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Existence and uniqueness of positive solution
for nonlinear difference equations involving

p(k)-Laplacian operator

Mohsen Khaleghi Moghadam and Renata Wieteska

Abstract

In this paper, we deal with the existence of at least one and of at
least two positive solutions as well the uniqueness of a positive solution
for an anisotropic discrete non-linear problem involving p(k)-Laplacian
with Dirichlet boundary value conditions. The technical approach for
the existence part is based on a local minimum theorem and on a two
critical points theorem for differentiable functionals, and for uniqueness
part is based on a Lipschitzian continuous condition on the nonlinearity
term.

1 Introduction

There seems to be increasing interest in the existence of solutions to bound-
ary value problems for finite difference equations with p(k)-Laplacian oper-
ator, because of their applications in many fields. Results on this topic are
usually achieved by using various fixed point theorems in cone; see [4, 30]
and references therein for details. This kind of problems play a fundamen-
tal role in different fields of research, such as mechanical engineering, con-
trol systems, economics, computer science, physics, artificial or biological
neural networks, cybernetics, ecology and many others. Important tools in
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the study of nonlinear difference equations are fixed point methods and up-
per and lower solution techniques; see, for instance, [16, 24] and references
therein. It is well known that critical point theory is an important tool to deal
with the problems for differential equations. More, recently, for example in
[8, 14, 15, 18, 20, 22, 23, 25, 26, 27, 28] the existence and multiplicity of solu-
tions for nonlinear discrete boundary value problems have been investigated
by adopting variational methods.

The aim of this paper is to establish the existence of positive solutions for
the following discrete boundary-value problem{
−∆(w(k − 1)φp(k−1)(∆u(k − 1))) + q(k)φp(k)(u(k)) = λf(k, u(k)),

u(0) = u(T + 1) = 0,
(1)

for every k ∈ [1, T ], where T ≥ 2 is a fixed positive integer, λ is a positive
real parameter, [1, T ] is the discrete interval {1, ..., T}, p : [0, T + 1]→ [2,∞),
w : [0, T ] → [1,∞), q : [1, T + 1] → [1,∞) are given functions, ∆u(k) =
u(k + 1) − u(k) is the forward difference operator, φp(·)(s) = |s|p(·)−2s is the
one-dimensional discrete p(·)-Laplacian operator and f : [1, T ]×R→ R is the
continuous function, i.e. for every k ∈ [1, T ] the function f(k, ·) is contiunuous.
Other assumptions will be provided throughout the paper in accordance with
a method which we will apply.

Throughout the text we will use the following notations:

p+ := max
k∈[0,T+1]

p(k), p− := min
k∈[0,T+1]

p(k),

w+ := max
k∈[0,T ]

w(k), w :=

T+1∑
k=1

w(k − 1),

q+ := max
k∈[1,T+1]

q(k), q :=

T+1∑
k=1

q(k).

The problem under consideration, problem (1), is the discrete variant of a
kind of the variable exponent of an anisotropic problem{
−
∑N
i=1

∂
∂xi

(wi(x)| ∂u∂xi
|pi(x)−2 ∂u

∂xi
) + q(x)|u|pi(x)−2u = λf(k, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω ⊂ RN , N ≥ 3, is a bounded domain with smooth boundary, f ∈
C(Ω × R,R) is given function satisfying certain properties and q(x) ≥ 1,
wi(x) ≥ 1 and pi(x) ≥ 2 are continuous functions on Ω for every x ∈ Ω
and every i ∈ {1, 2, · · · , N}, λ is a positive real number.
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Based on a local minimum theorem, Theorem 2.1, we ensure an exact
interval of the parameter λ, in which problem (1) admits at least one positive
solution.

We refer to the paper [1, 19] in which Theorem 2.1 has been successfully
employed to the existence of at least one non-trivial solution for different one-
dimensional problems with two-point boundary value condition.

As an example, here, we point out the following special case of our main
result.

Theorem 1.1. Let T ≥ 2 be a fixed positive integer and let f : R → R be a

non-negative continuous function, such that limt→0+

∫ t
0
f(s)ds

t2 > 0. Then for
any

λ ∈

0,
1

T (T + 4)
∫ (2T+2)

2T+6
T+4

0
f(ξ)dξ


the problem{
−∆(|∆u(k − 1)|k∆u(k − 1)) + |u(k)|k+1u(k) = λf(u(k)), k ∈ [1, T ],

u(0) = u(T + 1) = 0,

admits at least one positive solution in the space {u : [0, T + 1] → R : u(0) =
u(T + 1) = 0}.

Based on a two-non-zero critical points theorem, Theorem 2.2, we obtain
the existance of at least two positive solutions for some values of the parameter
λ.

The inspiration to study the multipicity of positive solutions lies in the pa-
per [17], where the Authors have been examined the Dirichlet boundary value
problem for difference equations involving the discrete p-Laplacian operator.
We also refer to the paper [7] in which Theorem 2.2 has been successfully em-
ployed to show the existence of non-zero solutions for the second-order discrete
boundary value problem.

The paper is arranged as follows. In Section 2 we recall some basic defini-
tions and the main tools which we use to show our results. We also provide
a few inequalities which play very important role in our investigations. In
Section 3 we provide our main result that contains the existence theorem.
In section 4 we focus on the multiplicity result and in Section 5 we consider
the uniqueness of solution under suitable condition on the nonlinearity term.
Examples are also provided.
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2 Preliminaries

Our first tool and approach is based on the variational principle of Ricceri
established in [31, Theorem 2.1] which we recall here, for reader’s convenience,
in the following form given in [12, Theorem 2.1].

Theorem 2.1. (Bonanno and Molica Bisci [12, Theorem 2.1(a)]) Let X be a
reflexive real Banach space, Φ,Ψ : X → R be two Gâteaux differentiable func-
tionals such that Φ is strongly continuous, sequentially weakly lower semicon-
tinuous and coercive in X and Ψ is sequentially weakly upper semicontinuous
in X. Let Iλ be the functional defined as Iλ = Φ − λΨ, λ ∈ R and for any
r > infX Φ let φ be the function defined as

φ(r) := inf
u∈Φ−1(]−∞,r[)

supv∈Φ−1(]−∞,r[) Ψ(v)−Ψ(u)

r − Φ(u)
,

Then, for any r > infX Φ and for any λ ∈ (0, 1
φ(r) ), the restriction of the

functional Iλ to Φ−1(] −∞, r[) admits a global minimum, which is a critical
point (precisely a local minimum) of Iλ in X.

Our second main tool and approach is based on a two non-zero critical
points theorem established in [9], which is a suitable combination of the clas-
sical Ambrosetti—Rabinowitz theorem (see: [5]) and a local minimum theorem
established in [6].

Before providing the mentioned result we recall that a continuously differ-
entiable functional I defined on a real Banach space X satisfies the Palais-
Smale condition, the (PS) - condition for short, if every sequence {un} such
that {I(un)} is bounded and I

′
(un) −→ 0 in X∗ as n −→∞ has a convergent

subsequence.
The existence result of multiple critical points reads

Theorem 2.2. (Bonanno and D’Agùı [9, Theorem 2.1]) Let X be a real finite
dimensional Banach space and let Φ,Ψ : X −→ R be two continuously Gâteaux
differentiable functionals such that infX Φ = Φ(0) = Ψ(0) = 0. Assume that
there are r ∈ R and ũ ∈ X, with 0 < Φ(ũ) < r, such that

supΦ−1(]−∞,r]) Ψ

r
<

Ψ(ũ)

Φ(ũ)
(2)

and, for each

λ ∈ Λ :=

]
Φ(ũ)

Ψ(ũ)
,

r

supΦ−1(]−∞,r]) Ψ

[
,
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the functional Iλ = Φ − λΨ satisfies the (PS)-condition and it is unbounded
from below.

Then, for each λ ∈ Λ, the function Iλ admits at least two non-zero critical
points uλ,1, uλ,2 such that I(uλ,1) < 0 < I(uλ,2).

In order to give the variational formulation of problem (1) we introduce
the T -dimensional Banach space

W := {u : [0, T + 1]→ R : u(0) = u(T + 1) = 0},

equipped with the norm

‖u‖ :=

(
T+1∑
k=1

(
w(k − 1)|∆u(k − 1)|2 + q(k)|u(k)|2

)) 1
2

.

In the space W we will also consider the following norms

‖u‖p+ :=

(
T+1∑
k=1

(
w(k − 1)|∆u(k − 1)|p

+

+ q(k)|u(k)|p
+
)) 1

p+

,

‖u‖max := max
k∈[1,T ]

|u(k)|

and (like in [13]) the norm

‖u‖p(·) := inf

{
µ > 0 :

T+1∑
k=1

(
w(k − 1)

∣∣∣∆u(k − 1)

µ

∣∣∣p(k−1)

+ q(k)
∣∣∣u(k)

µ

∣∣∣p(k)
)
≤ 1

}
.

The latest norm is called the Luxemburg norm.
Put

K := (2 max{w, q})
2−p+

2p+ .

Note that K ≤ 1.
To prove our results we will use several inequalities which connect the above

norms. The important role in our investigations plays the following inequality

K‖u‖ ≤ ‖u‖p+ ≤ 2
p+−2

2p+ K‖u‖, (3)

which are obtained by using twice Weighted Hölder’s inequality.
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Indeed, on the one hand

T+1∑
k=1

w(k − 1)|∆u(k − 1)|2

≤
(
T+1∑
k=1

w(k − 1){1}
p+

p+−2

) p+−2

p+
(
T+1∑
k=1

w(k − 1)
(
|∆u(k − 1)|2

) p+

2

) 2

p+

≤ w
p+−2

p+

(
T+1∑
k=1

w(k − 1)|∆u(k − 1)|p+
) 2

p+

.

In the same manner we get

T+1∑
k=1

q(k)|u(k)|2 ≤ q
p+−2

p+

(
T+1∑
k=1

q(k)|u(k)|p
+

) 2

p+

.

Taking the above inequalities and 2
p+ ≤ 1 into account, we get

‖u‖2 ≤ (max{w, q})
p+−2

p+

×

((
T+1∑
k=1

w(k − 1)|∆u(k − 1)|p+
) 2

p+

+

(
T+1∑
k=1

q(k)|u(k)|p+
) 2

p+

)

≤ 2
1− 2

p+ (max{w, q})
p+−2

p+

×
(
T+1∑
k=1

w(k − 1)|∆u(k − 1)|p+ +
T+1∑
k=1

q(k)|u(k)|p+
) 2

p+

= K−2‖u‖2p+ .

Hence K‖u‖ ≤ ‖u‖p+ .
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On the other hand taking p+

2 ≥ 1 into account, we can conclude that

‖u‖p
+

p+ ≤ (max{w, q})
2−p+

2

×

(T+1∑
k=1

w(k − 1)|∆u(k − 1)|2
) p+

2

+

(
T+1∑
k=1

q(k)|u(k)|2
) p+

2


≤ (max{w, q})

2−p+

2

×
(
T+1∑
k=1

w(k − 1)|∆u(k − 1)|2 +
T+1∑
k=1

q(k)|u(k)|2
) p+

2

= 2
p+−2

2 Kp+‖u‖p+ .

Hence ‖u‖p+ ≤ 2
p+−2

2p+ K‖u‖. Thus inequalities (3) holds.
We also use the following inequality

‖u‖max ≤ (2T + 2)
1
2 ‖u‖ (4)

which can be simply verify by the discrete Hölder inequality.
Note that in the space W all norms are equivalent, since W is finite di-

mensional, therefore there exist two positive constants L1 <
2
K and L2 > 1

such that
L1‖u‖p(·) ≤ ‖u‖ ≤ L2‖u‖p(·). (5)

Let ψ : W → R be a functional given by the formula

ψ(u) :=

T+1∑
k=1

[
w(k − 1)|∆u(k − 1)|p(k−1) + q(k)|u(k)|p(k)

]
. (6)

It is easy to check that for any u ∈W the following properties hold

‖u‖p(·) < 1⇒ ‖u‖p
+

p(·) ≤ ψ(u) ≤ ‖u‖p
−

p(·) ≤ ‖u‖
2
p(·), (7)

‖u‖p(·) > 1⇒ ‖u‖2p(·) ≤ ‖u‖
p−

p(·) ≤ ψ(u) ≤ ‖u‖p
+

p(·), (8)

and
ψ(u) < 1⇒ ‖u‖p

+

p+ ≤ ψ(u) ≤ ‖u‖2. (9)

Put

F (k, t) :=

∫ t

0

f(k, ξ)dξ
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for every (k, t) ∈ [1, T ]× R.
To study problem (1) we consider the functional Iλ : W → R defined by

Iλ(u) :=

T+1∑
k=1

(
w(k − 1)

p(k − 1)
|∆u(k − 1)|p(k−1) +

q(k)

p(k)
|u(k)|p(k)

)
−λ

T∑
k=1

F (k, u(k)).

An easy computation ensures that Iλ turns out to be of class C1 on W
with

I ′λ(u)(v) : =

T+1∑
k=1

(
w(k − 1)φp(k−1)(∆u(k − 1))∆v(k − 1) + q(k)φp(k)(u(k))v(k)

)
−

T∑
k=1

λf(k, u(k))v(k)

for all u, v ∈W .

Lemma 2.3. The critical points of Iλ are exactly the solutions of problem
(1).

Proof. Let u be an arbitrary critical point of Iλ in W . Then u(0) = u(T+1) =
0 and for all v ∈ W , I ′λ(u)(v) = 0. Thus, for every v ∈ W, taking summation
by parts into account, one has

0 = I ′λ(u)(v)

= −
∑T
k=1

[
∆(w(k − 1)φp(k−1)(∆u(k − 1)))− q(k)φp(k) (u(k)) + λf(k, u(k))

]
v(k).

Since v ∈W is arbitrary, so one get

−∆(w(k − 1)φp(k−1)(∆u(k − 1)) + q(k)φp(k)(u(k)) = λf(k, u(k))

for every k ∈ [1, T ]. Therefore, u is a solution of problem (1). Since u is
arbitrary, we conclude that every critical point of the functional Iλ in W is a
solution of problem (1).

Note also that every solution of problem (1) is a critical point to Iλ.

To describe the variational framework of problem (1) put Φ, Ψ as follows

Φ(u) : =

T+1∑
k=1

(
w(k − 1)

p(k − 1)
|∆u(k − 1)|p(k−1) +

q(k)

p(k)
|u(k)|p(k)

)
,

Ψ(u) : =

T∑
k=1

F (k, u(k)),



EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTION 149

for every u ∈W . Then Iλ = Φ− λΨ.
In the following, we prove that the functional Iλ satisfies the Palais–Smale
condition.

Put

L∞ := min
k∈[1,T ]

(
lim inf
ξ→∞

F (k, ξ)

|ξ|p
+

)
and

λ∗ :=
(2T )

p+−2
2 Kp+(4w + q)

p+

2

L∞p−
.

Lemma 2.4. Let f : [1, T ] × R → R be a continuous function, such that
f(k, x) ≥ 0 for all x ≤ 0 and for all k ∈ [1, T ]. If L∞ > 0 then the functional
Iλ satisfies the Palais–Smale condition and it is unbounded from below for all
λ ∈]λ∗,+∞[.

Proof. Let us fix λ > λ∗. Assume that a sequence {un} is such that {Iλ(un)}
is bounded and I ′λ(un) → 0 as n → ∞. Since W is finite dimensional, it is
sufficient to show that {un} is bounded.

Put

u+
n (k) := max{0, un(k)} and u−n (k) := max{0,−un(k)}

for all n ∈ N and for all k ∈ [0, T + 1] . By straightforward computation we
can check that for all n ∈ N and for all k ∈ [1, T + 1] we have

∆u+
n (k − 1)∆u−n (k − 1) ≤ 0. (10)

Indeed,

∆u+
n (k − 1)∆u−n (k − 1) = (u+

n (k)− u+
n (k − 1))(u−n (k)− u−n (k − 1)) =

−(u+
n (k)u−n (k − 1) + u+

n (k − 1)u−n (k)) ≤ 0.

Using (10) we have

−
T+1∑
k=1

w(k − 1)|∆un(k − 1)|p(k−1)−2∆un(k − 1)∆u−n (k − 1)

≥
T+1∑
k=1

w(k − 1)|∆un(k − 1)|p(k−1)−2 (∆u−n (k − 1))
2

≥
T+1∑
k=1

w(k − 1)|∆u−n (k − 1)|p(k−1).
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In the similar manner we get

−
T+1∑
k=1

q(k)|un(k)|p(k)−2un(k)u−n (k) =

T+1∑
k=1

q(k)|u−n (k)|p(k).

By the above we obtain

−Φ′(un)(u−n ) = −
T+1∑
k=1

((w(k − 1)φp(k−1)(∆un(k − 1))∆u−n (k − 1)

+q(k)φp(k)(un(k))u−n (k))

≥
T+1∑
k=1

w(k − 1)|∆u−n (k − 1)|p(k−1) + q(k)|u−n (k)|p(k) = ψ(u−n ).

Moreover, by the assumption of f and by the definition of u−n we deduce that

Ψ′(un)(u−n ) =

T∑
k=1

f(k, un(k))u−n (k) ≥ 0,

and in a consequence

0 ≤ ψ(u−n ) ≤ −Φ′(un)(u−n ) ≤ −Φ′(un)(u−n ) + λΨ′(un)(u−n ) = −I ′λ(un)(u−n ),

for all n ∈ N.
Since I ′λ(un)→ 0 as n→∞, hence ψ(u−n )→ 0 as n→∞. Thus, there ex-

ists N > 0 such that ψ(u−n ) < 1 for any n ≥ N . Hence |u−n | < 1 for any n ≥ N
and then 0 ≤ u−n < L for any n ∈ N, where L = max{1, u−1 , u

−
2 , u

−
3 , ..., u

−
N−1}.

This means that {u−n } is bounded, and un > −L for any n ∈ N.
Now, arguing by a contradiction, we will show that {un} is bounded. Sup-

pose that {un} is unbounded. We may assume that ‖un‖ → ∞. Arguing
similarly as in the proof of [21, Lemma 7] we get

T+1∑
k=1

w(k − 1)|∆un(k − 1)|p(k−1) ≤
T+1∑
k=1

w(k − 1)|∆un(k − 1)|p
+

+ w+(T + 1).

In the same manner we get

T+1∑
k=1

q(k)|un(k)|p(k) ≤
T+1∑
k=1

q(k)|un(k)|p
+

+ q+(T + 1).
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Combining the above inequalities and bearing in mind (3) we obtain

Φ(un) ≤ 1

p−
ψ(un) (11)

≤ 1

p−

(
‖un‖p

+

p+ + (w+ + q+)(T + 1)
)

≤ 1

p−

(
2

p+−2
2 Kp+‖un‖p

+

+ (w+ + q+)(T + 1)

)
.

Now, notice that

‖un‖2 ≤ w

T+1∑
k=1

|∆un(k − 1)|2 + q

T+1∑
k=1

|un(k)|2

≤ 4w

T∑
k=1

|un(k)|2 + q

T∑
k=1

|un(k)|2

≤ (4w + q)T
p+−2

p+

(
T∑
k=1

|un(k)|p
+

) 2

p+

.

Thus
T∑
k=1

|un(k)|p
+

≥ ‖un‖p
+

T
p+−2

2 (4w + q)
p+

2

. (12)

From lim infξ→∞
F (k,ξ)

|ξ|p+
≥ L∞ for every k ∈ [1, T ] there exists δk > 0 such

that
F (k, ξ) > L∞ |ξ|p

+

for all ξ > δk.

Moreover, for all ξ ∈ [−L, δk] we have

F (k, ξ) ≥ min
ξ∈[−L,δk]

F (k, ξ) ≥ min
ξ∈[−L,δk]

F (k, ξ) + L∞

(
|ξ|p

+

− (max{δk, L})p
+
)

≥ L∞ |ξ|p
+

−max{L∞(max{δk, L})p
+

− min
ξ∈[−L,δk]

F (k, ξ), 0}

= L∞ |ξ|p
+

−Q(k),

where Q(k) = max{L∞(max{δk, L})p
+ − minξ∈[−L,δk] F (k, ξ), 0} possesses

only non-negative values for every k ∈ [1, T ].
Eventually,

F (k, ξ) ≥ L∞ |ξ|p
+

−Q(k), ∀ξ > −L and ∀k ∈ [1, T ].
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Due to un > −L for all n ∈ N, we conclude that

F (k, un(k)) ≥ L∞ |un(k)|p
+

−Q(k), ∀n ∈ N and ∀k ∈ [1, T ]. (13)

By (13) and (12) we get

Ψ(un(k)) =

T∑
k=1

F (k, un(k)) ≥ L∞
‖u‖p+

T
p+−2

2 (4w + q)
p+

2

−Q, (14)

where

Q =

T∑
k=1

Q(k).

By (11) and (14) we infer that

Iλ(un) = Φ(un)− λΨ(un)

≤ 1

p−

(
2

p+−2
2 Kp+‖un‖p

+

+ (w+ + q+)(T + 1)

)
−λL∞

‖un‖p
+

T
p+−2

2 (4w + q)
p+

2

+ λQ

=

(
2

p+−2
2 Kp+

p−
− λL∞

1

T
p+−2

2 (4w + q)
p+

2

)
‖un‖p

+

+
1

p−
(w+ + q+)(T + 1) + λQ

=
L∞ (λ∗ − λ)

T
p+−2

2 (4w + q)
p+

2

‖un‖p
+

+
1

p−
(w+ + q+)(T + 1) + λQ.

Since ‖un‖ → ∞ and λ∗ − λ < 0, so Iλ(un) → −∞ and this is an absurd.
Hence Iλ satisfies the Palais–Smale condition for all λ ∈]λ∗,∞[.

It remains to show that Iλ is unbounded from below. Let a sequence {un}
be such that {u−n } is bounded and {u+

n } is unbounded and then ‖un‖ → ∞.
Arguing as before one has Iλ(un)→ −∞ for all λ ∈]λ∗,+∞[ and the proof is
complete.

Now we give a lemma and the following notation. Put

A :=

(
w(0) + w(T ) +

T∑
k=1

q(k)

)
,

L0 := min
k∈[1,T ]

lim sup
t→0

F (k, t)

|t|p−−1
.
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Lemma 2.5. Let there exists r > 0, such that uλ ∈ W be a global minimum
of the restriction of the functional Iλ to Φ−1(]−∞, r[) for some λ ∈]0,∞[. If
L0 > 0 then uλ is nonzero.

Proof. To this end, let us show that

lim sup
‖u‖→0

Ψ(u)

Φ(u)
= +∞. (15)

Due to our assumptions at zero, we can fix a sequence {ξn} converging to zero
such that

L0 := min
k∈[1,T ]

lim sup
n→∞

F (k, ξn)

|ξn|p−−1
> 0.

Then, there is ν ∈ N such that ξn < 1 for every ν < n and from

lim sups→0
F (k,s)

|s|p−−1
≥ L0 , there exists d ∈ (0, 1), such that

F (k, ξnd)

|ξnd|p−−1
≥ L0, ∀ν < n, k ∈ [1, T ].

Put

v(k) :=

{
d, for every k ∈ [1, T ];
0, otherwise,

(16)

so
F (k, ξnv(k)) ≥ L0|ξnv(k)|p

−−1, ∀ν < n, k ∈ [1, T ].

Clearly v ∈W and for r = 1
p+ and for n sufficiently large,

Φ(ξnv) =
w(0)

p(0)
(ξnd)p(0) +

w(T )

p(T )
(ξnd)p(T ) +

T∑
k=1

q(k)

p(k)
(ξnd)p(k)

<
(ξnd)p

−

p−
(w(0) + w(T ) +

T∑
k=1

q(k)) <
1

p+
= r,

hence ξnv ∈ Φ−1(]−∞, r[). For every ν < n

Ψ(ξnv)

Φ(ξnv)
=

∑T
k=1 F (k, ξnv)

(ξnd)p−

p− (w(0) + w(T ) +
∑T
k=1 q(k))

>
TL0|ξnd|p

−−1

(ξnd)p−

p− A
→∞, n→∞,
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from which (15) clearly follows. Hence, there exists a sequence {wn} ⊂ W
strongly converging to zero such that, for n sufficiently large, wn ∈ Φ−1(] −
∞, r[) and for any λ > 0, one can conclude that

1

λ
<

Ψ(wn)

Φ(wn)
→ Φ(wn) < λΨ(wn)→ Φ(wn)− λΨ(wn) < 0→ Iλ(wn) < 0.

Since uλ is a global minimum of the restriction of Iλ to Φ−1(] − ∞, r[), we
conclude that

Iλ(uλ) ≤ Iλ(wn) < 0 = Iλ(0), (17)

so that uλ is not trivial.

3 Existence of a solution

Our first aim is to show that problem (1) has at least one positive solution
using Theorem 2.1. By a positive solution to problem (1) we mean such a
function u : [0, T + 1] → R which satisfies the given equation on [1, T ], the
boundary conditions and u(k) > 0 for all k ∈ [1, T ].

Put

c :=
1

K
(2T + 2)

1
2 .

We state our main result as follows.

Theorem 3.1. Let f : [1, T ]×R→ R be a non-negative continuous function,
such that L0 > 0. Then for any

λ ∈

]
0,

1

p+
∑T
k=1 F (k, c)

[
,

problem (1) has at least one positive solution u0 ∈W .

Proof. An easy computation ensures that Φ and Ψ turn out to be of class C1

on W with

Φ′(u)(v) = −
T∑
k=1

(
∆(w(k − 1)φp(k−1)(∆u(k − 1))v(k)− q(k)φp(k)(u(k))v(k)

)
,

and

Ψ′(u)(v) =

T∑
k=1

f(k, u(k))v(k),
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for all u, v ∈W . By Lemma 2.3, the solutions of the equation I ′λ = Φ′−λΨ′ = 0
are exactly the solutions for problem (1), therefore to prove our result it is
enough to apply Theorem 2.1.

The functional Φ is of class C1 on the finite dimensional space W , so
it is sequentially weakly lower semicontinuous. The functional Ψ is also of
class C1 on the finite dimensional space W , so it is sequentially weakly upper
semicontinuous.

We will show that the functional Φ is coercive. Let u ∈ W be fixed.
Arguing similarly as in the proof of [21, Lemma 7], we get

T+1∑
k=1

w(k − 1)|∆u(k − 1)|p(k−1)

≥
∑

{k∈[1,T+1]:|∆u(k−1)|<1}
w(k − 1)|∆u(k − 1)|p+

+
∑

{k∈[1,T+1]:|∆u(k−1)|≥1}
w(k − 1)|∆u(k − 1)|2

=
T+1∑
k=1

w(k − 1)|∆u(k − 1)|2−

+
∑

{k∈[1,T+1]:|∆u(k−1)|<1}

(
w(k − 1)|∆u(k − 1)|2 − w(k − 1)∆u(k − 1)|p+

)

≥
T+1∑
k=1

w(k − 1)|∆u(k − 1)|2 − (T + 1)w+,

so

T+1∑
k=1

w(k − 1)|∆u(k − 1)|p(k−1) ≥
T+1∑
k=1

w(k − 1)|∆u(k − 1)|2 − w+(T + 1).

In the same manner we get

T+1∑
k=1

q(k)|u(k)|p(k) ≥
T+1∑
k=1

q(k)|u(k)|2 − q+(T + 1).

Combining the above inequalities we obtain

Φ(u) ≥ 1

p+
‖u‖2 − (w+ + q+)(T + 1).
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Therefore Φ is coercive, i.e. Φ(u)→∞ as ‖u‖ → ∞.
Put

r :=
1

p+
.

For all u ∈ W such that Φ(u) < r, taking (6), (9) and (3) into account, one
has

1

p+
> Φ(u) ≥ 1

p+
ψ(u) ≥

‖u‖p
+

p+

p+
≥ Kp+‖u‖p+

p+
,

so

‖u‖ < 1

K
.

By (4) we obtain

max
k∈[1,T ]

|u(k)| ≤ (2T + 2)
1
2 ‖u‖ < (2T + 2)

1
2

1

K
= c.

Therefore

sup
u∈Φ−1(]−∞,r[)

Ψ(u) = sup
u∈Φ−1(]−∞,r[)

T∑
k=1

F (k, u(k)) ≤
T∑
k=1

max
|ξ|≤c

F (k, ξ) =

T∑
k=1

F (k, c).

Put

φ(r) := inf
u∈Φ−1(]−∞,r[)

supv∈Φ−1(]−∞,r[) Ψ(v)−Ψ(u)

r − Φ(u)
.

Taking into account the above computations and the definition of φ(r), since
0 ∈ Φ−1(]−∞, r[) and Φ(0) = Ψ(0) = 0 we have

φ(r) ≤
supu∈Φ−1(]−∞,r[) Ψ(u)

r
≤ p+

T∑
k=1

F (k, c).

Therefore, owing to Theorem 2.1, for each

λ ∈

]
0,

1

p+
∑T
k=1 F (k, c)

[
⊂]0,

1

φ(r)
[,

the functional Iλ admits one critical point uλ ∈W such that Φ(uλ) < r.
Since f is non-negative we deduce that{
−∆(w(k − 1)φp(k−1)(∆uλ(k − 1))) + q(k)φp(k)(uλ(k)) ≥ 0, k ∈ [1, T ],

uλ(0) = uλ(T + 1) = 0,

By [26, Lemma 2.6] we have that either the ensured solution uλ(k) for every
k ∈ [1, T ] is positive or u ≡ 0. Since L0 > 0, by Lemma 2.5, we conclude that
the obtained solution uλ ∈W should be nonzero. Hence the ensured solution
uλ ∈W is positive. The proof is complete.
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Remark 3.2. Theorem 1.1 is a special case of Theorem 3.1. Indeed, w(k) = 1
for all k ∈ [0, T ], q(k) = 1 for all k ∈ [1, T+1], p(k) = k+3 for all k ∈ [0, T+1]

and K = (2T + 2)
−2−T
8+2T .

Now we give an example to illustrate the above Theorem.

Example 3.3. Let T = 10, p(k) = 3 + 1
11k for all k ∈ [0, 11], w(k) = ek

for all k ∈ [0, 10], q(k) = 2k−1 for all k ∈ [1, 11]. Thus p+ = 4, p− = 3,

w = e11−1
e−1 ' 34844.77384, and q = 211 − 1 = 2047. Hence

K = (2 max{w, q})
2−p+

2p+ = (2
e11 − 1

e− 1
)−

1
4 ' 0.06154717000,

and

c = (2T + 2)
1
2

1

K
' 76.20847162.

Suppose

f(k, t) =
3
√
t2

k(k + 1)
;∀t ∈ R, k ∈ [1, 10].

Then

F (k, c) =
3c

5
3

5k(k + 1)
,

L0 := min
k∈[1,10]

lim sup
t→0

F (k, t)

|t|2
= +∞ > 0,

and

T∑
k=1

F (k, c) =
3c

5
3

5

T∑
k=1

1

k(k + 1)
=

3c
5
3

5

T∑
k=1

(
1

k
− 1

k + 1

)
=

3c
5
3

5

T

T + 1
.

Eventually
1

p+
∑T
k=1 F (k, c)

= 0.000334587.

Then for any λ ∈ ]0, 0.000334587[ the problem{
−∆(ek−1|∆u(k − 1)|1+ 1

11 (k−1)∆u(k − 1)) + 2k−1|u(k)|1+ 1
11ku(k) = λ

3
√
u2(k)

k(k+1) ,

u(0) = u(11) = 0,

for any k ∈ [1, T ] has at least one positive solution u0 ∈W.

Next example illustrates Theorem 1.1.
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Example 3.4. Let T ≥ 2 and f(t) =
√
t such that limt→0+

∫ t
0
f(s)ds

t2 = +∞ >
0, Then for any

λ ∈

]
0,

3

2T (T + 4)(2T + 2)
3T+9
T+4

[
,

the problem{
−∆(|∆u(k − 1)|k∆u(k − 1)) + |u(k)|k+1u(k) = λ

√
u(k), k ∈ [1, T ],

u(0) = u(11) = 0,

has at least one positive solution u0 ∈W.

4 Multiple solutions

To show that problem (1) has multiple solutions, precisely it has of at least two
positive solutions, we apply Theorem 2.2. Now, we provide the main result of
this section.

Theorem 4.1. Let f : [1, T ]×R→ R be a non-negative continuous function,
such that f(k, x) = f(k, 0) = 0 for all x ≤ 0 and for all k ∈ [1, T ]. Assume
that there exist two positive constants c and d with

d <

(
p−

p+

(cK)p
+

(2T + 2)
p+

2 A

) 1

p−

<

(
1

p+A

) 1

p−

, (18)

such that ∑T
k=1 F (k, c)

(cK)p
+

p+(2T+2)
p+

2

< min


∑T
k=1 F (k, d)

dp−A
p−

,
1

λ∗

 , (19)

Then for any

λ ∈ Λ∗ =

max


dp
−
A

p−∑T
k=1 F (k, d)

, λ∗

 ,

(cK)p
+

p+(2T+2)
p+

2∑T
k=1 F (k, c)

 ,
problem (1) has at least two positive solutions uλ,1, uλ,2 ∈W such that Iλ(uλ,1) <
0 < Iλ(uλ,2).

Proof. Let Φ and Ψ, be as mentioned before. It is well known that Φ and Ψ
satisfy all regularity assumptions requested in Theorem 2.2. It is clear that
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infW Φ = Φ(0) = Ψ(0) = 0. It remains to verify condition (2) of Theorem 2.2.
Fix λ ∈ Λ∗. Note that L∞ > 0, thus by Lemma 2.4, the functional Iλ satisfies
the Palais-Smale condition for each λ > λ∗ and it is unbounded from below.
Let v̄(k) be in (16) and

r =
(cK)

p+

p+(2T + 2)
p+

2

,

and

Φ(v̄) =
w(0)

p(0)
dp(0) +

w(T )

p(T )
dp(T ) +

T∑
k=1

q(k)

p(k)
dp(k).

Since d <
{

1
p+A

} 1

p−
< 1, so Φ(v̄) < dp

−

p− A. By the left hand inequality in

(18),

dp
−
A

p−
<

(cK)
p+

p+(2T + 2)
p+

2

= r.

Therefore 0 < Φ(v̄) < r. Moreover

Ψ(v̄) =

T∑
k=1

F (k, v̄(k)) =

T∑
k=1

F (k, d).

On the other hand, for all u ∈ W such that Φ(u) < r, by the right hand
inequality in (18), we have

1

p+
ψ(u) < Φ(u) < r <

1

p−p+
<

1

p+
,

and then ψ(u) < 1. Taking (9) and (3) into account we get

rp+ > ψ(u) > ‖u‖p
+

p+ > Kp+‖u‖p
+

. (20)

By (4) and (20) we obtain

|u(k)| ≤ ‖u‖max ≤ (2T + 2)
1
2 ‖u‖ < (2T + 2)

1
2

(rp+)
1

p+

K
= c, ∀k ∈ [1, T ].

From the definition of r, it follows that

Φ−1(]−∞, r]) ⊆ {u ∈W : |u(k)| ≤ c for all k ∈ [1, T ]}.

Therefore, we get

supu∈Φ−1(−∞,r]) Ψ(u)

r
≤
∑T
k=1 max|ξ|≤c F (k, ξ)

(cK)p
+

p+(2T+2)
p+

2

=

∑T
k=1 F (k, c)

(cK)p
+

p+(2T+2)
p+

2

. (21)
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Moreover, one has

Ψ(v̄)

Φ(v̄)
>

∑T
k=1 F (k, d)

dp−A
p−

. (22)

Thus, from (19), (21) and (22), condition (2) of Theorem 2.2 follows.
Also by Lemma 2.4, for each

λ ∈ Λ∗ ⊂

]
Φ(ũ)

Ψ(ũ)
,

r

supΦ−1(]−∞,r]) Ψ

[
,

the functional Iλ satisfies the Palais–Smale condition and it is unbounded from
below. Thus all assumptions in the Theorem 2.2 are fulfilled, hence Theorem
2.2 ensures that Iλ admits at least two non-zero critical points uλ,1, uλ,2 ∈W
such that Iλ(uλ,1) < 0 < Iλ(uλ,2) for all λ ∈ Λ∗, and simultaneously, by the
similar argument as in the proof of our main result from the previous section,
they are positive solutions of (1).

As an example, here, we point out the following special case of the above
result.

Theorem 4.2. Let T ≥ 2 be a fixed positive integer and let f : R → R
be a nonnegative continuous function, such that f(0) = 0 and where L∞ =

lim infξ→∞
1

ξT+3

∫ ξ
0
f(t)dt. Assume also that there exist two positive constants

c and d with

d <

{
2cT+3

(T + 3)(T + 2)(2T + 2)T+2

} 1
2

<

{
1

(T + 3)(T + 2)

} 1
2

, (23)

such that

T (T+3)(2T+2)T+2

∫ c
0
f(t)dt

cT+3
< min

{
2T

(T + 2)

∫ d
0
f(t)dt

d2
,

2L∞

5
T+3

2 T
T+1

2 (T + 1)

}
,

Then for any

λ ∈ Λ∗ =

max

{
d2(T+2)

2

T
∫ d

0
f(t)dt

,
5

T+3
2 T

T+1
2 (T + 1)

2L∞

}
,

cT+3

(T+3)(2T+2)T+2

T
∫ c

0
f(t)dt

 ,
the problem{

−∆(|∆u(k − 1)|k−1∆u(k − 1)) + |u(k)|ku(k) = λf(u(k)),

u(0) = u(T + 1) = 0,

for any k ∈ [1, T ] has at least two positive solutions uλ,1, uλ,2 ∈ W such that
Iλ(uλ,1) < 0 < Iλ(uλ,2).
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Figure 1: The graph of the function f(x)

Remark 4.3. Theorem 4.2 is a special case of Theorem 4.1. Indeed, w(k) = 1
for all k ∈ [0, T ], q(k) = 1 for all k ∈ [1, T+1], p(k) = k+2 for all k ∈ [0, T+1]

and K = (2T + 2)
−1−T
6+2T .

Next example illustrates Theorem 4.2.

Example 4.4. Let for any x ∈ R/{0} (see FIGURE 1)

f(x) =
|coth (200x)|

(sinh (200x))
2

(
cosh

(
x4

10000

))10

e−1/4 (sinh(200 x))−2

, f(0) = 0,

Then for any λ ∈]0.008493226757, 0.01085069444[ the problem{
−∆(|∆u(k − 1)|k−3∆u(k − 1)) + |u(k)|k−2u(k) = λf(u(k)), k ∈ [1, 3]

u(0) = u(4) = 0,

has at least two non-zero solutions. Indeed, T = 3 and in this case the relation

(23) convert to d <
√

1
491520c

3 <
√

1/30 and by selecting c = 2 and d = 0.01

satisfying it. By using software Maple, one can calculate

T (T + 3)(2T + 2)T+2

∫ c
0
f(t)dt

cT+3
' 92.16000000,
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2T

(T + 2)

∫ d
0
f(t)dt

d2
' 117.7408809,

2

5
T+3

2 T
T+1

2 (T + 1)
lim inf
ξ→∞

∫ ξ
0
f(t)dt

ξT+3
=∞.

5 Uniqueness of a solution

In this section we prove under Lipschitzian continuous condition on f , that
problem (1) has a unique solution. We start with providing the following
lemma

Lemma 5.1. ([29]). Assume that p ≥ 2 and cp = 2
p(2p−1−1) . Then for any

x, y ∈ R,
(|x|p−2x− |y|p−2y)(x− y) ≥ cp|x− y|p.

Put

cp(k) :=
2

p(k)(2p(k)−1 − 1)
,

for every k ∈ [0, T + 1] and put

cp+ :=
2

p+(2p+−1 − 1)
.

Note that
cp+ = min

k∈[0,T+1]
cp(k). (24)

Theorem 5.2. Let f : [1, T ]×R→ R be a non-negative continuous function,
such that f(k, 0) = 0 for all k ∈ [1, T ]. Assume that f is a positive Lipschitzian
continuous function, that is, there exist a positive constant ` such that for any
(k, x), (k, y) ∈ [1, T ]× R,

|f(k, x)− f(k, y)| ≤ `|x− y|p
+−1,

where

` <

∑T
k=1 F (k, c)

1
p+

cp+

Lp
+

2 2
p+−2

2 (K)p+(2 1
KL1

)p−−p+
. (25)

Then, for each

λ ∈

]
0,

1

p+
∑T
k=1 F (k, c)

[
, (26)

problem (1) has exactly one positive solution u0 ∈W .
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Proof. The existence of at least one solution u to problem (1) immediately
follows by Theorem 3.1. For proving the uniqueness part, we suppose that
there exist two different functions u1, u2 satisfying problem (1). Then, by
Lemma 2.3, I ′(u1)(u2) = I ′(u2)(u1) = 0, that is

∑T+1
k=1

[
w(k − 1)φp(k−1)(∆u1(k − 1))∆(u2 − u1)(k − 1)

+q(k)φp(k)(u1(k))(u2 − u1)(k)
]

= λ
∑T
k=1 f(k, u1(k))(u2 − u1)(k),

(27)

and∑T+1
k=1

[
w(k − 1)φp(k−1)(∆u2(k − 1))∆(u2 − u1)(k − 1)

+q(k)φp(k)(u2(k))(u2 − u1)(k)
]

= λ
∑T
k=1 f(k, u2(k))(u2 − u1)(k).

(28)

Remaining part of the proof follows analogously as in [32], but we provide it
in our setting. We consider two cases. In the first case ‖u2 − u1‖p(.) ≥ 1, by
(8), (24), Lemma 5.1, (27), (28), the Lipschitzian condition, (3) and (5) we
get

cp+‖u2 − u1‖p
−

p(.) ≤ cp+ψ(u2 − u1)

≤
T+1∑
k=1

[
cp(k−1)w(k − 1)|∆(u2 − u1)(k − 1)|p(k−1) + cp(k)q(k)|(u2 − u1)(k)|p(k)

]

≤
T+1∑
k=1

[
w(k − 1)

(
φp(k−1)(∆u2(k − 1))− φp(k−1)(∆u1(k − 1))

)
(∆u2(k − 1)−∆u1(k − 1))

+ q(k)
(
φp(k)(u2(k))− φp(k)(u1(k))

)
(u2(k)− u1(k))

]
= λ

T∑
k=1

(f(k, u2(k))− f(k, u1(k))) (u2 − u1)(k)

≤ λ

T+1∑
k=1

`|u2(k)− u1(k)|p
+

≤ λ`

T+1∑
k=1

[
w(k − 1)|∆(u2 − u1)(k − 1)|p

+

+ q(k)|(u2 − u1)(k)|p
+
]

= λ`‖u2 − u1‖p
+

p+
≤ λ` (KL2)p

+

2
p+−2

2 ‖u2 − u1‖p
+

p(.).
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Hence, in case p+ = p− we obtain

1 ≥
cp+

λ` (KL2)
p+

2
p+−2

2

,

this contradicts (25). Whereas, in case p+ > p− we have

‖u2 − u1‖p(.) ≥

(
cp+

λ` (KL2)
p+

2
p+−2

2

) 1

p+−p−

>
2

KL1
.

By the proof of Theorem 3.1, since u1, u2 are solutions to problem (1), we
have

Φ(ui) <
1

p+
, for i = 1, 2.

Taking (6), (9), (3) and (5) into account, one has

Φ(ui) >
1

p+
ψ(ui) >

‖ui‖p
+

p+

p+
>
Kp+‖ui‖p

+

p+
>
Kp+Lp

+

1 ‖ui‖
p+

p(.)

p+
,

for i = 1, 2. Combining the above inequalities we obtain

‖ui‖p(.) <
1

KL1
, for i = 1, 2.

On the other hand

2

KL1
≥ ‖u1‖p(.) + ‖u2‖p(.) ≥ ‖u1 − u2‖p(.) >

2

KL1
.

It is a contradiction.
In the second case ‖u2−u1‖p(.) < 1, by the similar preceding argument (using
(7) in place of (8)) we get

cp+‖u2 − u1‖p
+

p(.) ≤ cp+ψ(u2 − u1) ≤ λ`2
p+−2

2 (KL2)p
+

‖u2 − u1‖p
+

p(.).

Hence

(cp+ − λ`2
p+−2

2 (KL2)p
+

)‖u2 − u1‖p
+

p(.) ≤ 0.

By (25), (26) and since L1K < 2, we have (cp+ − λ`2
p+−2

2 (KL2)p
+

) > 0.
Therefore u1 = u2.
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