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Engel, Nilpotent and Solvable BCI-algebras

Elahe Mohammadzadeh(a) and Rajab Ali Borzooei(b)

Abstract

In this paper, we define the concepts of Engel, nilpotent and solvable
BCI-algebras and investigate some of their properties. Specially, we
prove that any BCK-algebra is a 2-Engel. Then we define the center
of a BCI-algebra and prove that in a nilpotent BCI-algebra X, each
minimal closed ideal of X is contained in the center of X. In addition,
with some conditions, we show that every finite BCI-algebra is solvable.
Finally, we investigate the relations among Engel, nilpotent and solvable
BCI(BCK)-algebras.

1 Introduction

One of the most important concept in the study of groups is the notion of
nilpotency [22]. Nilpotent groups arise in Galois theory, as well as in the
classification of groups. Using Galois theory, certain problems in field theory
can be reduced to group theory, which is, in some sense, simpler and better
understood. Engel groups are certain generalized nilpotent groups which have
received considerable attention in recent years [4, 5, 15]. In mathematics, more
specifically in the field of group theory, a solvable group is a group that can be
constructed from Abelian groups using extensions. And it is proved that every
solvable group is nilpotent [22]. In 1966, Y. Imai and K. Iseki [7, 9], defined
an algebra of type (2, 0), also known as BCK-algebra, as a generalization the
notion of algebra sets with the subtraction set with the only a fundamental,
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non-nullary operation and the notion of implication algebra [8, 12] on the
other hand. This notion is derived using two different methodologies, one of
which is based on the set theory and the other on is from classical and non-
classical propositional calculi. In [18] Najafi, introduced the notion of pseudo
commutator of two elements in a BCK-algebra. Then in [19], he used this
notion to define a solvable BCK-algebra. Then, Najafi et.all in [20], gave a
new definition of commutators and solvability in a BCI-algebras which have
more properties. Moreover, they studied the notion of derived subalgebra,
X
′

= [X,X] = {
∏

[x, y] : x, y ∈}, which is a subalgebra but it is not an ideal
of X in general.

Now, in this paper, first we introduce a new definition for commutators of a
BCI-algebra. Our motivation is that, a commutator of two elements in a BCI-
algebra with the condition 0∗x = 0, is the same as commutator of two elements
in a BCK-algebra, which this fact is not true with Najafie,s definition. Then
we generalized the notion of derived subalgebra X

′
= [X,X] = 〈{[x, y] : x, y ∈

}〉. In this case, X
′

is both a subalgebra and an ideal of X. Then, this new
notion help to us to introduce a new definition for solvable BCI-algebras. We
recall that in ring theory, an element x in (R,+, ·) is a nilpotent element if
xn = 0, for some positive integer n. Also, an ideal I of R is called nilideal of R
if every element of R is nilpotent. We can see that the concepts of nilpotency
in a ring theory and group theory are not the same. In [6], Huang used
the notion of nilpotency in ring theory to introduce the notion of nilpotency
in BCI-algebra. Moreover, in [13] and [21], several results on these topics
were obtained. Now, we used the notion of nilpotency in group theory to
introduce the notion of nilpotency in BCI-algebra. This new definition of
nilpotent BCI-algebras help to us to get a relation between nilpotent and
solvabel BCI-algebras.

2 Preliminary

Bellow we recall some definitions and results that will be used in the rest of
the paper.

An algebra (X, ∗, 0) of type (2,0) is called a BCI-algebra, if for any x, y, z ∈
X, it satisfies the following axioms:
(BCI-1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(BCI-2) (x ∗ (x ∗ y)) ∗ y = 0,
(BCI-3) x ∗ x = 0,
(BCI-4) x ∗ y = y ∗ x = 0 implies x = y.

On any BCI-algebra (X, ∗, 0), the natural order can be defined by putting
x ≤ y if and only if x ∗ y = 0, for any x, y ∈ X. In a BCI-algebra X, if
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0 ∗ x = 0, for any x ∈ X, then it is called a BCK-algebra [7]. In a BCK-
algebra X, for any x, y, z ∈ X , we have (x ∗ y) ∗ z = (x ∗ z) ∗ y, (x ∗ y) ≤ x,
x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x, x ∗ 0 = x. (See [9, 11, 16])

A BCI-algebra X is said to be bounded if there exists an element 1 ∈ X
such that x ≤ 1, for any x ∈ X. For elements x and y of a BCK-algebra X ,
we denote x ∧ y = y ∗ (y ∗ x) and x ∨ y = N(Nx ∧Ny), where Nx = 1 ∗ x. A
BCK-algebra X is said to be commutative if it satisfies x∧ y = y ∧ x, for any
x, y ∈ X. A nonempty subset S of a BCK-algebra X is called a subalgebra
of X, if x ∗ y ∈ S, whenever x, y ∈ S. Moreover, a nonempty subset I of a
BCK-algebra X is called a BCK-ideal of X if 0 ∈ I and if x ∗ y ∈ I and
y ∈ I, then x ∈ I, for any x, y ∈ X. A BCK-algebra X is called implicative,
if for any x, y ∈ X, x ∗ (y ∗ x) = x and X is called a positive implicative, if
for any x, y, z ∈ X, (x ∗ z) ∗ (y ∗ z) = (x ∗ y) ∗ z. The number of elements of
a BCK-algebra is called order of it. Let (X, ∗, 0) and (Y, ., 0) be two BCK-
algebras. A mapping f : X −→ Y is called a homomorphism from X to Y , if
for any x, y ∈ X, f(x ∗ y) = f(x).f(y). Let I be an ideal of a BCK-algebra
X. Relation ∼ on BCK-algebra X which is defined by x ∼ y if and only if
x ∗ y, y ∗ x ∈ I is a congruence relation on X. Let Cx denote the class of
x ∈ X and X/I denote the set of all classes Cx , where x ∈ X. Then X/I is
a BCK-algebra with Cx ∗ Cy = Cx∗y and Cx = Cy if and only if x ≤ y and
X/I is called the quotient BCK-algebra of X determined by I (See [10]).

Theorem 2.1. [24] Let X be a nonempty set. Then X is a BCI-algebra if
and only if there is a partial ordering ≤ on X such that, for any x, y, z ∈ X,
the following conditions hold:
(i) (x ∗ y) ∗ (x ∗ z) ≤ (z ∗ y),
(ii) x ∗ (x ∗ y) ≤ y,
(iii) x ∗ y = 0 if and only if x ≤ y.

Theorem 2.2. [24] Let X be a BCI-algebra. Then for any x, y, z ∈ X, the
following identities hold:
(i) x ≤ y implies z ∗ y ≤ z ∗ x,
(ii) x ≤ y implies x ∗ z ≤ y ∗ z,
(iii) (x ∗ y) ∗ z = (x ∗ z) ∗ y,
(iv) x ∗ (x ∗ (x ∗ y)) = x ∗ y,
(v) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y),
(vi) (x ∗ y) ∗ (z ∗ y) ≤ (x ∗ z).

Let x1, x2, x3, ..., xn be elements of BCK algebra X. Then the element
(x1 ∧ x2) ∗ (x2 ∧ x1) of X is called the pseudo commutator of x1 and x2 of
weight 2 and denoted by [x1, x2]. i.e., [x1, x2] = (x1∧x2)∗(x2∧x1). In general,
the element [x1, x2, ......, xn] = [[x1, ...., xn−1], xn] is a commutator of weight
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n ≥ 2, where [x1] = x1. A useful shorthand notation is [x,n y] = [x, y, ..., y]
(See [18]).

Example 2.3. [18] Let X = {0, 1, 2, 3, 4}. If operation ” ∗ ” on X is defined
by the following table:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 3 3 0 0
4 4 3 4 1 0

then (X, ∗, 0) is a bounded positive implicative BCK-algebra with the largest
element 4. We have [2, 4] = 0 6= 2 = [4, 2].

By Definition of BCI-algebra and Example 2.3, in the general case, [x, y] 6=
[y, x], for any x, y ∈ X. Hence, the definition of commutator in BCI-algebras
is not the same of definition of commutator in group theory. Thus the com-
mutators defined in this paper, are essentially directed commutators. Now,
we give some properties of commutators in BCK-algebras.

Lemma 2.4. [18] Let X be a BCK-algebra. Then for any x, y ∈ X;
(i) if x = y, then [x, y] = 0,
(ii) [x, 0] = [0, x] = [x, x] = 0,
(iii) [x, y] ∗ x = 0,
(iv) [x, y] ∗ y = 0.

Let x1, x2 be elements of a BCI-algebra X. Then the element ((x2 ∧ x1) ∗
(x1 ∧ x2)) ∗ (0 ∗ (x1 ∗ x2)) of X is called a pseudo commutator of x1 and x2
of weight 2 and denoted by [x1, x2], i.e. [x1, x2] = ((x2 ∧ x1) ∗ (x1 ∧ x2)) ∗
(0 ∗ (x1 ∗ x2)). If x1 ∗ x2 = [x1, x2] ∗ (x2 ∗ x1) or x2 ∗ x1 = [x2, x1] ∗ (x1 ∗ x2),
then [x1, x2] is called the commutator of x1 and x2. If x1, x2, ..., xn(n ≥ 2) be
elements of X. We define [x1, x2, ..., xn] = [[x1, x2, ..., xn−1], xn] as a pseudo
commutator of weight n. Let X1, ..., Xn be a non-empty subsets of X. Defined
a commutator of X1 and X2 by

[X1, X2] = {
∏

[x1, x2] : x1 ∈ X1 x2 ∈ X2}.

More generally, for n ≥ 2,

[X1, ..., Xn] = [[X1, ..., Xn−1], Xn]

[X,X] is a product of a finite number of elements [x, y] such that x, y ∈ X
and is called derived subalgebra of X and is denoted by X

′
. X

′
= [X,X],
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X
′′

= [X
′
, X
′
], X(n) = [X(n−1), X(n−1)]. A BCI-algebra X is called solvable

if there exists m ∈ N such that X(n) = {0}. (See [20]).

Notation. From now on, in this paper we let X is a BCI-algebra, unless
otherwise state.

3 Engel BCI-algebras

Now, in this section by using the notion of commutator of two elements in a
BCI-algebra, we introduce and study the concept of Engel BCI-algebra and
some of their properties.

Let x, y ∈ X. Define the commutator [x,n y], for any n ∈ N, by:

[x,0 y] = x, [x,1 y] = ((y∗(y∗x))∗(x∗(x∗y)))∗(0∗(y∗x)), [x,n y] = [[x,n−1 y], y].

Let us write [x, y, ..., y︸ ︷︷ ︸
n

], for [x,n y]. Therefore,

[x,n y] = [x, y, ..., y︸ ︷︷ ︸
n

] = [...[[x, y], y], ..., y].

Clearly, in any BCK-algebra X, [x, y] = (y ∗ (y ∗ x)) ∗ (x ∗ (x ∗ y)), for any
x, y ∈ X.

Definition 3.1. A BCI-algebra X is called an Engel BCI-algebra, if for each
ordered pair (x, y) of elements in X, there is a positive integer n(x, y) such that
[x,n y] = 0. Suppose n = n(x, y) can be chosen independently of x, y. Then
we say that X is n-Engel BCI-algebra. Clearly every n-Engel BCI-algebra is
Engel. Also, every finite BCI-algebra X is n-Engel if and only if X is Engel.

Example 3.2. Let X = {0, 1, a, b, c} and operation ” ∗ ” on X is defined as
follows:

∗ 0 1 a b c
0 0 0 c c a
1 1 0 c c a
a a a 0 0 c
b b a 1 0 c
c c c a a 0

Then (X, ∗, 0) is a BCI-algebra. Since for any x, y ∈ X we have [x, y] = 0,
then X is an 1-Engel BCI-algebra.
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Definition 3.3. [24] A BCI-algebra X is called commutative if x ∗ y = 0
implies x = y ∗ (y ∗ x), for any x, y ∈ X.

Theorem 3.4. [24] The following properties are equivalent on X:
(i) X is commutative,
(ii) x ∗ (x ∗ y) = y ∗ (y ∗ (x ∗ (x ∗ y))), for any x, y ∈ X,
(iii) (x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ x)) = 0 ∗ (x ∗ y), for any x, y ∈ X.

Theorem 3.5. X is commutative if and only if X is 1-Engel.

Proof. =⇒ Let X be a commutative BCI algebra. Then by Theorem 3.4, for
any x, y ∈ X, (y ∗ (y ∗ x)) ∗ (x ∗ (x ∗ y)) = (0 ∗ (y ∗ x)), which implies that for
any x, y ∈ X, [x, y] = 0. Therefore, X is 1-Engel.

(⇐=) Let X be an 1-Engel BCI-algebra and x ∗ y = 0. Then for any
x, y ∈ X, 0 = [y, x] = ((x ∗ (x ∗ y)) ∗ (y ∗ (y ∗x))) ∗ (0 ∗ (x ∗ y)) = x ∗ (y ∗ (y ∗x))
and so x ≤ y ∗ (y ∗x). Also clearly y ∗ (y ∗x) ≤ x. Therefore, x∗y = 0, implies
x = y ∗ (y ∗ x). Hence X is commutative.

Lemma 3.6. For any x, y ∈ X, the following hold:
(i) [x, y] ∗ x ≤ (0 ∗ x),
(ii) 0 ∗ [x, y] = 0,
(iii) 0 ∗ [x, y] = [0 ∗ x, 0 ∗ y],
(iv) x ∗ [x, y] ≤ x,
(v) [x, 0] = [0, x] = [x, x] = 0,
(vi) [0 ∗ x, y] = 0

Proof. (i) For any x, y ∈ X, we have

[x, y] ∗ x = ((y ∗ (y ∗ x)) ∗ (x ∗ (x ∗ y)) ∗ (0 ∗ (y ∗ x))) ∗ x
≤ ((x ∗ (x ∗ (x ∗ y))) ∗ (0 ∗ (y ∗ x))) ∗ x (by Theorems 2.2(ii) 2.1(ii))

≤ ((x ∗ y) ∗ (0 ∗ (y ∗ x))) ∗ x (by Theorems 2.2(iv) and 2.1(ii))

= ((x ∗ x) ∗ (0 ∗ (y ∗ x))) ∗ y (by Theorem 2.2(iii))

= (0 ∗ (0 ∗ (y ∗ x))) ∗ y
≤ (y ∗ x) ∗ y (by Theorems 2.2(ii) and 2.1(ii))

= 0 ∗ x (by Theorem 2.2(iii)).

(ii) By (i) and Theorem 2.2(vi), we have 0 = ([x, y]∗x)∗(0∗x) ≤ [x, y]∗0 = [x, y]
and so by Theorem 2.1(iii), 0 ∗ [x, y] = 0.
(iii) By (ii), 0 ∗ [x, y] = 0 and so by definition of [x, y] and Theorem 2.2(v), we
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have

0 ∗ [x, y]

= 0 ∗ ((y ∗ (y ∗ x)) ∗ (x ∗ (x ∗ y)) ∗ (0 ∗ (y ∗ x)))

= (((0 ∗ y) ∗ ((0 ∗ y) ∗ (0 ∗ x))) ∗ ((0 ∗ x) ∗ ((0 ∗ x) ∗ (0 ∗ y)))

∗(0 ∗ ((0 ∗ y) ∗ (0 ∗ x))))

= [0 ∗ x, 0 ∗ y].

(iv)

(x ∗ [x, y]) ∗ x = (x ∗ x) ∗ [x, y] (by Theorem 2.2(iii))

= 0 ∗ [x, y] (by (BCI3))

= 0 (By part(ii))

Then by Theorem 2.1(iii), x ∗ [x, y] ≤ x.
(v) It is straightforward.
(vi) Let x, y ∈ X. Then

[0 ∗ x, y]

= ((y ∗ (y ∗ (0 ∗ x))) ∗ ((0 ∗ x) ∗ ((0 ∗ x) ∗ y)) ∗ (0 ∗ (y ∗ (0 ∗ x))))

≤ ((0 ∗ x) ∗ y) ∗ (0 ∗ (y ∗ (0 ∗ x))) (by Theorems 2.1(ii) 2.2(iv))

≤ ((0 ∗ x) ∗ (0 ∗ (y ∗ (0 ∗ x)))) ∗ y (by Theorem 2.2(iii))

≤ ((y ∗ (0 ∗ x)) ∗ x) ∗ y
= ((y ∗ (0 ∗ x)) ∗ y) ∗ x (by Theorem 2.2(iii))

= ((y ∗ y) ∗ (0 ∗ x)) ∗ x (by Theorem 2.2(iii))

= (0 ∗ (0 ∗ x)) ∗ x
= (0 ∗ x) ∗ (0 ∗ x) (by Theorem 2.2(iii))

= 0.

Example 3.7. Let X = {0, a, b} and operation ” ∗ ” on X is defined by:

∗ 0 a b
0 0 b a
a a 0 b
b b a 0

Then X is a BCI-algebra. Since by Lemma 3.6, [a, 0] = [0, a] = [a, a] = 0 and
by b ∗ a = a, a ∗ b = b we have [a, b] = ((b ∗ (b ∗ a)) ∗ (a ∗ (a ∗ b))) ∗ (0 ∗ (b ∗ a) =
((b ∗ a) ∗ (a ∗ b)) ∗ (0 ∗ a) = b ∗ b = 0. Similarly, [b, a] = 0 and so for any
x, y ∈ X, [x, y] = 0. Therefore, X is an 1-Engel BCI-algebra.
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Since any implicative BCK-algebra X is a commutative BCK-algebra,
then by Theorem 3.5, every implicative BCK- algebra X is 1-Engel.

Lemma 3.8. If X is an n-Engel BCI-algebra, then X is (n+ 1)-Engel.

Proof. Let X be a n-Engel BCI-algebra. Then for any x, y ∈ X, [x,n y] = 0.
Hence, for any x, y ∈ X we have [x,n+1 y] = [[x,n y], y] = [0, y] = 0, which
implies that X is an (n+ 1)-Engel.

In the following Example we see that converse of Lemma 3.8, is not true
in general.

Example 3.9. Let X = [0, 1] and operation ” ∗ ” is defined by:

x ∗ y =

{
0, x ≤ y
x, otherwise

Then (X, ∗, 0) is a 2-Engel BCK-algebra. If for x, y ∈ X, x ≤ y, then [x, y] =
0 and [y, x] = (x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ x)) = x ∗ (y ∗ (y ∗ x)) = x which implies
that X is not 1-Engel. Now, since [y, x, x] = [x, x] = 0, hence, X is 2-Engel.
Now, if Z denote the cartesian product X × Y where Y is as in Example
3.2. Then (Z, ∗, (0, 0)) is a BCI-algebra, where operation ” ∗ ” is defined by
(x1, y1) ∗ (x2, y2) = (x1 ∗ y1, x2 ∗ y2), for any x1, x2 ∈ X and y1, y2 ∈ Y
(See [24]). We show that Z is not an 1-Engel BCI-algebra, but it is 2-Engel.
First, we show that [(x1, y1), (x2, y2)] = ([x1, x2], [y1, y2]). By the definition of
commutator in a BCI-algebras and operation (*) on Z, we have:

[(x1, y1), (x2, y2)]

= (((x2, y2) ∗ ((x2, y2) ∗ (x1, y1))) ∗ ((x1, y1) ∗ ((x1, y1) ∗ (x2, y2))))

∗((0, 0) ∗ ((x2, y2) ∗ (x1, y1)))

= ((x2 ∗ (x2 ∗ x1)), (y2 ∗ (y2 ∗ y1))) ∗ ((x1 ∗ (x1 ∗ x2)), (y1 ∗ (y1 ∗ y2)))

∗((0, 0) ∗ (x2 ∗ x1, y2 ∗ y1))

= (((x2 ∗ (x2 ∗ x1)) ∗ (x1 ∗ (x1 ∗ x2)) ∗ (0 ∗ (x2 ∗ x1)), (((y2 ∗ (y2 ∗ y1))

∗(y1 ∗ (y1 ∗ y2)) ∗ (0 ∗ (y2 ∗ y1))

= ([x1, x2], [y1, y2])

Then, [(x1, y1), (x2, y2)] = ([x1, x2], [y1, y2]). Now, for some x1, x2 ∈ X,
[x1, x2] 6= 0 and by Example 3.2, [y1, y2] = 0, for any y1, y2 ∈ Y . There-
fore, [(x1, y1), (x2, y2)] 6= (0, 0) which implies that Z is not 1-Engel. But Z is
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2-Engel, since

[(x1, y1),2 (x2, y2)] = [[(x1, y1), (x2, y2)], (x2, y2)]

= [([x1, x2], [y1, y2]), (x2, y2)]

= ([[x1, x2], x2], [[y1, y2], y2])

= ([x1,2 x2], [y1,2 y2]).

Hence, [(x1, y1),2 (x2, y2)] = ([x1,2 x2], [y1,2 y2]). Now, by Example 3.2, for
any x1, x2 ∈ X, [x1,2 x2] = 0 and [y1, y2] = 0 for any y1, y2 ∈ Y . Then,
[(x1, y1),2 (x2, y2)] = ([x1,2 x2], [y1,2 y2]) = (0, 0). Consequently, the converse
of Lemma 3.8, is not true in general.

Note that, Example 3.9, is a 2-Engel BCI-algebra. Since X is not 1-Engel,
by Theorem 3.5, X is not commutative. Therefore, Example 3.9, is an Engel
BCI-algebra of class n 6= 1 which is not commutative. Therefore, the converse
of Theorem 3.5, is not true for n 6= 1.

Theorem 3.10. Let f be an isomorphism from X to a BCI-algebra Y and
n ∈ N. Then X is an n-Engel BCI-algebra if and only if Y is an n-Engel,
too.

Proof. First, we show that f([a,n b]) = [f(a),n f(b)]. For n = 1;

f([a, b]) = f(((b ∗ (b ∗ a)) ∗ (a ∗ (a ∗ b))) ∗ (0 ∗ (b ∗ a))

= (f(b ∗ (b ∗ a)) ∗ f(a ∗ (a ∗ b))) ∗ (f(0 ∗ (b ∗ a))

= ((f(b) ∗ f(b ∗ a)) ∗ (f(a) ∗ f(a ∗ b))) ∗ (f(0) ∗ f(b ∗ a))

= ((f(b) ∗ (f(b) ∗ f(a))) ∗ (f(a) ∗ (f(a) ∗ f(b))) ∗ (0 ∗ (f(b) ∗ f(a)))

= [f(a), f(b)].

Thus, f([a, b]) = [f(a), f(b)]. Now let f([a,i b]) = [f(a),i f(b)], for i ≤ n.
We show that f([a,n+1 b]) = [f(a),n+1 f(b)]. By hypotheses of induction
[f(a),n+1 f(b)] = [[f(a),n f(b)], f(b)] = [f([a,n b]), f(b)] = f([a,n+1 b]). Thus,
f([a,n b]) = [f(a),n f(b)]. Consequently, let X be n-Engel and h, k are ar-
bitrary elements of Y . Then there exists a, b ∈ X such that f(a) = h and
f(b) = k. Therefore, 0 = f(0) = f([a,n b]) = [f(a),n f(b)] = [h,n k] and so
Y is an n-Engel BCI-algebra. Conversely, let Y be an n-Engel BCI-algebra.
Then for any a, b ∈ X, f([a,n b]) = [f(a),n f(b)] = [h,n k] = 0 = f(0) and so
[a,n b] = 0. Hence, X is an n-Engel.

Corollary 3.11. If X is n-Engel, then any sub-algebras X is n-Engel. Also
if I is a BCI-ideal of X, then X/I is n-Engel, too.
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Theorem 3.12. The intersection of any two n-Engel sub-algebras of X, is
n-Engel.

Proof. The proof is straightforward.

The above result can be generalized such that the intersection of any arbi-
trary family of subalgebras of an n-Engel BCI-algebra, is n-Engel. However,
in general, the union of two BCI-subalgebras of a BCI-algebra, may not be
a BCI-algebra(See [24]).

Remak: By Theorem 3.5, every 1-Engel BCI-algebra is a commutative
BCI-algebra. Since commutative BCI-algebras form a variety, then 1-Engel
BCI-algebras form a variety.

By the following example we show that n- Engel BCI-algebras ( n 6= 1)
do not form a variety.

Example 3.13. Consider the Wronskis algebra (X, ∗, 0), where X = N∪A∪B
in which N is the set of non-negative integers, A = {an : n ∈ N} and
B = {bn : n ∈ N} and each pair of the sets N,A,B are disjoint. We de-
fine a binary operation ” ∗ ” on X, for any m,n ∈ N , as follows:
m ∗ n = max{0,m− n},
m ∗ an = m ∗ bn = 0,
am ∗ n = am+n,
bm ∗ n = bm+n,
am ∗ an = bm ∗ bn = n ∗m,
am ∗ bn = bm ∗ an = (n+ 1) ∗m,
Then (X, ∗, 0) is a BCI-algebra with BCI-ordering

0 ≤ 1 ≤ 2 ≤ ... ≤ a2 ≤ a1 ≤ a0
0 ≤ 1 ≤ 2 ≤ ... ≤ b2 ≤ b1 ≤ b0

By ordinary calculations we see that [x, y] ∈ {0, 1, 2}. Thus, for any x, y ∈ X
we have [[x, y], y] = [t, z] in which t ∈ {0, 1, 2}. Now since N , N ∪ A and
N ∪ B are commutative. Then [[x, y], y] = [t, y] = 0. Therefore, X is a
2-Engel BCI-algebra.

The collection {N,A,B} determines a partition of X. Thus we have a
congruence relation θ on X, where x ∼θ y if and only if both of x and y are
in one of the tree sets N,A and B. We obtain a quotient algebra (X/θ, ∗, N),
where X/θ = {N,A,B}. Now, it is easy to see that the ” ∗ ” multiplication
table on X/θ is

∗ N A B
N N N N
A A N N
B B N N
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Since A ∗ B = B ∗ A = N and A 6= B, we get X/θ is not a BCI-algebra.
The mapping f : X −→ X/θ, x −→ θx is an BCI-epimorphism. However,
X/θ = f(X) is not a BCI-algebra. Thus, homomorphic image of an n-Engel
BCI-algebra X is not an n-Engel BCI-algebra.

Theorem 3.14. Let I be an ideal of X and n,m ∈ N. If I is an m-Engel and
X/I is n-Engel, then X is a (n+m)-Engel.

Proof. Let f be the natural homomorphism from X onto X/I. First, we show
that, for any i ∈ N, [Cx,i Cy] = C[x,iy]. For i = 1, by Cx ∗ Cy = Cx∗y, for any
Cx ∗ Cy ∈ X/I, we have

[Cx, Cy]

= ((Cy ∗ (Cy ∗ Cx)) ∗ (Cx ∗ (Cx ∗ Cy))) ∗ (0 ∗ (C0 ∗ (Cy ∗ Cx)))

= (C(y∗(y∗x) ∗ C(x∗(x∗y)) ∗ (0 ∗ C0∗(y∗x))

= C[x,y].

Therefore, [Cx, Cy] = C[x,y]. Now, let it is true for i < n. We show that
[Cx,n Cy] = C[x,ny]. By hypotheses of induction

[Cx,n Cy]

= [[Cx,n−1 Cy], Cy] = [C[x,n−1y], Cy]

= ((Cy ∗ (Cy ∗ C[x,n−1y])) ∗ (C[x,n−1y] ∗ (C[x,n−1y] ∗ Cy)))

∗(C0 ∗ (Cy ∗ C[x,n−1y]))

= (C(y∗(y∗[x,n−1y]) ∗ C([x,n−1y]∗([x,n−1y]∗y)) ∗ C0∗(y∗[x,n−1y])

= C[[x,n−1y],y]

= C[x,ny].

Now, X/I is n-Engel. Hence for any Cx, Cy ∈ X/I, C0 = [Cx,n Cy] = C[x,ny]

and so 0 ∼ [x,n y], which implies that [x,n y] ∈ I. Then, for any x, y ∈ X,
since [x,n y] ∈ I and I is m-Engel, we have [[x,n y],m y] = 0. Therefore, X is
(n+m)-Engel.

Theorem 3.15. Every BCI-algebra of order less than 5, is Engel.

Proof. If X is a BCI-algebra of order 1, then It is clear that, X is 1-Engel.
Moreover, there is a unique proper BCI-algebra of order two as follows:

∗ 0 1
0 0 0
1 1 0
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By Lemma 3.6, [x, y] = 0 for any x, y ∈ X and so X is 1-Engel. Also, there
are two proper BCI-algebra X of order three, with the following operations.

∗ 0 a b
0 0 b a
a a 0 b
b b a 0

∗ 0 a b
0 0 0 b
a a 0 b
b b b 0

Then it is easy to see that [a, b] = 0 = [b, a] and so [x, y] = 0, for any
x, y ∈ X. Hence, X is 1-Engel.

Also, there are 8 proper BCI-algebra of order four (see [24]). One of them
is X = {0, a, b, c} with the following operation:

∗ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

Clearly I = {0, a} is an 1-Engel ideal of X. Moreover, X/I = {I0 = Ia, Ib, Ic}
is a BCI-algebra of order 3 and so it is 1-Engel too. Therefore, by Theorem
3.14, X is 2-Engel. Similarly, for any BCI-algebra of order 4, there is an ideal
I of order 2 or 3(See [24]) that makes X/I a BCI-algebra of order 3 or 2,
respectively, and so X/I is 1-Engel. Then, by Theorem 3.14, X is 2-Engel.
Hence, we see that all BCI-algebras of order less than 5 are Engel.

Definition 3.16. [18] An ideal I of X is called a closed ideal, if it is also a
subalgebra of X. In this case it is denoted by I Ec X.

Theorem 3.17. [24] If H is a subalgebra of X and K is a closed ideal of X
,then HK/K ∼= H/(H ∩K).

Theorem 3.18. Let N be an n-Engel subalgebra of X and M be a closed
m-Engel ideal of X. Then MN is m+ n-Engel.

Proof. Clearly N ∩M is an ideal of N and so N/(N ∩M) is a BCI-algebra.
Also, by Theorem 3.10, N/(N ∩M) is n-Engel (by canonical map f : N −→
N/(N ∩M)). Since by Theorem 3.17, NM/M ∼= N/(M ∩N), so by Theorem
3.14, NM is an n+m-Engel BCI-algebra.

Remark. Let I be a closed ideal of X and x ∈ I. Since I is both ideal
and subalgebra of X, then 0 ∗ x ∈ I.
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Theorem 3.19. [24] Suppose that A and B are ideals of a BCI-algebra Y
and let AB =

⋃
a∈ABa, where Ba is an equivalence class in Y/B. If B is

closed, then AB = A+B, where A+B = 〈A ∪B〉.

Theorem 3.20. Every finite BCI-algebra has a unique maximal Engel closed
ideal.

Proof. Clearly, {0} is an Engel closed ideal of X. If {0} is maximal, then the
proof is complete, otherwise there is an Engel closed ideal N of X such that
{0} ⊂ N ⊆ X. If N is maximal, the proof is complete, otherwise there is an
Engel closed ideal M1 of X such that {0} ⊂ N ⊂ M1 ⊆ X. Continuing this
process, we have {0} ⊂ N ⊂ M1 ⊂ M2 ⊂ ... ⊂ X. Since X is finite, there
is an Engel closed ideal Mn of X such that X = Mn. Also, if there are two
Engel closed ideals H and K of X, then by Theorems 3.18 and 3.19, HK is
an Engel closed ideal of X. Since H and K are maximal ideals of X, then
H = HK = K. Thus there is a unique maximal Engel closed ideal of X.

Definition 3.21. Let y ∈ X be a fixed element of X, Z(0,y)(X) = {0} and
Z(n,y)(X) = 〈{x | [x,n y] = 0}〉, for any n ≥ 1. Then for any y ∈ X, the
sequence of ideals Z(0,y)(X) ⊆ Z(1,y)(X)... ⊆ Z(n,y)(X) is called the upper
central series of X.

Theorem 3.22. Let n ∈ N. Then X is n-Engel if and only if for any y ∈ X,
Z(n,y)(X) = X.

Proof. (=⇒) Let X be a n-Engel BCI-algebra and z ∈ X. Then for any
y ∈ X, [z,n y] = 0 which implies that z ∈ Z(n,y)(X).

(⇐=) Let for any y ∈ X, Z(n,y)(X) = X and y, z be arbitrary elements of
X. Therefore y, z ∈ X = Z(n,y)(X) and so [z,n y] = 0 which implies that X is
n-Engel.

We have only one BCK-algebra of order one, that is, X = {0} and so is
Engel. Also, there is a unique BCK-algebra of order two, that is, X = {0, 1}
with the following operation.

∗ 0 1
0 0 0
1 1 0

By Lemma 2.4, X is 1-Engel. Thus, all BCK-algebras with order less than
3, are Engel.

Theorem 3.23. Every BCK-algebra is 2-Engel.
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Proof. Let X be a BCK-algebra and A = [x, y], where x, y ∈ X. Then,

[x,2 y] = [[x, y], y]

= [A, y]

= (y ∗ (y ∗A)) ∗ (A ∗ (A ∗ y))

≤ (y ∗ (A ∗ (A ∗ y))) ∗ (y ∗A) (by Theorem 2.2(iii))

≤ A ∗ (A ∗ (A ∗ y)) (by (BCI − 1) and Theorem 2.1)

≤ A ∗ y (by Theorem 2.2(iv))

= [x, y] ∗ y
= 0 (by Lemma 2.4).

Therefore, X is a 2-Engel BCK-algebra.

Recall that, the set B of all positive elements of X is called the BCK-part
of X [16].

Corollary 3.24. The BCK-part of X is 2-Engel.

4 Nilpotent BCI-algebras

In this section the concept of a nilpotent BCI-algebra is introduced. This
help us to get a BCI-algebra analog of nilpotent groups. Moreover, we obtain
some main results of nilpotent groups on BCI-algebras.

Definition 4.1. Let Z0(X) = 0, Zn(X) = 〈{x | [x, y1, ..., yn] = 0, for any
y1, ..., yn ∈ X}〉 for any n ≥ 1. Clearly, by Lemma 3.6, Zn(X) is a closed ideal
of X. The sequence of ideals Z0(X) ⊆ Z1(X)... ⊆ Zn(X) is called the upper
central series of X. Its i-th term Zi(X) is called the i-th center of X. Now, X
is called nilpotent, if there exists n ∈ N, such that Zn(X) = X. The smallest
such integer is called the class of X

By Theorem 3.4, it is easy to see that:

Theorem 4.2. X is a commutative if and only if it is nilpotent of class at
most 1.

Proof. (=⇒) Let X be a commutative. By Theorem 3.4, it is easy to see that
it is nilpotent of class at most 1.

(⇐=) Let X be a nilpotent of class at most 1 and x ∗ y = 0. Then for any
x, y ∈ X, 0 = [y, x] = ((x ∗ (x ∗ y)) ∗ (y ∗ (y ∗x))) ∗ (0 ∗ (x ∗ y)) = x ∗ (y ∗ (y ∗x))
and so x ≤ y ∗ (y ∗ x). Also clearly y ∗ (y ∗ x) ≤ x. Hence if x ∗ y = 0, then
x = y ∗ (y ∗ x). Therefore X is commutative.
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Lemma 4.3. Let i > 0. Then [Zi(X), X] ⊆ Zi−1(X).

Proof. Let z = [x, y], where x ∈ Zi and y ∈ X. Then for any y1, ..., yi−1 ∈ X,
0 = ([[x, y], y1, ..., yi−1]) = 0. Hence, z ∈ Zi−1(X).

Theorem 4.4. Let f be an isomorphism from X to BCI-algebra Y and n ∈ N.
Then X is nilpotent if and only if Y is nilpotent.

Proof. First, we show that f([a, b1, ..., bn]) = [f(a), f(b1), ..., f(bn)] where
a, b1, ...bn ∈ X. For n = 1, since f is homomorphism we have

f([a, b]) = f(((b ∗ (b ∗ a)) ∗ (a ∗ (a ∗ b))) ∗ (0 ∗ (b ∗ a))))

= f(b ∗ (b ∗ a)) ∗ f(a ∗ (a ∗ b)) ∗ f(0 ∗ (b ∗ a))

= (f(b) ∗ f(b ∗ a)) ∗ (f(a) ∗ f(a ∗ b)) ∗ (f(0) ∗ f(b ∗ a))

= (f(b) ∗ (f(b) ∗ f(a))) ∗ (f(a) ∗ (f(a) ∗ f(b)) ∗ ((0 ∗ (f(b) ∗ f(a))))

= [f(a), f(b)].

Thus, f([a, b]) = [f(a), f(b)]. Now, let f([a, b1, ...bn]) = [f(a), f(b1), ..., f(bn)],
for i ≤ n. We show that f([a, b1, ..., bn, b(n+1)]) = [f(a), f(b1), ..., f(bn), f(bn+1)].
For this, [f(a), f(b1), ..., f(bn), f(bn+1)] = [[f(a), (b1), ..., f(bn)], f(bn+1)] =
[f([a, b1, ..., bn]), f(b(n+1))] = f([a, b1, ..., bn+1]). Thus, f([a, b1, ..., bn+1]) =
[f(a), f(b1), ..., f(bn+1)]. Now, let X be a nilpotent of class n, y is an arbi-
trary elements of Y and yi ∈ Y , for 1 ≤ i ≤ n. Then there exist a, bi ∈ X,
for 1 ≤ i ≤ n such that f(a) = y and f(bi) = yi. Hence 0 = f(0) =
f([a, b1, ..., bn]) = [f(a), f(b1), ..., f(bn)] = [y, y1, ..., yn] that is, Y is a nilpo-
tent BCI-algebra. Conversely, let Y be a nilpotent BCI-algebra of class n.
Then for a and any b1, ..., bn ∈ X, f([a, b1, ..., bn]) = [f(a), f(b1), ..., f(bn)] =
[y, y1, ..., yn] = 0 = f(0) and so [a, b1, ..., bn] = 0, that is X is a nilpotent
BCI-algebra.

Corollary 4.5. If X is nilpotent, then any subalgebra of X is nilpotent, too.
Also if I is a BCI-ideal of X, then X/I is nilpotent, too.

Lemma 4.6. X/Z(X) is nilpotent of class n if and only if X is nilpotent of
class n+ 1.

Proof. =⇒ Let X/Z(X) be nilpotent of class n. Hence, Zn(X/Z(X)) =
X/Z(X) and so for any x ∈ X we have [Zx, Zy1 , ..., Zyn ] = Z0, for any
y1, ..., yn ∈ X. Then by the proof of Theorem 3.14, Z[x,y1,...,yn] = Z0. Hence
[x, y1, ..., yn] ∈ Z(X) and so [x, y1, ..., yn, yn+1] = 0, for any yn+1 ∈ X, which
implies that x ∈ Zn+1(X). Then, Zn+1(X) = X. Therefore, X is nilpotent of
class n+ 1.
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⇐= Let X be a nilpotent BCI-algebra of class n+ 1. Then, by Corollary
4.5, ( f : X −→ X/Z(X)) X/Z(X) is nilpotent.

Theorem 4.7. The intersection of any two nilpotent subalgebras of X, is
nilpotent.

Proof. The proof is straightforward.

Remak. By Theorem 4.2, every nilpotent BCI-algebra of class 1, is a
commutative BCI-algebra. Since commutative BCI-algebras form a variety,
then every nilpotent BCI-algebras of class 1 form a variety.

Let X be as in Example 3.13. Then for any x, y, z ∈ X we have [[x, y], z] =
[t, z] in which t ∈ {0, 1, 2}. Now since N , N ∪ A and N ∪B are commutative
[[x, y], z] = [t, z] = 0. Therefore, X is a nilpotent BCI-algebra.
The collection {N,A,B} determines a partition of X. Thus we have a con-
gruence relation θ on X where x ∼θ y if and only if both of x and y are in one
of the tree sets N,A and B. We obtain a quotient algebra (X/θ, ∗, N), where
X/θ = {N,A,B}. Now, it is easy to see that the ” ∗ ” multiplication table on
X/θ is

∗ N A B
N N N N
A A N N
B B N N

Since A ∗ B = B ∗ A = N and A 6= B, so X/θ is not a BCI-algebra.
The mapping f : X −→ X/θ, x −→ θx is an BCI-epimorphism. However,
X/θ = f(X) is not a BCI-algebra. Thus, homomorphic image of an nilpotent
BCI-algebra X is not a nilpotent BCI-algebra.

Therefore, we have the following Theorem.

Theorem 4.8. Nilpotent BCI-algebras of class n 6= 1 do not form a variety.

Theorem 4.9. Let I be an ideal of X and n,m ∈ N. If I is a nilpotent
BCI-ideal of class m and X/I is nilpotent of class n, then X is nilpotent of
class (n+m).

Proof. The proof is similar to the proof of Theorem 3.14.

Theorem 4.10. Every BCI-algebra of order less than 5, is nilpotent.

Proof. The proof is similar to the proof of Theorem 3.15.
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Lemma 4.11. Let X be a nilpotent BCK(BCI)-algebra of class n ≥ 1 and
N be a nontrivial (closed) ideal of X. Then N ∩ Z(X) 6= 0.

Proof. Since X is nilpotent, so there exist n ≥ 1 such that Zn(X) = X. Thus
0 = Z0(X) ⊆ Z1(X) ⊆ ... ⊆ Zn(x) = X. Since N ∩ Zn(X) = N ∩ X =
N 6= {0}, there is j ∈ N such that N ∩ Zj(X) 6= 0. Let i be the smallest
index such that N ∩ Zi(X) 6= 0 ( so N ∩ Zi−1(X) = 0). Then we claim that
[N ∩ Zi(X), X] ⊆ N . For this let w ∈ [N ∩ Zi(X), X]. Then there exists
x ∈ N ∩ Zi(X) and g ∈ X such that w = [x, g]. Since x ∈ N (0 ∗ x ∈ N)
and [x, g] ≤ x, ( [x, g] ∗ (0 ∗ x) ≤ x), then w ∈ N . Also since w = [x, g]
in which x ∈ N ∩ Zi(X) ⊆ Zi(X), by Lemma 4.3, w ∈ Zi−1(X). Hence
[N ∩ Zi(X), X] ⊆ N ∩ Zi−1(X) = 0. Then N ∩ Zi(X) ≤ Z(X) and so
N ∩Zi(X) ≤ N ∩Z(X) = 0 . Hence N ∩Zi(X) = 0 which is a contradiction.
Therefore, N ∩ Z(X) 6= 0.

The following theorem shows that for a nilpotent BCI(BCK)-algebra X,
each minimal ideal of X is contained in Z(X).

Theorem 4.12. Let X be a nilpotent BCK(BCI)-algebra of class n ≥ 1. If
N is a minimal (closed) ideal of X, then N ≤ Z(X).

Proof. Since N and Z(X) are ideals of X, we get N ∩Z(X)EX. Now since N
is a minimal ideal of X, N ∩ Z(X) ≤ N and by Lemma 4.11, 0 6= N ∩ Z(X).
Hence, we get N ∩ Z(X) = N . Therefore, N ≤ Z(X).

Theorem 4.13. Let X be a nilpotent BCK(BCI)-algebra and A be a maximal
commutative (closed) ideal of X. Then

A = CX(A) = 〈{x ∈ X | [x, a] = 0, [a, x] = 0 for any a ∈ A}〉

Proof. Clearly, CX(A) is an ideal of X(CX(A) E X). By Theorem 3.5, A is
1-Engel and so [x, y] = 0, for any x, y ∈ A, which implies that A ⊆ CX(A).

Now, suppose A ( CX(A). Then 0 6= CX(A)
A E X

A . Hence by Lemma 4.11,
CX(A)
A ∩ Z(X/A) 6= 0. So there exists A0 6= Ag ∈ CX(A)

A ∩ Z(XA ). Hence
g ∈ CX(A) and so for a ∈ A, [g, a] = 0 and [a, g] = 0 which implies that
a ∗ (a ∗ g) = g ∗ (g ∗ a) (∗). Now let B = 〈A, g〉. Using (∗) and A is
commutative we see that B is commutative too. Also A ( B EX. Therefore
B is a commutative ideal of X, which is a contradiction. Thus A = CX(A).

We recall that in ring theory, an element x in (R,+, ·) is a nilpotent element
if xn = 0, for some positive integer n. Also, an ideal I of R is called nil ideal
of R if every element of R is nilpotent. In [6], Huang used the notion of a
nilpotent element of a ring to introduce the notion of a nilpotent element of
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a BCI-algebra. Moreover, the notions of nilpotent element, nilpotent BCI-
algebra and nil ideal were introduced. In [13], [14] and [21], several results on
these topics were obtained. In [13], for a non-empty subset S of BCI-algebra
X and a positive integer k, Nk(S) is defined to be {x ∈ S; 0 ∗ xn = 0} and
it is proved that for a closed ideal A of X, the set of all nilpotent element
of A is a nil closed ideal of A. Also, f−1(Nk(A)) is an ideal of X containing
Nk(f−1(S)), where f : X → Y is a BCI homomorphism and A is an ideal
of Y . In this section we used the notion of a nilpotent group to introduce a
nilpotent BCI-algebra and in the following we see that there is no relation
between nilpotent BCI-algebra in [6] an our definition in this paper.

Definition 4.14. [6] Let X be a BCI-algebra and x ∈ X. If there exists a
natural number k such that 0 ∗ xk = 0, then x is called a nilpotent element of
X. An ideal A of X is called nil ideal of X if every element of A is nilpotent.
Also, a BCI-algebra X is called nilpotent, if every element in X is nilpotent.

Theorem 4.15. [3] Every BCK-algebra is nilpotent. Every finite BCI-
algebra is nilpotent.

Remark. Note that, X in Example 3.9, is an infinite BCK-algebra which
is not nilpotent, by our definition. Hence, by Theorem 4.15, we can see that
our definition is different of Definition 4.14. That is, if X is nilpotent of class
1, then 0 ∗ x = 0 and so X is a BCK-algebra. But in our definition, if X is
nilpotent of class 1, then X is a commutative BCI-algebra.

5 Solvable BCI-algebras

In [18] Najafi and et. all introduced solvable BCI-algebras by means of derived
subgroup of X. In this section a new definition of derived subgroup of X is
introduced which help us to get more properties of solvable BCI-algebras.

Definition 5.1. Let X be a BCI-algebra, X(1) = [X,X] = 〈{[x, y] : x, y ∈
X}〉 and for any n ∈ N, X(n) = [X(n−1), X(n−1)]. Then X is called solvable if
there exists n ∈ N such that X(n) = 0. The smallest such n is called derived
lenght of X.

Theorem 5.2. [24] An ideal A of a BCI-algebra X is closed if and only if
0 ∗ x ∈ A, for any x ∈ A.

Theorem 5.3. Let X be a BCI-algebra. Then X(1) is a 2-Engel closed ideal
of X.

Proof. By Theorem 3.6, for any [x, y] ∈ X(1), 0∗[x, y] = 0 ∈ X(1) which implies
that X(1) is a closed ideal of X. Now, since for any x, y ∈ X, 0 ∗ [x, y] = 0,
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hence, X(1) ⊆ B, in which B is the BCK-part of X. Now, by Corollary 3.24,
X(1) is 2-Engel.

Theorem 5.4. X is commutative if and only if X(1) = 0.

Proof. X is commutative if and only if for any x, y ∈ x, [x, y] = 0 if and only
if X(1) = 0.

Theorem 5.5. Let I be an ideal of X. Then X/I is commutative if and only
if X(1) ⊆ I.

Proof. By Theorem 3.4, X/I is a commutative if and only if , [Ix, Iy] = I0,
for any x, y ∈ X, if and only if for any x, y ∈ X , I[x,y] = I0 if and only if
for any x, y ∈ X, [x, y] ∼ 0 if and only if for all x, y ∈ X, [x, y] ∗ 0 ∈ I and
0 ∗ [x, y] ∈ I (note that by Theorem 3.6, 0 ∗ [x, y] = 0) if and only if for all
x, y ∈ X, [x, y] ∈ I if and only if X(1) ⊆ I.

Theorem 5.6. Let f be an isomorphism from X to BCI-algebra Y and n ∈ N.
Then X is solvable if and only if Y is solvable.

Proof. Let f be an isomorphism from X to BCI-algebra Y and x, y ∈ X.
Then f([x, y]) = [f(x), f(y)]. Since f(X) = Y , we show that f(X(1)) = Y (1).
If y ∈ f(X(1)), then there exists x ∈ X(1) such that f(x) = y and so x ∈ X(1),
then there exist a, b ∈ X such that x = [a, b]. Hence, f(x) = f([a, b]) =
f [a, b] = [f(a), f(b)] = y ∈ Y (1). Then, f(X(1)) ⊆ Y (1). Conversely, let
h ∈ Y (1). Then, there exist h1, k ∈ Y such that h = [h1, k]. However,
f is an isomorphism, hence there exist a, b ∈ X such that h1 = f(a) and
k = f(b). Thus, h = [h1, k] = [f(a), f(b)] = f [a, b] ∈ f(X(1)). Then, we prove
that f(X(1)) = Y (1). Now, by induction on n, we can show that f(X(n)) =
Y (n). Now, since X is a solvable BCI-algebra, there exists n ∈ N such that
X(n) = 0. Hence, 0 = f(0) = f(X(n)) = Y (n) that is, Y is a solvable BCI-
algebra. Conversely, let Y be a solvable BCI-algebra. Since f(X) = Y , we get
f(X(n)) = Y (n) = 0. Hence, f(X(n)) = 0 = f(0) and so X(n) = 0. Therefore,
X is a solvable BCI-algebra.

Corollary 5.7. If X is solvable, then any subalgebra X is solvable. Also if I
is a BCI-ideal of X, then X/I is solvable.

Theorem 5.8. The intersection of any two solvable subalgebras of X, is solv-
able.

Proof. The proof is straightforward.
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The above result can be generalized such that the intersection of any ar-
bitrary family of subalgebras of an solvable BCI-algebra, is solvable.

Remark. Every solvable BCI-algebra of derived length n = 1, is a com-
mutative BCI-algebra. Since commutative BCI-algebras form a variety, then
every solvable BCI-algebras derived length n = 1 form a variety.

LetX be as in Example 3.13. Then for any x, y, z ∈ X we have [[x, y], [z, t]] =
[t, u] in which t, u ∈ {0, 1, 2}. Now since N is commutative [[x, y], [z, t]] =
[t, u] = 0. Therefore, X is a solvable BCI-algebra. Therefore, we have the
following Theorem.

Theorem 5.9. Solvable BCI-algebras do not form a variety in general.

Theorem 5.10. Let I be an ideal of X and n,m ∈ N. If I and X/I are
solvable BCI-algebras, then X is a solvable BCI-algebra.

Proof. Let f be the natural homomorphism from X onto X/I. Since X/I is
solvable, for some n ∈ N, f(X(n)) = (X/I)(n) = I. Hence X(n) is a sub-
algebra of ker(f) = I. By Corollary 5.7, X(n) is solvable. Hence, there exists
a positive integer number k such that X(n+k) = (X(n))(k) = 0. That is X is
solvable.

Theorem 5.11. If X is finite and [x, y] ≤ x, for any x, y ∈ X, then it is
solvable.

Proof. Let X be finite, |X| = n ≥ 2 and M be the set of all its maximal
elements. Then M has at least one element and [0, y] = 0 6∈ M for every
y ∈ X. For x 6= 0 there is m ∈ M such that x ≤ m. By hypotheses,
[x, y] < x ≤ m, so [x, y] 6∈ M for all x, y ∈ X. Also by Theorem 5.3, X(1)

is a subalgebra contained in X\M . Hence |X| > |X(1)|. By induction |X| >
|X(1)| > |X(2)| > > |X(k)| = 1, for some k < n. It is not difficult to see that k
is less than the length of the longest sequence 0 < a1 < a2 < < am of elements
of X. Thus, for some k < n, |X(k)| = 1 which implies that X(k) = {0}. Hence,
X is solvable.

Corollary 5.12. Every finite BCK-algebra is solvable.

Proof. It is clear by Lemma 2.4 and Theorem 5.11.

In the following Example we have an infinite BCK-algebra which is not
solvable.

Example 5.13. Let X = [0, 1] and ” ∗ ” is given by

x ∗ y =

{
0, x ≤ y
x, otherwise
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Then (X, ∗, 0) is an infinite BCK-algebra and X(n) = [0, 1) for any n ≥ 1.
Then X is not solvable.

6 Relation between Engel, nilpotent and solvable BCI-
algebras

Here, we can justify our definition of Engel, nilpotent and solvable BCI-
algebras. In group theory each nilpotent group is Engel and solvable. This
initial study can verify, as we have done in Theorems 6.1 and 6.3, that each
nilpotent BCI-algebras is Engel and solvable.

Theorem 6.1. If X is a nilpotent BCI-algebra, then X is an Engel.

Proof. Let X be nilpotent. Then there exist n ∈ N such that Zn(X) = X.
Hence, for any x, y ∈ X, we have [x, y, ...y︸ ︷︷ ︸

n−times

] = 0, which implies that X is an

n-Engel.

Remark The converse of Theorem 6.1, is not true in general. In the
following Example we have a 2-Engel BCI- algebra which is not nilpotent.

Example 6.2. Let X = [0, 1] and operation ” ∗ ” be given by:

x ∗ y =

{
0, x ≤ y
x, otherwise

By Example 3.9, X is a 2-Engel BCK-algebra but X is not nilpotent . For this
let y3 ≤ y2 ≤ y1 ≤ x. Then [x, y1] = y1 and so [y1, y2] = y2 which implies that
[x, y1, y2, y3] = [y1, y2, y3] = [y2, y3] = y3. Repeating this we see that there is
not n ≥ 0 such that [x, y1, y2, ..., yn] = 0. Hence, X is a 2-Engel BCK-algebra
which is not nilpotent.

Now, let Z be as in Example 3.9, then Z is a 2-Engel BCI-algebra. Now,
we show that Z is a 2-Engel BCI-algebra that is not nilpotent. By the same
manipulation of Example 3.9, we have

[(x1, y1), (x2, y2), ..., (xn, yn)] = ([x1, x2, ..., xn], [y1, y2, ..., yn])

for any x1, ..., xn ∈ X and y1, ..., yn ∈ Y . Since X is not nilpotent, so there
is not n ≥ 0 such that [x1, x2, ..., xn] = 0, where x1 ≥ x2 ≥ ... ≥ xn. Then,
[(x1, y1), (x2, y2), ..., (xn, yn)] 6= (0, 0) which implies that there is not n ∈ N
such that Zn(Z) = Z and so Z is not a nilpotent BCI-algebra.

Theorem 6.3. Let X be a finite nilpotent BCI-algebra. Then X is solvable.
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Proof. Let X be a finite nilpotent BCI-algebra of order n. We do the proof by
induction on n. Since X is nilpotent so there is m ∈ N such that Zm(X) = X.

Now, consider Y =
X

Z(X)
. Using Theorem 4.6, Y is a nilpotent BCI-algebra

of order t < n and so by hypotheses of induction Y is solvable. Also Z(X) is
a commutative BCI-algebra and so Z(X) is solvabel. Therefore, by Theorem
5.10, X is solvable.

In the following Example we have a finite nilpotent BCI-algebra which is
solvable.

Example 6.4. Let X = {0, 1, ..., n} and operation ” ∗ ” be given by:

x ∗ y =

{
0, x ≤ y
x, otherwise

Clearly, X is a nilpotent BCK-algebra and by Corollary 5.12, X is solvable.
Now, if Z denote the cartesian product X × Y where Y is as in Example 3.2.
Then Z is a BCI-algebra, where operation ”*” is defined by (x1, y1)∗(x2, y2) =
(x1 ∗ y1, x2 ∗ y2) for any x1, x2 ∈ X and y1, y2 ∈ Y (See [24]). Since Y is
a commutative BCI-algebra so Y is a nilpotent and solvable BCI-algebra.
Therefore, Z is a solvable and nilpotent BCI-algebra.

In the following we show that the notion of 1-Engel BCI-algebras and
quasi-commutative BCI-algebras are not equivalent.

Definition 6.5. [3] A BCI-algebra X is called quasi-commutative of type
(i, j,m, n), if there exist two pairs of non-negative integers i, j and m,n such
that the following identity holds:

(x ∗ (x ∗ y)i+1) ∗ (y ∗ x)j = (y ∗ (y ∗ x)m+1) ∗ (x ∗ y)n

Remark. Every 1-Engel BCI-algebra is a commutative BCI-algebra.
Also, every quasi-commutativeBCI-algebra is not a commutativeBCI-algebra
(See [3]). Therefore, the notion of 1-EngelBCI-algebras and quasi-commutative
BCI-algebras are not equivalent. By the same method the notion of nilpo-
tent (solvable) BCI-algebras and quasi-commutative BCI-algebras are not
equivalent.

In the following example we have an 1-Engel BCI-algebra which is not a
quasi-commutative BCI-algebra.

Example 6.6. Assume that (N, ∗, 0) is the commutative BCK-chain in which
x∗y = max{0, x−y} and let (P, ∗, 0) be a nonzero p-semisimple algebra. Then
N and P are two commutative BCI-algebras. So N × P is an 1-Engel BCI-
algebra. But N × P can not be quasi-commutative (See [3]).
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7 Conclusions

By the notion of Engel (nilpotent, solvable) BCI(BCK)-algebra we find the
necessary and sufficient condition under which each special commutator of
weight n ≥ 1 is equal to 0. Therefore, we think it could be useful to investi-
gate on condition under which all BCI(BCK)-chains of a given BCI(BCK)-
algebra terminate at finite step.
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