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The Third Order Jacobsthal Octonions: Some
Combinatorial Properties

Gamaliel Cerda-Morales

Abstract

Various families of octonion number sequences (such as Fibonacci
octonion, Pell octonion and Jacobsthal octonion) have been established
by a number of authors in many different ways. In addition, formulas
and identities involving these number sequences have been presented.
In this paper, we aim at establishing new classes of octonion numbers
associated with the third order Jacobsthal and third order Jacobsthal-
Lucas numbers. We introduce the third order Jacobsthal octonions and
the third order Jacobsthal-Lucas octonions and give some of their prop-
erties. We derive the relations between third order Jacobsthal octonions
and third order Jacobsthal-Lucas octonions.

1 Introduction

Recently, the topic of number sequences in real normed division algebras has
attracted the attention of several researchers. It is worth noticing that there
are exactly four real normed division algebras: real numbers (R), complex
numbers (C), quaternions (H) and octonions (O). In [4] Baez gives a compre-
hensive discussion of these algebras.

The real quaternion algebra

H = {q = qr + qii + qjj + qkk : qr, qs ∈ R, s = i, j, k}
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is a 4-dimensional R-vector space with basis {1 ' e0, i ' e1, j ' e2,k ' e3}
satisfying multiplication rules qr1 = qr, e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1
and e3e1 = −e1e3 = e2. Furthermore, the real octonion algebra denoted by O
is an 8-dimensional real linear space with basis

{e0 = 1, e1 = i, e2 = j, e3 = k, e4 = e, e5 = ie, e6 = je, e7 = ke}, (1.1)

where e0 · es = es (s = 1, ..., 7) and qre0 = qr (qr ∈ R). The space O becomes
an algebra via multiplication rules listed in the table 1, see [27].

Table 1: The multiplication table for the basis of O.
× e1 e2 e3 e4 e5 e6 e7
e1 −1 e3 −e2 e5 −e4 −e7 e6
e2 −e3 −1 e1 e6 e7 −e4 −e5
e3 e2 −e1 −1 e7 −e6 e5 −e4
e4 −e5 −e6 −e7 −1 e1 e2 e3
e5 e4 −e7 e6 −e1 −1 −e3 e2
e6 e7 e4 −e5 −e2 e3 −1 −e1
e7 −e6 e5 e4 −e3 −e2 e1 −1

A variety of new results on Fibonacci-like quaternion and octonion numbers
can be found in several papers [8, 12, 13, 16, 17, 18, 19, 21, 23, 26]. The origin
of the topic of number sequences in division algebra can be traced back to the
works by Horadam in [18] and by Iyer in [21]. A. F. Horadam [18] defined the
quaternions with the classic Fibonacci and Lucas number components as

QFn = Fn + Fn+1i + Fn+2j + Fn+3k

and
QLn = Ln + Ln+1i + Ln+2j + Ln+3k,

respectively, where Fn and Ln are the n-th classic Fibonacci and Lucas num-
bers, respectively, and the author studied the properties of these quaternions.
Several interesting and useful extensions of many of the familiar quaternion
numbers (such as the Fibonacci and Lucas quaternions [3, 16, 18], Pell quater-
nion [7, 12], Jacobsthal quaternions [26] and third order Jacobsthal quaternion
[8]) have been considered by several authors.

There has been an increasing interest on quaternions and octonions that
play an important role in various areas such as computer sciences, physics,
differential geometry, quantum physics, signal, color image processing and
geostatics (for more, see [1, 6, 14, 15, 24, 25]).

In this paper, we define two families of the octonions, where the coefficients
in the terms of the octonions are determined by the third order Jacobsthal and
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third order Jacobsthal-Lucas numbers. These two families of the octonions
are called as the third order Jacobsthal and third order Jacobsthal-Lucas oc-
tonions, respectively. We mention some of their properties, and apply them
to the study of some identities and formulas of the third order Jacobsthal and
third order Jacobsthal-Lucas octonions.

Here, our approach for obtaining some fundamental properties and char-
acteristics of third order Jacobsthal and third order Jacobsthal-Lucas octo-
nions is to apply the properties of the third order Jacobsthal and third order
Jacobsthal-Lucas numbers introduced by Cook and Bacon [10]. This approach
was originally proposed by Horadam and Iyer in the articles [18, 21] for Fi-
bonacci quaternions. The methods used by Horadam and Iyer in that papers
have been recently applied to the other familiar octonion numbers by several
authors [2, 7, 9, 13, 23].

This paper has three main sections. In Section 2, we provide the basic
definitions of the octonions and the third order Jacobsthal and third order
Jacobsthal-Lucas numbers. Section 3 is devoted to introducing third order
Jacobsthal and third order Jacobsthal-Lucas octonions, and then to obtaining
some fundamental properties and characteristics of these numbers.

2 Preliminaries

The Jacobsthal numbers have many interesting properties and applications
in many fields of science (see, e.g., [5, 20]). The Jacobsthal numbers Jn are
defined by the recurrence relation

J0 = 0, J1 = 1, Jn+1 = Jn + 2Jn−1, n ≥ 1. (2.1)

Another important sequence is the Jacobsthal-Lucas sequence. This sequence
is defined by the recurrence relation

j0 = 2, j1 = 1, jn+1 = jn + 2jn−1, n ≥ 1. (2.2)

(see, [20]).
In [10] the Jacobsthal recurrence relation is extended to higher order re-

currence relations and the basic list of identities provided by A. F. Horadam
[20] is expanded and extended to several identities for some of the higher order

cases. For example, the third order Jacobsthal numbers, {J (3)
n }n≥0, and third

order Jacobsthal-Lucas numbers, {j(3)n }n≥0, are defined by

J
(3)
n+3 = J

(3)
n+2 + J

(3)
n+1 + 2J (3)

n , J
(3)
0 = 0, J

(3)
1 = J

(3)
2 = 1, n ≥ 0, (2.3)

and

j
(3)
n+3 = j

(3)
n+2 + j

(3)
n+1 + 2j(3)n , j

(3)
0 = 2, j

(3)
1 = 1, j

(3)
2 = 5, n ≥ 0, (2.4)
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respectively.
The following properties given for third order Jacobsthal numbers and

third order Jacobsthal-Lucas numbers play important roles in this paper (see
[8, 10]).

3J (3)
n + j(3)n = 2n+1, (2.5)

j(3)n − 3J (3)
n = 2j

(3)
n−3, (2.6)

J
(3)
n+2 − 4J (3)

n =

{
−2 if n ≡ 1 (mod 3)
1 if n 6≡ 1 (mod 3)

, (2.7)

j(3)n − 4J (3)
n =

 2 if n ≡ 0 (mod 3)
−3 if n ≡ 1 (mod 3)
1 if n ≡ 2 (mod 3)

, (2.8)

j
(3)
n+1 + j(3)n = 3J

(3)
n+2, (2.9)

j(3)n − J (3)
n+2 =

 1 if n ≡ 0 (mod 3)
−1 if n ≡ 1 (mod 3)
0 if n ≡ 2 (mod 3)

, (2.10)

(
j
(3)
n−3

)2
+ 3J (3)

n j(3)n = 4n, (2.11)

n∑
k=0

J
(3)
k =

{
J
(3)
n+1 if n 6≡ 0 (mod 3)

J
(3)
n+1 − 1 if n ≡ 0 (mod 3)

, (2.12)

n∑
k=0

j
(3)
k =

{
j
(3)
n+1 − 2 if n 6≡ 0 (mod 3)

j
(3)
n+1 + 1 if n ≡ 0 (mod 3)

(2.13)

and (
j(3)n

)2
− 9

(
J (3)
n

)2
= 2n+2j

(3)
n−3. (2.14)

Using standard techniques for solving recurrence relations, the auxiliary
equation, and its roots are given by

x3 − x2 − x− 2 = 0; x = 2, and x =
−1± i

√
3

2
.

Note that the latter two are the complex conjugate cube roots of unity.
Call them ω1 and ω2, respectively. Thus the Binet formulas can be written as

J (3)
n =

2

7
2n − 3 + 2i

√
3

21
ωn
1 −

3− 2i
√

3

21
ωn
2 (2.15)
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and

j(3)n =
8

7
2n +

3 + 2i
√

3

7
ωn
1 +

3− 2i
√

3

7
ωn
2 , (2.16)

respectively.
In the following we will study the important properties of the octonions.

We refer to [4] for a detailed analysis of the properties of the next octonions p =∑7
s=0 ases and q =

∑7
s=0 bses where the coefficients as and bs, s = 0, 1, ..., 7,

are real. We recall here only the following facts

• The sum and subtract of p and q is defined as

p± q =

7∑
s=0

(as ± bs)es, (2.17)

where p ∈ O can be written as p = Rp + Ip, and Rp = a0 and
∑7

s=1 ases
are called the real and imaginary parts, respectively.

• The conjugate of p is defined by

p = Rp − Ip = a0 −
7∑

s=1

ases (2.18)

and this operation satisfies p = p, p+ q = p+ q and p · q = q · p, for all
p, q ∈ O.

• The norm of an octonion, which agrees with the standard Euclidean
norm on R8 is defined as

Nr2(p) = p · p = p · p =

7∑
s=0

a2s,

Nr(p) =

√√√√ 7∑
s=0

a2s ∈ R+
0

 . (2.19)

• The inverse of p 6= 0 is given by p−1 = p
Nr2(p) . From the above two

definitions it is deduced that

Nr2(p · q) = Nr2(p)Nr2(q) and (p · q)−1 = q−1 · p−1. (2.20)

• O is non-commutative and non-associative but it is alternative, in other
words

p · (p · q) = p2 · q,
(p · q) · q = p · q2,
(p · q) · p = p · (q · p) = p · q · p,

(2.21)

where · denotes the product in the octonion algebra O.
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3 The third order Jacobsthal Octonions and third order
Jacobsthal-Lucas Octonions

In this section, we define new kinds of sequences of octonion number called as
third order Jacobsthal octonions and third order Jacobsthal-Lucas octonions.
We study some properties of these octonions. We obtain various results for
these classes of octonion numbers included recurrence relations, summation
formulas, Binet’s formulas and generating functions.

In [8], the author introduced the so-called third order Jacobsthal quater-
nions, which are a new class of quaternion sequences. They are defined by

JQ(3)
n =

3∑
s=0

J
(3)
n+ses = J (3)

n +

3∑
s=1

J
(3)
n+ses, (J (3)

n 1 = J (3)
n ) (3.1)

where J
(3)
n is the n-th third order Jacobsthal number, e21 = e22 = e23 = −1 and

e1e2e3 = −1.
We now consider the usual third order Jacobsthal and third order Jacobsthal-

Lucas numbers, and based on the definition (3.1) we give definitions of new
kinds of octonion numbers, which we call the third order Jacobsthal octonions
and third order Jacobsthal-Lucas octonions. In this paper, we define the n-th
third order Jacobsthal octonion and third order Jacobsthal-Lucas octonion
numbers, respectively, by the following recurrence relations

JO(3)
n = J (3)

n +

7∑
s=1

J
(3)
n+ses, n ≥ 0

= J (3)
n + J

(3)
n+1e1 + J

(3)
n+2e2 + J

(3)
n+3e3

+ J
(3)
n+4e4 + J

(3)
n+5e5 + J

(3)
n+6e6 + J

(3)
n+7e7

(3.2)

and

jO(3)
n = j(3)n +

7∑
s=1

j
(3)
n+ses, n ≥ 0

= j(3)n + j
(3)
n+1e1 + j

(3)
n+2e2 + j

(3)
n+3e3

+ j
(3)
n+4e4 + j

(3)
n+5e5 + j

(3)
n+6e6 + j

(3)
n+7e7,

(3.3)

where J
(3)
n and j

(3)
n are the n-th third order Jacobsthal number and third order

Jacobsthal-Lucas number, respectively. Here {es : s = 0, 1, ..., 7} satisfies the
multiplication rule given in the Table 1.

The equalities in (2.17) gives

JO(3)
n ± jO(3)

n =

7∑
s=0

(J
(3)
n+s ± j

(3)
n+s)es. (3.4)
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From (2.18), (2.19), (3.2) and (3.3) an easy computation gives

JO
(3)
n = J (3)

n −
7∑

s=1

J
(3)
n+ses, jO

(3)
n = j(3)n −

7∑
s=1

j
(3)
n+ses, (3.5)

Nr2(JO(3)
n ) =

7∑
s=0

(J
(3)
n+s)

2 and Nr2(jO(3)
n ) =

7∑
s=0

(j
(3)
n+s)

2. (3.6)

By some elementary calculations we find the following recurrence relations
for the third order Jacobsthal and third order Jacobsthal-Lucas octonions from
(3.2), (3.3), (2.3), (2.4) and (3.4):

JO
(3)
n+1 + JO(3)

n + 2JO
(3)
n−1 =

7∑
s=0

(J
(3)
n+s+1 + J

(3)
n+s + 2J

(3)
n+s−1)es

= J
(3)
n+2 +

7∑
s=1

J
(3)
n+s+2es

= JO
(3)
n+2

(3.7)

and similarly jO
(3)
n+2 = jO

(3)
n+1 + jO

(3)
n + 2jO

(3)
n−1, for n ≥ 1.

Now, we will state Binet’s formulas for the third order Jacobsthal and third
order Jacobsthal-Lucas octonions. Repeated use of (2.3) in (3.2) enables one

to write for α =
∑7

s=0 2ses, ω1 =
∑7

s=0 ω
s
1es and ω2 =

∑7
s=0 ω

s
2es

JO(3)
n = J (3)

n +

7∑
s=1

J
(3)
n+ses

=

7∑
s=1

(
2

7
2n+s − 3 + 2i

√
3

21
ωn+s
1 − 3− 2i

√
3

21
ωn+s
2

)
es

=
2

7
α2n − 3 + 2i

√
3

21
ω1ω

n
1 −

3− 2i
√

3

21
ω2ω

n
2

(3.8)

and similarly making use of (2.4) in (3.3) yields

jO(3)
n = j(3)n +

7∑
s=1

j
(3)
n+ses

=

7∑
s=1

(
8

7
2n+s +

3 + 2i
√

3

7
ωn+s
1 +

3− 2i
√

3

7
ωn+s
2

)
es

=
8

7
α2n +

3 + 2i
√

3

7
ω1ω

n
1 +

3− 2i
√

3

7
ω2ω

n
2 .

(3.9)
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The formulas in (3.8) and (3.9) are called as Binet’s formulas for the third or-
der Jacobsthal and third order Jacobsthal-Lucas octonions, respectively. The
recurrence relations for the third order Jacobsthal octonions and the norm
of the n-th third order Jacobsthal octonion are expressed in the following
theorem.

Theorem 3.1. For n ≥ 0, we have the following identities:

JO
(3)
n+2 + JO

(3)
n+1 + JO(3)

n = 2n+1α, (3.10)

JO
(3)
n+2 − 4JO(3)

n =



(
1 + e2 + e3 + e5 + e6
−2(e1 + e4 + e7)

)
if n ≡ 0 (mod 3)(

e1 + e2 + e4 + e5 + e7
−2(1 + e3 + e6)

)
if n ≡ 1 (mod 3)(

1 + e1 + e3 + e4 + e6
+e7 − 2(e2 + e5)

)
if n ≡ 2 (mod 3)

,

(3.11)

Nr2(JO(3)
n ) =

1

49
·

 87380 · 22n + 1024 · 2n + 41 if n ≡ 0 (mod 3)
87380 · 22n + 4 · 2n + 38 if n ≡ 1 (mod 3)

87380 · 22n − 1028 · 2n + 33 if n ≡ 2 (mod 3)
,

(3.12)

where α =
∑7

s=0 2ses.

Proof. Consider (2.17) and (3.2) we can write

JO
(3)
n+2 + JO

(3)
n+1 + JO(3)

n =

7∑
s=0

(J
(3)
n+s+2 + J

(3)
n+s+1 + J

(3)
n+s)es. (3.13)

Using the identity J
(3)
n+2 + J

(3)
n+1 + J

(3)
n = 2n+1 in (3.13), the above sum can be

calculated as

JO
(3)
n+2 + JO

(3)
n+1 + JO(3)

n =

7∑
s=0

2n+s+1es,

which can be simplified as JO
(3)
n+2 + JO

(3)
n+1 + JO

(3)
n = 2n+1α, where α =∑7

s=0 2ses. Now, using (2.7) and (3.2) we have JO
(3)
n+2−4JO

(3)
n =

∑7
s=0(J

(3)
n+s+2−

4J
(3)
n+s)es, then

JO
(3)
n+2 − 4JO(3)

n =

7∑
s=0

(J
(3)
n+s+2 − 4J

(3)
n+s)es

= J
(3)
n+2 − 4J (3)

n + (J
(3)
n+3 − 4J

(3)
n+1)e1 + · · ·+ (J

(3)
n+9 − 4J

(3)
n+7)e7

= e1 + e2 + e4 + e5 + e7 − 2(1 + e3 + e6)
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if n ≡ 1(mod 3). Similarly in the other cases, this proves (3.11). Finally,

observing that Nr2(JO
(3)
n ) =

∑7
s=0(J

(3)
n+s)

2 from the Binet formula (2.15) we
have

Nr2(JO(3)
n ) = (J (3)

n )2 + (J
(3)
n+1)2 + · · ·+ (J

(3)
n+7)2

=
1

49

(
(2n+1 − (aωn

1 + bωn
2 ))2 + · · ·+ ((2n+8 − (aωn+7

1 + bωn+7
2 ))2

)
,

where a = 1 + 2i
√
3

3 and b = 1− 2i
√
3

3 . It is easy to see that,

aωn
1 + bωn

2 =

 2 if n ≡ 0 (mod 3)
−3 if n ≡ 1 (mod 3)
1 if n ≡ 2 (mod 3)

, (3.14)

because ω1 and ω2 are the complex conjugate cube roots of unity (i.e. ω3
1 =

ω3
2 = 1). Then, if we consider first n ≡ 0(mod 3), we obtain

Nr2(JO(3)
n )) =

1

49


(
2n+1 − 2

)2
+
(
2n+2 + 3

)2
+
(
2n+3 − 1

)2
+
(
2n+4 − 2

)2
+
(
2n+5 + 3

)2
+
(
2n+6 − 1

)2
+
(
2n+7 − 2

)2
+
(
2n+8 + 3

)2


=
1

49

(
21845 · 22n+2 + 2n+10 + 41

)
.

The other identities are clear from equation (3.14).

The recurrence relations for the third order Jacobsthal-Lucas octonions
and the norm of the n-th third order Jacobsthal-Lucas octonion are given in
the following theorem.

Theorem 3.2. Let n ≥ 0 be integer. Then,

jO
(3)
n+2 + jO

(3)
n+1 + jO(3)

n = 2n+3α, (3.15)

jO
(3)
n+2 − 4jO(3)

n =



(
−3(1 + e2 + e3 + e5 + e6)

+6(e1 + e4 + e7)

)
if n ≡ 0 (mod 3)(

−3(e1 + e2 + e4 + e5 + e7)
+6(1 + e3 + e6)

)
if n ≡ 1 (mod 3)(

−3(1 + e1 + e3 + e4 + e6)
−3e7 + 6(e2 + e5)

)
if n ≡ 2 (mod 3)

,

(3.16)

Nr2(jO(3)
n ) =

1

49
·

 21845 · 22n+6 − 12288 · 2n + 369 if n ≡ 0 (mod 3)
21845 · 22n+6 − 48 · 2n + 342 if n ≡ 1 (mod 3)

21845 · 22n+6 + 12336 · 2n + 297 if n ≡ 2 (mod 3)
,

(3.17)

where α =
∑7

s=0 2ses.
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The proofs of the identities (3.15)–(3.17) of this theorem are similar to
the proofs of the identities (3.10)–(3.12) of Theorem 3.1, respectively, and are
omitted here.

The following theorem deals with two relations between the third order
Jacobsthal and third order Jacobsthal-Lucas octonions.

Theorem 3.3. Let n ≥ 0 be integer. Then,

jO
(3)
n+3 − 3JO

(3)
n+3 = 2jO(3)

n , (3.18)

jO(3)
n + jO

(3)
n+1 = 3JO

(3)
n+2, (3.19)

jO(3)
n −JO

(3)
n+2 =

 1− e1 + e3 − e4 + e6 − e7 if n ≡ 0 (mod 3)
−1 + e2 − e3 + e5 − e6 if n ≡ 1 (mod 3)
e1 − e2 + e4 − e5 + e7 if n ≡ 2 (mod 3)

, (3.20)

jO(3)
n − 4JO(3)

n =



(
2− 3e1 + e2 + 2e3
−3e4 + e5 + 2e6 − 3e7

)
if n ≡ 0 (mod 3)(

−3 + e1 + 2e2 − 3e3
+e4 + 2e5 − 3e6 + e7

)
if n ≡ 1 (mod 3)(

1 + 2e1 − 3e2 + e3
+2e4 − 3e5 + e6 + 2e7

)
if n ≡ 2 (mod 3)

.

(3.21)

Proof. The following recurrence relation

jO
(3)
n+3 − 3JO

(3)
n+3 =

7∑
s=0

(j
(3)
n+s+3 − 3J

(3)
n+s+3)es (3.22)

can be readily written considering that

JO(3)
n = J (3)

n +

7∑
s=1

J
(3)
n+ses and jO(3)

n = j(3)n +

7∑
s=1

j
(3)
n+ses.

Notice that j
(3)
n+3 − 3J

(3)
n+3 = 2j

(3)
n from (2.6) (see [10]), whence it follows that

(3.22) can be rewritten as jO
(3)
n+3 − 3JO

(3)
n+3 = 2jO

(3)
n from which the desired

result (3.18) of Theorem 3.3. In a similar way we can show the second equality.

By using the identity j
(3)
n + j

(3)
n+1 = 3J

(3)
n+2 we have

jO(3)
n + jO

(3)
n+1 = 3(J

(3)
n+2e0 + J

(3)
n+3e1 + · · ·+ J

(3)
n+9e7),

which is the assertion (3.19) of theorem.
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By using the identity j
(3)
n − J (3)

n+2 = 1 from (2.10) (see [10]) we have

jO(3)
n − JO

(3)
n+2 = (j(3)n − J (3)

n+2)e0 + (j
(3)
n+1 − JO

(3)
n+3)e1 + · · ·+ (j

(3)
n+7 − J

(3)
n+9)e7

= 1− e1 + e3 − e4 + e6 − e7

if n ≡ 0(mod 3), the other identities are clear from equation (2.10). Finally,
the proof of Eq. (3.21) is similar to (3.20) by using (2.8).

Theorem 3.4. Let n ≥ 0 be integer such that n ≡ 0(mod 3). Then,

49(jO(3)
n · JO(3)

n )

= (99− 520 · 2n − 349488 · 22n)e0 + (22n+6 − 7842 · 2n + 36)e1

+ (22n+7 + 374 · 2n − 12)e2 + (22n+8 − 4936 · 2n − 24)e3

+ (22n+9 − 3390 · 2n + 36)e4 + (22n+10 − 1110 · 2n − 12)e5

+ (22n+11 − 5944 · 2n − 24)e6 + (22n+12 + 3414 · 2n + 36)e7

(3.23)

and

49(JO(3)
n · jO(3)

n )

= (99− 520 · 2n − 349488 · 22n)e0 + (22n+6 + 7838 · 2n + 36)e1

+ (22n+7 − 410 · 2n − 12)e2 + (22n+8 + 4864 · 2n − 24)e3

+ (22n+9 + 3274 · 2n + 36)e4 + (22n+10 + 850 · 2n − 12)e5

+ (22n+11 + 5424 · 2n − 24)e6 + (22n+12 − 4426 · 2n + 36)e7.

(3.24)

Proof. In view of the multiplication table 1 and the definitions (3.2) and (3.3),
we obtain

jO(3)
n · JO(3)

n = (j(3)n J (3)
n − j(3)n+1J

(3)
n+1 − j

(3)
n+2J

(3)
n+2 − j

(3)
n+3J

(3)
n+3 − j

(3)
n+4J

(3)
n+4

− j(3)n+5J
(3)
n+5 − j

(3)
n+6J

(3)
n+6 − j

(3)
n+7J

(3)
n+7)e0

+ (j(3)n J
(3)
n+1 + j

(3)
n+1J

(3)
n + j

(3)
n+2J

(3)
n+3 − j

(3)
n+3J

(3)
n+2 + j

(3)
n+4J

(3)
n+5

− j(3)n+5J
(3)
n+4 − j

(3)
n+6J

(3)
n+7 + j

(3)
n+7J

(3)
n+6)e1

+ (j(3)n J
(3)
n+2 − j

(3)
n+1J

(3)
n+3 + j

(3)
n+2J

(3)
n + j

(3)
n+3J

(3)
n+1 + j

(3)
n+4J

(3)
n+6

+ j
(3)
n+5J

(3)
n+7 − j

(3)
n+6J

(3)
n+4 − j

(3)
n+7J

(3)
n+5)e2

...

+ (j(3)n J
(3)
n+7 − j

(3)
n+1J

(3)
n+6 + j

(3)
n+2J

(3)
n+5 + j

(3)
n+3J

(3)
n+4 − j

(3)
n+4J

(3)
n+3

− j(3)n+5J
(3)
n+2 + j

(3)
n+6J

(3)
n+1 + j

(3)
n+7J

(3)
n )e7.
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Let a = 1 + 2i
√
3

3 and b = 1 − 2i
√
3

3 , using Eq. (3.14) and the following
formula

49(j
(3)
n+rJ

(3)
n+s) = 22n+4+r+s − 2n+r+3(aωn+s

1 + bωn+s
2 )

+ 3 · 2n+s+1(aωn+r
1 + bωn+r

2 )− 3(a2ω2n+r+s
1 + b2ω2n+r+s

2 )

− 7(ωr
1ω

s
2 + ωs

1ω
r
2),

we get the required result (3.23) if n ≡ 0(mod 3). In the same way, from the

multiplication JO
(3)
n · jO(3)

n and the formula

49(J
(3)
n+rj

(3)
n+s) = 22n+4+r+s + 3 · 2n+r+1(aωn+s

1 + bωn+s
2 )

− 2n+s+3(aωn+r
1 + bωn+r

2 )− 3(a2ω2n+r+s
1 + b2ω2n+r+s

2 )

− 7(ωr
1ω

s
2 + ωs

1ω
r
2),

we reach (3.24).

Based on the Binet’s formulas given in (3.8) and (3.9) for the third order
Jacobsthal and third order Jacobsthal-Lucas octonions, now we give some
quadratic identities for these octonions.

Theorem 3.5. For every nonnegative integer number n we get(
jO(3)

n

)2
+ 3JO

(3)
n+3 · jO

(3)
n+3 = 4n+3α2 +

3 · 2n+1

49
(25α · ε̂n − 31ε̂n · α) , (3.25)

where α =
∑7

s=0 2ses and

ε̂n =


2(1 + e3 + e6)− 3(e1 + e4 + e7) + (e2 + e5) if n ≡ 0 (mod 3)
−3(1 + e3 + e6) + (e1 + e4 + e7) + 2(e2 + e5) if n ≡ 1 (mod 3)
(1 + e3 + e6) + 2(e1 + e4 + e7)− 3(e2 + e5) if n ≡ 2 (mod 3)

.

Proof. Let α =
∑7

s=0 2ses ∈ O. Using the relation in (3.8) and (3.9) for the
third order Jacobsthal and third order Jacobsthal-Lucas octonions, the left
side of equality (3.25) can be written as(

jO(3)
n

)2
+ 3JO

(3)
n+3 · jO

(3)
n+3

=

(
1

7
(2n+3α+ 3ε̂n)

)2

+ 3

(
1

7
(2n+4α− ε̂n+3)

)
·
(

1

7
(2n+6α+ 3ε̂n+3)

)
=

1

49
(22n+6α2 + 3 · 2n+1(α · ε̂n + ε̂n · α) + 9(ε̂n)2)

+
3

49
(22n+10α2 + 2n+4(3α · ε̂n+3 − 4ε̂n+3 · α)− 3(ε̂n)2)

= 22n+6α2 +
3

49

(
2n+1(α · ε̂n + ε̂n · α) + 2n+4(3α · ε̂n+3 − 4ε̂n+3 · α)

)
,
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where

ε̂n =

(
1 +

2i
√

3

3

)
ω1ω

n
1 +

(
1− 2i

√
3

3

)
ω2ω

n
2

=

7∑
s=0

((
1 +

2i
√

3

3

)
ωn+s
1 +

(
1− 2i

√
3

3

)
ωn+s
2

)
es

=


2(1 + e3 + e6)− 3(e1 + e4 + e7) + (e2 + e5) if n ≡ 0 (mod 3)
−3(1 + e3 + e6) + (e1 + e4 + e7) + 2(e2 + e5) if n ≡ 1 (mod 3)
(1 + e3 + e6) + 2(e1 + e4 + e7)− 3(e2 + e5) if n ≡ 2 (mod 3)

.

(3.26)
Note that ε̂n = ε̂n+3 for all n ≥ 0, which can be simplified as(

jO(3)
n

)2
+ 3JO

(3)
n+3 · jO

(3)
n+3

= 22n+6α2 +
3 · 2n+1

49
(α · ε̂n + ε̂n · α+ 24α · ε̂n − 32ε̂n · α)

= 4n+3α2 +
3 · 2n+1

49
(25α · ε̂n − 31ε̂n · α) .

Thus, we get the required result in (3.25).

Theorem 3.6. For every nonnegative integer number n we get(
jO(3)

n

)2
− 9

(
JO(3)

n

)2
=

1

7
(4n+1α2 + 3 · 2n+1(α · ε̂n + ε̂n · α)), (3.27)

where α =
∑7

s=0 2ses and ε̂n as in (3.26).

The proofs of quadratic identities for the third order Jacobsthal and third
order Jacobsthal-Lucas octonions in this theorem are similar to the proof of
the identity (3.25) of Theorem 3.5, and are omitted here.
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[24] J. Köplinger, Signature of gravity in conic sedenions, Appl. Math. Com-
putation, 188, (2007), 942–947.
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