Ty o cruver
G

Vol. 26(3),2018, 181-196

DOI: 10.2478 /auom-2018-0040
An. St. Univ. Ovidius Constanta
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Abstract

We establish an inequality for an intrinsic invariant of Chen-type
defined on quaternionic C R-submanifolds in quaternionic space forms,
in terms of the squared mean curvature, the main extrinsic invariant,
by using the method of constrained extrema.

1 Introduction

To find simple relationships between main extrinsic invariants and the main
intrinsic invariants of a submanifold represents one of the most fundamental
problems in the theory of submanifolds. Among intrinsic invariants, the -
invariants are very important because of the different nature from the classical
Ricci and scalar curvature. The non-trivial d-invariants are obtained from
scalar curvature by substracting a certain amount of sectional curvatures.

In 1978, A. Bejancu [3] introduced the notion of CR-submanifolds, which
is a generalization of holomorphic and totally real submanifolds in an almost
Hermitian manifold (see also [6]).

Let M be a Kaehler manifold with complex structure J and let M be a
Riemannian manifold isometrically immersed in M. One denotes by D, = €
M the maximal complex subspace T, M N J(T, M) of the tangent space T, M
of M. If the dimension of D, is constant for all x € M, then D : x — D,
defines a holomorphic distribution D on M. A subspace v of T,M, x € M is
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called totally real if J(v) is a subspace of the normal space T;- M at x. If each
tangent space of M is totally real, then M is called totally real submanifold of
the Kaehler manifold M.

If there exists a totally real distribution D+ on M whose orthogonal com-
plement is the holomorphic distribution D, i.e., TM = D&D+, JDE C T M,
2 € M then the submanifold M is called CR-submanifold.

The totally real distribution D+ of every CR-submanifold of a Kaehler
manifold is an integrable distribution (see [4]).

According to the embedding theorem of J.F. Nash [7], every Riemannian
manifold can be isometrically embedded in some Euclidean space with suffi-
ciently high codimension. If a Riemannian manifold is regarded as a Rieman-
nian submanifold, then one can use the extrinsic help.

In order to give answers to an open question concerning minimal immer-
sions proposed by S.S. Chern in the 1960’s and to provide applications of the
Nash embedding theorem, B.-Y. Chen introduced the notion of §-invariants.
In the case of a C'R-submanifold M of a Kaehler manifold, Chen introduced
a d-invariant 6(D), called CR §-invariant, defined by

8(D)(z) = 7(x) = 7(Da),

where 7 is the scalar curvature of M and 7(D) is the scalar curvature of the
holomorphic distribution D of M.

In [1], Al-Solamy, Chen and Deshmukh proved an inequality involving the
o-invariant §(D), in the case of an anti-holomorphic submanifold in a complex
space form, in terms of squared mean curvature. In this paper, we consider
a quaternionic CR-submanifold in a quaternionic space form with minimal
codimension.

2 Basics on Quaternionic Manifolds and Their Subman-
ifolds

Let M be a Riemannian manifold and M C M a Riemannian submanifold of
M with the Riemannian metric induced by the metric of M. We denote by
TM and T M the tangent bundle, respectively the normal bundle of M, with
V and V the Levi-Civita connections of M, respectively M.

The Gauss and Weingarten formulae are given by

VxY =VxY +h(X,Y),

VxV =—-AyX + V%V,
VX,Y € I(TM), V € T(T+ M), where V- is the normal connection on T+ M.
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We also have the relation

If M is a 4m-dimensional manifold with the Riemannian metric g, then
M is called a quaternionic Kaehler manifold if there exist a 3-dimensional
vector bundle o of type (1,1) with local basis of almost Hermitian structures
J1, Jsa, J3 such that

Jao‘]a-i-l == a+1OJa: a+2 J(f:fld,

where o, o + 1, a + 2 are taken modulo 3.

In this case, o is called the almost quaternionic structures on M, {Jy, Jo, J3}
is the canonical local basis of o. So, (M, o) is called an almost quaternionic
manifold, with dim M = 4m, m > 1.

A Riemannian metric g on M is said to be adapted to the almost quater-
nionic structure o if it satisfies

§(JaX, 1Y) = §(X,Y), Ya =1,3.

If o is parallel with respect to V of §, then (M, o, §) is called quaternionic
Kaehler manifold. Equivalent, locally defined 1-forms wi,ws,ws exists such
that Vao = 1, 3, Vs = Wat2(X)Jat1 — Wat1(X)Jat2, where o, o + 1, v + 2
are taken modulo 3.

Remark. Any quaternionic Kaehler manifold M (dim M > 4) is an Ein-
stein manifold.

Let (M ,0,3J) be a quaternionic Kaehler manifold and X be a non-null vec-
tor on M. Then the 4-plane spanned by {X, J; X, J, X, Js X} denoted by Q(X)
is called a quaternionic 4-plane. Any 2-plane in Q(X) is called a quaternionic
plane. The sectional curvature of a quaternionic plane is called a quaternionic
sectional curvature.

A quaternionic Kaehler manifold is called a quaternionic space form if its
quaternionic sectional curvature is constant, say c. (M, o, §) is a quaternionic

space form if and only if

3
R(X,Y)Z = 2 {Q(K DX = §(X, 2)Y + Y [§(Z, JaY ) Jo X —
a=1
—3(Z, JoX)JoY +25(X, J.Y) I 2]},
VX,Y,Z € T(TM).
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For a submanifold M of M, if {e1,...,en} is an orthonormal basis of T, M
and {en41,...,e4m} is an orthonormal basis of TPLM, pe M,

n

H(p) = > her, )

i=1

represents the mean curvature vector.
One denotes by

For a quaternionic Kaehler manifold, we have

3
VxJa =Y Qap(X)Js, a=1.3, VX e I(TM),
B=1

where Qo are certain 1-forms locally defined on M such that Qop+Qpa =0.

Let M be a quaternionic Kaehler manifold and M be a real submanifold
of M. A distribution D : z — D, C T, M is called a quaternionic distribution
if Jo(D) € D, Va = 1,2,3, so D is carried into itself by the quaternionic
structure.

M is called a quaternionic CR-submanifold if it admits a differential quater-
nionic distribution D such that its orthogonal complementary distribution D+
is totally real, i.e., Jo(DE) C T+ M, a=1,2,3, Vo € M.

A submanifold M in a quaternionic manifold M is called quaternionic sub-
manifold (respectively, a totally real submanifold) if dim D+ = 0 (respectively,
dim D, = 0). A quaternionic CR-submanifold is called proper if it is neither
totally real nor quaternionic.

Let Doy = Jo(Dy), v = D1y ® Doy @ D3, a 3g-dimensional distribution
vt o — vl globally defined on M, where ¢ = dim D and v the orthogonal
complementary distribution of v.

Then

TM =TM & T*M, TM =D & D™,

T*M=vovt, vvt c THM, Vj = D1z D Doy & D3,

M is called mized geodesic if h(X,Y) =0, VX € T(D), Y € (D).
M is called D-geodesic if h(X,Y) =0, VX,Y € I'(D).
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Let m = Sp{ X, Y} be a tangent plane to M at a point p € M. The sectional
curvature of 7 is

X, Y, X)Y)

B (
Km = 3x X000,7) - 2K, 1)

Thus, we obtain

3
f((X/\Y):E 1433 32 (JaX,Y)|,

a=1

vX,Y e F(TM ) unit vector fields; moreover, from the Gauss equation, we
have

K(X AY) = R(X AY) +§(h(X, X), h(Y,Y)) — §(h(X, V), h(X, V).

In this article we will use the convention R(X,Y, Z, W) = g(R(X, Y)W, Z)
and similar for R.
3 A Chen Invariant and a Chen-type Inequality
The CR é-invariant (D) ([5], [1]) is given by

3(D)(x) =7(x) — 7(Dy), x € M,

where 7 and 7(D) denote the scalar curvature of M and the scalar curvature
of the quaternionic distribution D C T'M, respectively.

If M is a quaternionic CR-submanifold of minimal codimension, i.e., dim v, =
0 for x € M, we choose the following orthonormal basis:

D, =S5p{er,...,ent,

'Di = Sp{e’n+17 s aen+q}7
and then
TM = Sp{eir,....en; €nt1,---,€ntq},

1
T M:Sp{J16n+1,...,J167,+q; J2€n+17...,J26n+q; J367,+1,...,J36n+q},

which correspond to the definition of a quaternionic CR-submanifold given in

[2].
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For x € M, we have

dimD, = n; dimDi =gq; dimT, M =n+gq;

dimv, =0, dimTIlM = 3¢ = dim V;.

We will use the following convention on range of indices, unless mentioned
otherwise:

iLjihk=1n; apfy=13;rst=n+1n+q; A B,C=1,n+q.

In [1], the authors proved an inequality for §(D) in case of an anti-holomorphic
submanifold of a complex space form:

Theorem 3.1. [1] Let M be an anti-holomorphic submanifold of a complex
space form M"*P(c) with h = ranke D > 1 and p = rank D+ > 2. Then we

have

2h 2 —1 4h —1

(D) < 5 1

The equality sign holds identically if and only if the following three condi-
tions are satisfied:

(a) M is D-minimal,

(b) M is mized totally geodesic, and

(c) there exists an orthonormal frame {eani1,...,en} of DY such that the
second fundamental form o of M satisfies

oy =300, for2h+1<r#s<2h+p, and

ot, =0 for distinct r,s,t € {2h+1,...,2h + p}.

In this paper we prove a corresponding inequality for a quaternionic CR-
submanifold with minimal codimension of a quaternionic space form, by using
a different method, more precisely the method of constrained extrema.

Theorem 3.2. If M s a quaternionic CR-submanifold of a quaternionic
space form M, of minimal codimension, i.e. dimv, =0, forx € M, dimD, =
n, dim D} = q and dimvy = 3¢ = dimT;- M then

(n+q)? q+2 q2g+n—-1) ¢
(¥ s(p) < AL AR ey SROT D)€
2 q+5 2 4
The equality sign holds at a point x € M if and only if the following
conditions are satisfied:
a) M is mized totally geodesic;
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b) there is an orthonormal basis {e1,ez,...,entq} at x such that with re-
spect to this basis the second fundamental form h satisfies the following con-
ditions:

(1)

g(h(eia ei>7 Ja€7‘> = g(h(era er)7 Jaer) = Sg<h<es; 65), Jaer)a

M-

1

7

VYa=1,3, Vr#£se{n+1,....,n+q},
(it)
g(h(er,es), Jaer) =0
Va=1,3, r,s,t=n+1,n+q r#s#t#r.
Proof.

With the above notations and orthonormal basis, we have

n  ntq
7(r) = Z K(e; Nej) + Z K(er Nes) —|—Z Z (e; Ney),
1<i<j<n n+1<r<s<n-4q i=1 r=n+1
Z K(€1 A ej).
1<i<j<n
From these two relations, we obtain

n n+q
(1) D))= > Kleihe)+ > KlerAe).

i=1 r=n+1 n+1<r<s<n-+q

From the Gauss equation (see also section 2), one obtains:

(3.2) K(XAY)= 1+3Z (JoX,Y)

c
4

Applying (3.2) for X =e¢;, Y =¢,, i =1,n, r =n+ 1,n + ¢ we obtain

3
1+3) 5% (Jaceiser)

a=1

(3.3) K(ejNey) = +

c
4
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+g(h(ei, ei), h(er,er)) — g(h(es, ), (e, er)).

Because Jue; € D and e, € D, we have
g(Ja€i7€T-) =0
and it follows that

(34) K(ei /\eT) = +§(h(€i7ei)’h(eher)) _g(eiaer)ah(eiaer))'

=10

By summation in (3.4) over i = 1,n, and r = n + 1,n + ¢ we find

n  ntq
C
(3.5) Z Z (e; Ney) = nqi—l—
i=1 r=n+1
n  ntq
+Z Z 6“61 (67'767')) _g(h(€i>e7')7h(ei7e7'))] .
1=1r=n+1

Applying Gauss equation for X =e,., Y =€, r,s=n+1,n+q, r # s,
we get
c 3
(3.6) K(e, Neg) = 1 1+32§2(Jaer,es) +

a=1

+§(h(e7"a 67")7 h(€Sv eS)) - g(h(era es)v h(€7'7 es))'

Because Jye, € T*M and e, € TM, a = 1,3, r,s =n+1,n+q, r # s,
it follows that g(Jae,, es) =0.
By summation in (3.6) over r,s =n+ 1,n+ ¢, r < s we obtain

_qlg—1ec
(3.7) > K(erhey) = =t
n+1<r<s<n-4+gq
+ jz: [G(h(er,er), h(es, es)) — G(h(er, es), hier, es))].
n+1<r<s<n-+gq

Using the relations (3.5) and (3.7) in (3.1), it follows that

(38) (D)) = 19— 1)2 g T+ Y Glhlenen). hles )+

2
n+1<r<s<n-+q
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n  ntgq
+Z Z g(h(ei7ei)7h(e7'7€7“))_ Z Hh(erves)H2_
i=1 r=n+1 n+1<r<s<n-+gq
n  n+q
=Y > llhlenen)ll
i=1 r=n+1
Thus, we get
n n+q
5(@)(LE> = Z g(h(6r76r 63, +Z Z 62561 (eraer))*
n+1<r<s<n-4q i=1 r=n+1
n n+q
q2n+qg—-1) ¢
— > hene)lP=D0 D (e e’ + te— 7
n+1<r<s<n-+q i=1 r=n+1

which implies

(39) oDy < LEIZD € S i) hlenen)+

2
n+1<r<s<n-+gq
n  n+q
+Z Z h(ei,ei), h(er, er)) — Z ||h(€r,€s)||2.
i=1r=n+1 n+1<r<s<n-+gq
We denote

(h(eA’ 63)7 Jlet)v
= g(h(ea,en), Jaet),

hAB - g( (€A7 63)7 JSet)a

where A, B=1,n4+¢q, t=n+1,n+q.
From (3.9), we get

g2n+q—-1) ¢
(3.10) §(D)(x) < 9 Z+

n+q

XY (b B )+

n+1<r<s<n+qt=n+1l
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n n+q ntq

+ Z Z Z (hizhf“r + ﬁ:zhir + ﬁgiﬁir)_

1=1 r=n+1t=n+1

n+q

D DD SR (TR (IR o

n+1<r<s<n-+qt=n+1l

We consider the following sums (3.11.1)-(3.11.3):

n+q n ntq ntq
(3.11.1) S = > D SIS N D P (1 e
n+1<r<s<n+qt=n+1 1=1 r=n+1t=n+1
n+q

- Z Z (his)Qa

n+1<r<s<n-+qt=n+1l

n+q o n  nt+q ntq o
(3.11.2) S = > STORLBL A>T DY D bkl -
n+1<r<s<n+qt=n+1l i=1 r=n+1t=n+1
n-+q

- Z Z (ilf‘s)Qa

n+1<r<s<n+qt=n+1

~ ntq _ n_ntg ntg
(3.11.3) S= > STORLBL A>T DT D bbb~
n+1<r<s<n+qt=n+1 =1 r=n+1t=n+1
n+q

- Z Z (255)2

n+1<r<s<n+qt=n+1l

From the relations (3.10) and (3.11) we obtain

q2n+q—1)
2

U

(3.12) 5(D)(z) < E+S+S’+

For each of the sums S, S and S we must find the maximum. Let’s consider
first the sum S (we’ll proceed in the same manner for the other two sums S

and S).

n+q n n+q ntq

n+1<r<s<n+qt=n+1l i=1r=n+1t=n+1
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n-+q

- Z Z (hf“s')2 =

n+1<r<s<n-+qt=n+1l

t¢{r,s}

= > (LR AR+ > > Ll

n+1<r<s<n-+gq n+1<r<s<n+qn+1<t<n-+gq

n ntq

DSBS SEED SR T T

i=1r=n-+1 i=1 n+1<r<t<n-+q

te¢{r,s}

D R (NN (A B S (k)2

n+1<r<s<n-+gq n+1<r<s<n+qgn+1<t<n+q
which implies

t¢{r.s}

n+1<r<s<n-+q n+1<r<s<n+qgn+1<t<n+q

n n+q

i=1 r=n+1 i=1 n+1<r<t<n4q n+1<r<s<n-+gq

We recall the following result. R
Let (M, g) be a Riemannian submanifold of a Riemannian manifold (M, g)
and f € (M), with the attached optimum problem:

(3.14) min f(z).

xeM
Theorem. [8] If zg € M is a solution of the problem (3.14), then
(a) (grad f)(wo) € T;, M;
(b) The bilinear form o : Tpoo M X Tpyo M — R,
a(X,Y) = Hessf(X, Y) +g(h(X,Y), (grad f)(zo))

is semipositive definite, where h is the second fundamental form of the sub-
manifold M in M.

For t = n+ 1,n +q, we consider the quadratic forms f; : R"t? — R
defined by

(3'15) ft(hih h§27 ) hfmv h%+1n+17 ) h7t’L+qn+q) =
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n  ntq r#t
_ } : t gt 2 : } : t gt 2 : t )2
- h‘rrhss + huh’rr - (hrr) .
n+1<r<s<n-+gq i=1 r=n+1 n+1<r<n4q
Now, we consider f, 1 as
n+1 n+1 n+1 n+1 n+1
fn+1(h11 ,h22 . hnn 7hn+1n+1’ . hn+qn+q)
n n+q
_ n+1lzn+1 n+lpn+l n+1)2
- Y ey S omemno Y )
n+1<r<s<n-+gq i=1 r=n+1 n+2<r<n4q

We must find an upper bound for f,,+1, subject to
(3.16) P:hif RS R R =T

where ¢"*t1 is a real number.
The bilinear form « : T, P x T,,P — R has the expression

a(X7Y) = Hess(f,.)(X,Y) + <h/(X7 Y),grad fT(Q)>7

where ' is the second fundamental form of P in R"*% and (, ) is the standard
inner-product on R"**4,
Searching for the partial derivatives of the function f,1, we get

n+
Ofns1 _ i et =

n+1
h r=n+1
8fn+1 g hn+1 hn+1
e WD W
n+1ln+1 s=n—+2
0f ) s#EN+2
8h24+rl = Z h?:_1+zhn+1 Qh;’f;"l’ r=n+2n+q.
rr n+1<s<n-4q

In the standard frame of R""9, the Hessian of f,,.1 has the matrix

0, A B
At 0 O,
Bt Ct' D

where O,, € M,,(R), with all the elements equals to 0, A € M, 1(R), with all
the elements equals to 1, B € M,, ,—1(R), with all the elements equals to 1,
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C € My 4—1(R), with all the elements equals to 1 and D is the matrix

2 1 1 1
1 -2 1

D I ’ D 6 Mq*l’qil(R)
111 —2

As P is totally geodesic in R" "4 (see [8]), we obtain

n-+q n—+q n-+q
aX,X)=2 > X1X,+2 Y XoXo+...42 Y X, X+
r=n+1 r=n+1 r=n+1
n+q n+q
+2 > XX, 42 > XX, —2) (X,)? =
r=n+1 n+2<r<s<n-+gq n+2
n+q 2 n n+q
) (Z XA) -2 3 XXy K - ()P =3 3 (X =
A=1 1<i<j<n i=1 r=n+2

n+q 2 n 2 n+q
— (Z XA> - <ZX> — (Xn41)* =3 > (X,)? <0
A=1 =1

r=n+2
and then the Hessian of f,, 1 is negative semidefinite.
Searching for the critical point (b7 Rt ... RITL ) of f,.1, we find

n+qn-+q
8fn+1 afn+1

= —
1 1
3h?i~_ ahZIhH»l
n
1 1
(3-17) hZi1n+1 = ZhZJr =3\
i+1
8fn+1 _ 8fn+1 —
8hn+1 - 6hn+l
n+2n+2 n+3n+3
1 1 1
(3-18) hZIQn-i-Q = hgii’m-&% == hziqn+q = A
afn+l _ afn+l
oty T ol
n+2n+2 n+ln+1

(3-19) h:’lLi}nJrl = 3hZi%n+2 =3\
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From (3.16), (3.17), (3.18) and (3.19) we obtain

cntt
3A+3A+Qp—nA=d”1=$-A=q+5,
which gives
- 3cntl
(3'20) Hzlh?iﬂ = h::ﬁnﬂ = m
and
(3.21) Wty =Rt = =Rl et

ndqntq — C]+75 .

Using the relations (3.20) and (3.21) in the expression of f,,11 we have

(322) fn+1(h?1+17 hg2+17 LR h?LIl? hZi}n-‘rl’ T hZi;n+q) <
e+l nt1 —1)(g—2 nt1\? o /3entiy?
< (g-1)- S +(q Na=2) (¢ >+( )+
7+5 q+5 2 q+5 q+o
30n+1 c7l+1 Cn+1 ?
+(g—1)- . —(g—1)- =
(q ) q_|_5 q_|_5 (C] ) (q—|—5>
B el 2'6q_6+q2—3q+2+18+6q—6_2Q+2_
5 2
_ cntl ‘ q2 +7q¢+10 _ et ) (q+2)(q+5) _ (Cn+1)2 . u
q+5 2 g+5 2 20a+5)
Then
q+2 2 n+1\2
3.23 S S O HT)
52 T = SRR
1 n+q
here H"+! = R
where n+qAZ:1 AA

In a similar manner one can prove that

q+2 2 172 —
.24 r < —— - (n+ H"), =n+1,n+gq,
(3.24) fr < 3(q+5) (n+q)*(H"), Vr=n n+gq

1 n+q
where H" = Z h'y4-
n+q I

=1
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For S we have the functions fr and the relations

q+2

3.25 o< ——" . (n+q)?*HN Yr=n+1,n+gq,
(625 f< g e =T T
~ 1 n+q~ = =

where H" = n h'y4 and for S we have the functions f, and the

(R e
relations

= q+2 9, 59 -
3.26 r < . H")*, Vr = 1, ,
(626) < g U =i T

n+q~

where H" = p—— AZﬂhAA.

Using the relations (3.24), (3.25) and (3.26) in (3.12), we get the relation
(*); the conditions for the equality case are obtained from (3.9), (3.13), (3.20)
and (3.21).

References

[1] Al-Solamy, F., Chen, B.Y. and Deshmukh, S., Two optimal inequalities
for anti-holomorphic submanifolds and their applications, Taiwanese J.
Math. 18(1) (2014), 199-217.

[2] Barros, M., Chen, B.-Y. and Urbano, F., Quaternion CR-submanifolds of
quaternion manifolds, Kodai Math. J. 4(3) (1981), 399-417.

[3] Bejancu, A., Geometry of CR-Submanifolds, D. Reidel Publishing Com-
pany, Dordrecht, Holland, 1986.

[4] Chen, B.-Y., CR-submanifolds of a Kaehler manifold, J. Differential
Geom. 16 (1981), 305-323.

[6] Chen, B.-Y., An optimal inequality for CR-warped products in complex
space forms involving CR d-invariant, Internat. J. Math. 23(3) (2012),
1250045 (17 pages).

[6] Mihai, A. and Mihai, 1., CR-Submanifolds in Complex and Sasakian
Space Forms, in Geometry of Cauchy-Riemann Submanifolds (Eds. Sorin
Dragomir et al.), Springer, 2016.

[7] Nash, J.F., The imbedding problem for Riemannian manifolds, Ann.
Math. 63 (1956), 20-63.



AN INEQUALITY ON QUATERNIONIC CR-SUBMANIFOLDS 196

[8] Oprea, T., Optimizations on Riemannian submanifolds, Analele Univ.
Buc. LIV 1 (2005), 127-136.

Gabriel-Florin MACSIM,

1Doctoral School of Mathematics,

Faculty of Mathematics and Computer Science, University of Bucharest,
Academiei Str. 14, 010014 Bucharest, Romania

Email: gabi-macsim@yahoo.com

Adela MIHALI,

2Department of Mathematics and Computer Science,
Technical University of Civil Engineering Bucharest,
Lacul Tei Bvd. 122-124, 020396 Bucharest, Romania
Email: adela.mihai@utcb.ro



