈ D(U,E) (respectively Ψ ∈ D(U,E)) be any selection of G
(respectively F ) and let

HΛ,Ψ(x, t) = tΨ(x) + (1− t) Λ(x).

Suppose (A2) does not hold. Now if x ∈ ∂U and λ ∈ (0, 1) then Φ(x) ∩
[λF (x)+(1−λ)G(x)] = ∅ so Φ(x)∩ [λΨ(x)+(1−λ) Λ(x)] = ∅ since λΨ(x)+
(1−λ) Λ(x) ⊆ λF (x)+(1−λ)G(x). Then Theorem 2.1 guarantees that there
exists a x ∈ U with F (x) ∩ Φ(x) 6= ∅ (i.e. (A1) holds). �

Remark 2.3. If E in Corollary 2.1 is normal then (2.2) can be replaced by:
K is closed.

Remark 2.3. In Corollary 2.1 we could have (A1) and A2) as:

(A1). there exists x ∈ U with Ψ(x) ∩ Φ(x) 6= ∅,
(A2). there exists x ∈ ∂U and λ ∈ (0, 1) with Φ(x)∩[λΨ(x)+(1−λ) Λ(x)] 6= ∅.

Before we discuss Corollary 2.1 we first recall the DKT maps from the
literature. Let Z and W be subsets of Hausdorff topological vector spaces Y1

and Y2 and F a multifunction. We say F ∈ DKT (Z,W ) if W is convex and
there exists a map S : Z → W with co (S(x)) ⊆ F (x) for x ∈ Z, S(x) 6= ∅ for
each x ∈ Z and the fibres S−1(w) = {z : w ∈ S(z)} are open (in Z) for each
w ∈W .

Recall F ∈ A(U,E) if F : U → 2E , F ∈ A(U,E) and there exists a
selection Ψ ∈ D(U,E) of F . However in some situations we have a map
F : U → 2E , F ∈ A(U,E) but we do not know if there exists a selection
Ψ ∈ D(U,E) of F . For example let F : U → 2E with F ∈ DKT (U,E) a
compact map (here A(U,E) denotes the class of compact DKT maps from
U to 2E). Suppose D(U,E) denotes the class of single valued continuous
compact maps. If U is paracompact then we know [4] that there exists a
selection Ψ ∈ D(U,E) of F . However if U is not necessarily paracompact is
it possible to obtain a Leray–Schauder alternative of Corollary 2.1 type? Our
next theorem is a result of this type and is motivated in part by [9].

Theorem 2.2. Let E be a topological vector space, U an open subset of E,
F : U → 2E and G : U → 2E. Suppose there exists a set K ⊆ E with
F (U) ⊆ K, G(U) ⊆ K, F ∈ A(U ∩ L(K) ∩ L(K), L(K)) and let

G ∈ A∂L(K) (U∩L(K))(U ∩ L(K) ∩ L(K), L(K))

be Φ–essential in A∂L(K) (U∩L(K))(U ∩ L(K) ∩ L(K), L(K)); here L(K) is the
linear span of K (i.e. the smallest linear subspace of E that contains K) and
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∂L(K) (U∩L(K)) denotes the boundary of U∩L(K) in L(K). For any selection

Λ ∈ D(U ∩ L(K)∩L(K), L(K)) (respectively Ψ ∈ D(U ∩ L(K)∩L(K), L(K)))
of G (respectively F ) suppose

(2.3)

{
µ( . ) Ψ( . ) + (1− µ( . )) Λ( . ) ∈ D(U ∩ L(K) ∩ L(K), L(K))
for any continuous map µ : U → [0, 1] with µ(∂U) = 0

(2.4)

{
Ω = {x ∈ U ∩ L(K) ∩ L(K) : Φ(x) ∩ [tΨ(x) + (1− t) Λ(x)] 6= ∅
for some t ∈ [0, 1]} is compact

and

(2.5)

{
for x ∈ ∂L(K) (U ∩ L(K)) and λ ∈ (0, 1) we have
Φ(x) ∩ [λF (x) + (1− λ)G(x)] = ∅.

Then there exists x ∈ U with F (x) ∩ Φ(x) 6= ∅.

Proof: Note U ∩ L(K) is an open subset of L(K) and U ∩ L(K) L(K) =

U ∩ L(K)∩L(K); here U ∩ L(K) L(K) denotes the closure of U∩L(K) in L(K).
From Corollary 2.1 we see that there exists a x ∈ U ∩ L(K)∩L(K) (⊆ U) with
F (x) ∩ Φ(x) 6= ∅. �

Remark 2.5. If L(K) is normal then we can replace (2.4) with: Ω is closed.
For example if L(K) is paracompact then L(K) is normal (recall paracompact
spaces are normal).

Remark 2.6. Note in Theorem 2.2 we could replace (2.5) with either{
for x ∈ ∂L(K) (U ∩ L(K)) and λ ∈ (0, 1) we have
Φ(x) ∩ [λΨ(x) + (1− λ) Λ(x)] = ∅

or {
for x ∈ ∂U ∩ L(K) and λ ∈ (0, 1) we have
Φ(x) ∩ [λΨ(x) + (1− λ) Λ(x)] = ∅

or {
for x ∈ ∂U and λ ∈ (0, 1) we have
Φ(x) ∩ [λF (x) + (1− λ)G(x)] = ∅.

This is immediate since ∂L(K) (U ∩ L(K)) ⊆ ∂U ; to see this note

∂L(K) (U ∩ L(K)) = (U ∩ L(K) ∩ L(K)) \ (U ∩ L(K))

⊆ (U ∩ L(K)) \ (U ∩ L(K))

= (U ∩ L(K)) \U ∪ (U ∩ L(K)) \L(K)

= (U ∩ L(K)) \U ⊆ U \U = ∂U.
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Now let us return to our example before Theorem 2.2. Let F : U → 2E

with F ∈ DKT (U,E) a compact map. Now let K be a compact set with
F (U) ⊆ K and note L(K) is paracompact (see for example [5]). Now if
we show F ∈ DKT (U ∩ L(K) ∩ L(K), L(K)) then [4] guarantees that (recall
closed subsets of paracompact spaces are paracompact) there exists a selection
Ψ ∈ D(U ∩ L(K) ∩ L(K), L(K)) of F . Since F ∈ DKT (U,E) then there
exists a map θ : U → E with co (θ(x)) ⊆ F (x) for x ∈ U , θ(x) 6= ∅ for each
x ∈ U and θ−1(y) = {z ∈ U : y ∈ θ(z)} is open (in U) for each y ∈ E. Let
θ? denote the restriction of θ to U ∩ L(K) ∩ L(K). Note co (θ?(x)) ⊆ F (x)
for x ∈ U ∩ L(K) ∩ L(K) and θ?(x) 6= ∅ for each x ∈ U ∩ L(K) ∩ L(K).
If y ∈ L(K) then (note U ∩ L(K) ∩ L(K) ∩ U = U ∩ L(K) ∩ L(K) since
U ∩ L(K) ⊆ U),

(θ?)−1(y) = {z ∈ U ∩ L(K) ∩ L(K) : y ∈ θ?(z)}
= {z ∈ U ∩ L(K) ∩ L(K) : y ∈ θ(z)}
= U ∩ L(K) ∩ L(K) ∩ {z ∈ U : y ∈ θ(z)}
= U ∩ L(K) ∩ L(K) ∩ θ−1(y)

which is open in U ∩ L(K)∩L(K). Thus F ∈ DKT (U ∩ L(K)∩L(K), L(K)).

Using Corollary 2.1 we present some Birkhoff–Kellogg type theorems (our
results improve those in [2, 3, 10]).

Theorem 2.3. Let E be a topological vector space, U an open subset of E,
H : U → 2E, and G ∈ A∂U (U,E) is Φ–essential in A∂U (U,E). Assume

(2.6) there exists µ ∈ R with µH(x) ∩G(x) = ∅ for x ∈ U.

Let F = µH and suppose F ∈ A(U,E). In addition for any selection Λ ∈
D(U,E) (respectively Ψ ∈ D(U,E)) of G (respectively F ) suppose (2.1) and
(2.2) hold. Then there exists x ∈ ∂U and λ ∈ (0, 1) with Φ(x) ∩ [λµH(x) +
(1− λ)G(x)] 6= ∅.

PROOF: The result follows from Corollary 2.1 since (2.6) guarantees that for
x ∈ U we have F (x) ∩G(x) = ∅. �

Theorem 2.4. Let E be a topological vector space, U an open subset of E,
Θ : ∂U → 2E, and G ∈ A∂U (U,E) is Φ–essential in A∂U (U,E). Assume

(2.7)

{
∂U is a retract of U i.e. there exists a
retraction r0 : U → ∂U

and

(2.8) there exists µ ∈ R with µΘ(∂U) ∩G(U) = ∅.
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Let F = µΘ r0 and suppose F ∈ A(U,E). In addition for any selection
Λ ∈ D(U,E) (respectively Ψ ∈ D(U,E)) of G (respectively F ) assume (2.1)
and (2.2) hold. Then there exists x ∈ ∂U and λ ∈ (0, 1) with Φ(x)∩[λµΘ(x)+
(1− λ)G(x)] 6= ∅.

PROOF: Note H = Θ r0 : U → 2E and note (2.8) guarantees that µH(U) ∩
G(U) = ∅. Now Theorem 2.3 guarantees that there exists x ∈ ∂U and λ ∈
(0, 1) with Φ(x) ∩ [λµΘ r0(x) + (1− λ)G(x)] 6= ∅ i.e. Φ(x) ∩ [λµΘ(x) + (1−
λ)G(x)] 6= ∅. �

The ideas above could be applied to other natural situations. Let E be a
Hausdorff topological vector space, Y a topological vector space, and U an
open subset of E. Also let L : domL ⊆ E → Y be a linear (not necessarily
continuous) single valued map; here domL is a vector subspace of E. Finally
T : E → Y will be a linear single valued map with L + T : domL → Y a
bijection; for convenience we say T ∈ HL(E, Y ).

Definition 2.5. We say F ∈ D(U, Y ;L, T ) (respectively F ∈ B(U, Y ;L, T ))
if F : U → 2Y and (L+T )−1 (F +T ) ∈ D(U,E) (respectively (L+T )−1 (F +
T ) ∈ B(U,E)).

Definition 2.6. We say F ∈ A(U, Y ;L, T ) if F : U → 2Y and (L+T )−1 (F+
T ) ∈ A(U,E) and there exists a selection Ψ ∈ D(U, Y ;L, T ) of F .

We fix a Φ ∈ B(U, Y ;L, T ).

Definition 2.7. We say F ∈ A∂U (U, Y ;L, T ) (respectively we say F ∈
D∂U (U, Y ;L, T )) if F ∈ A(U, Y ;L, T )) (respectively F ∈ D(U, Y ;L, T )))
with (L+ T )−1 (F + T )(x) ∩ (L+ T )−1 (Φ + T )(x) = ∅ for x ∈ ∂U .

Definition 2.8. Let F ∈ A∂U (U, Y ;L, T ). We say F : U → 2Y is L–Φ–
essential in A∂U (U, Y ;L, T ) if for any selection Ψ ∈ D(U, Y ;L, T ) of F and
any map J ∈ D∂U (U, Y ;L, T ) with J |∂U = Ψ|∂U there exists x ∈ U with
(L+ T )−1 (J + T ) (x) ∩ (L+ T )−1 (Φ + T ) (x) 6= ∅.

We now present a Leray–Schauder alternative in this setting.

Theorem 2.5. Let E be a topological vector space, Y a topological vector
space, U an open subset of E, L : domL ⊆ E → Y a linear single val-
ued map, T ∈ HL(E, Y ), F ∈ A(U, Y ;L, T ) and let G ∈ A∂U (U, Y ;L, T ) be
L–Φ–essential in A∂U (U, Y ;L, T ). For any selection Λ ∈ D(U, Y ;L, T ) (re-
spectively Ψ ∈ D(U, Y ;L, T )) of G (respectively F ) suppose there exists a map
HΛ,Ψ defined on U × [0, 1] with values in Y with (L+ T )−1 (HΛ,Ψ( . , η( . )) +
T ( . )) ∈ D(U,E) for any continuous function η : U → [0, 1] with η(∂U) = 0,

(L + T )−1 (HΛ,Ψ
t + T )(x) ∩ (L + T )−1 (Φ + T )(x) = ∅ for any x ∈ ∂U and
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t ∈ (0, 1), HΛ,Ψ
1 = Ψ, HΛ,Ψ

0 = Λ and

Ω = {x ∈ U : (L+ T )−1 (Φ + T )(x) ∩ (L+ T )−1 (HΛ,Ψ
t + T )(x) 6= ∅

for some t ∈ [0, 1]}

is compact; here HΛ,Ψ
t (x) = HΛ,Ψ(x, t). Then there exists x ∈ U with (L +

T )−1 (F + T )(x) ∩ (L+ T )−1 (Φ + T )(x) 6= ∅.

PROOF: Suppose (L + T )−1 (F + T )(x) ∩ (L + T )−1 (Φ + T )(x) = ∅ for x ∈
∂U (otherwise we are finished). Let Λ ∈ D(U, Y ;L, T ) (respectively Ψ ∈
D(U, Y ;L, T )) be any selection of G (respectively F ). Choose the map HΛ,Ψ

and the set Ω as in the statement of Theorem 2.5. Note Ω 6= ∅ (since HΛ,Ψ
0 = Λ

and G ∈ A∂U (U, Y ;L, T ) be L–Φ–essential in A∂U (U, Y ;L, T )), Ω is compact
and Ω ∩ ∂U = ∅. Thus there exists a continuous map µ : U → [0, 1] with
µ(∂U) = 0 and µ(Ω) = 1. Define a map J by J(x) = HΛ,Ψ(x, µ(x)) =

HΛ,Ψ
µ(x)(x). Now J ∈ D∂U (U, Y ;L, T ) and J |∂U = Λ|∂U (if x ∈ ∂U then J(x) =

HΛ,Ψ
0 (x) = Λ(x)). Now since G is L–Φ–essential in A∂U (U, Y ;L, T ) there

exists x ∈ U with (L+T )−1 (J+T )(x)∩(L+T )−1 (Φ+T )(x) 6= ∅. Thus x ∈ Ω

so µ(x) = 1. As a result (L+ T )−1 (HΛ,Ψ
1 + T )(x)∩ (L+ T )−1 (Φ + T )(x) 6= ∅

i.e. (L+T )−1 (Ψ +T )(x)∩ (L+T )−1 (Φ +T )(x) 6= ∅. The result follows since
Ψ is a selection of F . �

Remark 2.7. If in Theorem 2.5 the space E is additionally normal then the
assumption that Ω is compact can be replaced by: Ω is closed.

From Theorem 2.5 it is easy to obtain analogues of Corollary 2.1 and
Theorem’s 2.3 and 2.4 (we leave this to the reader)

Next we present a Furi–Pera type result (see [1, 6, 8] and the references
therein).

Theorem 2.6. Let E be a metrizable topological vector space, Q a closed
subset of E, Φ ∈ A(Q,E) and F ∈ A(Q,E). Assume the following conditions
hold:

(2.9)

{
there exists a retraction r : E → Q with
r(z) ∈ ∂Q for z ∈ E \Q

and

(2.10)

 for any selection Ψ ∈ D(Q,E) of F assume Ψ r ∈ D(E,E),
Ψ r has a fixed point in E and Ω = {x ∈ E : x ∈ Ψ r(x)}
is compact.

For i ∈ {1, 2, ...} let Ui = {x ∈ E : d(x,Q) < 1
i }; here d is the metric

associated with E. Suppose for each i ∈ {1, 2, ...} and for any selection Ψ ∈
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D(Q,E) of F and any selection φ ∈ D(Q,E) of Φ we have the following:

(2.11) Ψ r ∈ D(Ui, E) and φ r ∈ D(Ui, E)

(2.12)

 either (A1). there exists x ∈ Ui with x ∈ Ψ r(x),
or (A2). there exists x ∈ ∂Ui and λ ∈ (0, 1)
with x ∈ λΨ r(x) + (1− λ)φ r(x), hold

(2.13)

{
{x ∈ E : x ∈ λΨ r(x) + (1− λ)φ r(x) for
some λ ∈ [0, 1]} is compact

(2.14)


if {(xj , λj}∞j=1 is a sequence in ∂Ui × [0, 1]
converging to (x, λ) with x ∈ ∂Q and
xj ∈ λj Ψ r (xj) + (1− λj)φ r (xj), then
x ∈ λΨ r (x) + (1− λ)φ r (x) = λΨ (x) + (1− λ)φ (x)

and

(2.15)


if {(xj , λj}∞j=1 is a sequence in ∂Q× [0, 1] converging
to (x, λ) with x ∈ λΨ (x) + (1− λ)φ (x) and 0 ≤ λ < 1,
then {λj Ψ (xj) + (1− λj)φ (xj)} ⊆ Q for j sufficiently large.

Then F has a fixed point in Q.

PROOF: Let Ψ ∈ D(Q,E) be a selection of F and let Ω be as in (2.10). Now
Ω 6= ∅ is compact. We claim Ω∩Q 6= ∅. To do this we argue by contradiction.
Suppose that Ω ∩ Q = ∅. Then since Ω is compact and Q is closed there
exists δ > 0 with dist(Ω, Q) > δ. Choose m ∈ {1, 2, ...} with 1 < δm and
let (as in the statement of the theorem) Ui = {x ∈ E : d(x,Q) < 1

i } for
i ∈ {m,m+ 1, ...}.

Fix i ∈ {m,m+ 1, ...}. Since dist(Ω, Q) > δ we see that Ω ∩ Ui = ∅. Let
φ ∈ D(Q,E) be a selection of Φ. Now (2.12) guarantees that there exists
λi ∈ (0, 1) and yi ∈ ∂Ui with yi ∈ λi Ψ r(yi) + (1− λi)φ r(yi). Since yi ∈ ∂Ui
we have

(2.16) {λi Ψ r(yi) + (1− λi)φ r(yi)} 6⊆ Q for i ∈ {m,m+ 1, ...}.

Let

K = {x ∈ E : x ∈ λΨ r(x) + (1− λ)φ r(x) for some λ ∈ [0, 1]}.

Now K 6= ∅ is compact (see (2.10) and (2.13)) and this together with

d(yj , Q) =
1

j
and |λj | ≤ 1 for j ∈ {m,m+ 1, ...}



ABSTRACT LERAY–SCHAUDER TYPE ALTERNATIVES AND EXTENSIONS 242

implies that we may assume without loss of generality that λj → λ? and
yj → y? ∈ ∂Q. Now (2.14) implies y? ∈ λ? Ψ r(y?) + (1 − λ?)φ r(y?) i.e.
y? ∈ λ? Ψ (y?) + (1 − λ?)φ (y?) since r(y?) = y?. If λ? = 1 then y? ∈
Ψ r(y?) = Ψ (y?) which contradicts Ω ∩Q = ∅. Thus 0 ≤ λ? < 1. Now (2.15)
with xj = r(yj) (note yj ∈ ∂Uj so r(yj) ∈ ∂Q) and x = y? = r(y?) implies

{λj Ψ r(yj) + (1− λj)φ r(yj)} ⊆ Q for j sufficiently large.

This contradicts (2.16). Thus Ω ∩ Q 6= ∅ so there exists x ∈ Q with x ∈
Ψ r(x) = Ψ(x) ⊆ F (x). �

Remark 2.8. Suppose in Theorem 2.6 we change (2.9) to: there exists a
retraction r : E → Q. Then the result in Theorem 2.6 again holds provided
(2.15) is changed to

if {(xj , λj}∞j=1 is a sequence in Q× [0, 1] converging
to (x, λ) with x ∈ λΨ (x) + (1− λ)φ (x) and 0 ≤ λ < 1,
then {λj Ψ (xj) + (1− λj)φ (xj)} ⊆ Q for j sufficiently large.

Remark 2.9. Technically we do not need to assume (2.11) in Theorem 2.6.
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