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An Inequality on Quaternionic
CR-Submanifolds

Gabriel MACSIM1 and Adela MIHAI2

Abstract

We establish an inequality for an intrinsic invariant of Chen-type
defined on quaternionic CR-submanifolds in quaternionic space forms,
in terms of the squared mean curvature, the main extrinsic invariant,
by using the method of constrained extrema.

1 Introduction

To find simple relationships between main extrinsic invariants and the main
intrinsic invariants of a submanifold represents one of the most fundamental
problems in the theory of submanifolds. Among intrinsic invariants, the δ-
invariants are very important because of the different nature from the classical
Ricci and scalar curvature. The non-trivial δ-invariants are obtained from
scalar curvature by substracting a certain amount of sectional curvatures.

In 1978, A. Bejancu [3] introduced the notion of CR-submanifolds, which
is a generalization of holomorphic and totally real submanifolds in an almost
Hermitian manifold (see also [6]).

Let M̃ be a Kaehler manifold with complex structure J and let M be a
Riemannian manifold isometrically immersed in M̃ . One denotes by Dx, x ∈
M the maximal complex subspace TxM ∩ J(TxM) of the tangent space TxM
of M . If the dimension of Dx is constant for all x ∈ M , then D : x → Dx

defines a holomorphic distribution D on M . A subspace ν of TxM, x ∈ M is
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called totally real if J(ν) is a subspace of the normal space T⊥x M at x. If each
tangent space of M is totally real, then M is called totally real submanifold of
the Kaehler manifold M̃ .

If there exists a totally real distribution D⊥ on M whose orthogonal com-
plement is the holomorphic distribution D, i.e., TM = D⊕D⊥, JD⊥x ⊂ T⊥x M ,
x ∈M then the submanifold M is called CR-submanifold.

The totally real distribution D⊥ of every CR-submanifold of a Kaehler
manifold is an integrable distribution (see [4]).

According to the embedding theorem of J.F. Nash [7], every Riemannian
manifold can be isometrically embedded in some Euclidean space with suffi-
ciently high codimension. If a Riemannian manifold is regarded as a Rieman-
nian submanifold, then one can use the extrinsic help.

In order to give answers to an open question concerning minimal immer-
sions proposed by S.S. Chern in the 1960’s and to provide applications of the
Nash embedding theorem, B.-Y. Chen introduced the notion of δ-invariants.
In the case of a CR-submanifold M of a Kaehler manifold, Chen introduced
a δ-invariant δ(D), called CR δ-invariant, defined by

δ(D)(x) = τ(x)− τ(Dx),

where τ is the scalar curvature of M and τ(D) is the scalar curvature of the
holomorphic distribution D of M .

In [1], Al-Solamy, Chen and Deshmukh proved an inequality involving the
δ-invariant δ(D), in the case of an anti-holomorphic submanifold in a complex
space form, in terms of squared mean curvature. In this paper, we consider
a quaternionic CR-submanifold in a quaternionic space form with minimal
codimension.

2 Basics on Quaternionic Manifolds and Their Subman-
ifolds

Let M̃ be a Riemannian manifold and M ⊂ M̃ a Riemannian submanifold of
M̃ with the Riemannian metric induced by the metric of M̃ . We denote by
TM and T⊥M the tangent bundle, respectively the normal bundle of M , with
∇ and ∇̃ the Levi-Civita connections of M , respectively M̃ .

The Gauss and Weingarten formulae are given by

∇̃XY = ∇XY + h(X,Y ) ,

∇̃XV = −AVX +∇⊥XV,

∀X,Y ∈ Γ(TM), V ∈ Γ(T⊥M), where∇⊥ is the normal connection on T⊥M .
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We also have the relation

g(h(X,Y ), V ) = g(AVX,Y ).

If M̃ is a 4m-dimensional manifold with the Riemannian metric g̃, then
M̃ is called a quaternionic Kaehler manifold if there exist a 3-dimensional
vector bundle σ of type (1,1) with local basis of almost Hermitian structures
J1, J2, J3 such that

Jα ◦ Jα+1 = −Jα+1 ◦ Jα = Jα+2, J
2
α = − Id,

where α, α+ 1, α+ 2 are taken modulo 3.
In this case, σ is called the almost quaternionic structures on M̃ , {J1, J2, J3}

is the canonical local basis of σ. So, (M̃, σ) is called an almost quaternionic
manifold, with dim M̃ = 4m, m ≥ 1.

A Riemannian metric g̃ on M̃ is said to be adapted to the almost quater-
nionic structure σ if it satisfies

g̃(JαX, JαY ) = g̃(X,Y ), ∀α = 1, 3.

If σ is parallel with respect to ∇̃ of g̃, then (M̃, σ, g̃) is called quaternionic
Kaehler manifold. Equivalent, locally defined 1-forms ω1, ω2, ω3 exists such
that ∀α = 1, 3, ∇̃XJα = ωα+2(X)Jα+1 − ωα+1(X)Jα+2, where α, α+ 1, α+ 2
are taken modulo 3.

Remark. Any quaternionic Kaehler manifold M̃ (dim M̃ ≥ 4) is an Ein-
stein manifold.

Let (M̃, σ, g̃) be a quaternionic Kaehler manifold and X be a non-null vec-
tor on M̃ . Then the 4-plane spanned by {X,J1X, J2X, J3X} denoted by Q(X)
is called a quaternionic 4-plane. Any 2-plane in Q(X) is called a quaternionic
plane. The sectional curvature of a quaternionic plane is called a quaternionic
sectional curvature.

A quaternionic Kaehler manifold is called a quaternionic space form if its
quaternionic sectional curvature is constant, say c. (M̃, σ, g̃) is a quaternionic
space form if and only if

R̃(X,Y )Z =
c

4

{
g̃(Y,Z)X − g̃(X,Z)Y +

3∑
α=1

[g̃(Z, JαY )JαX−

−g̃(Z, JαX)JαY + 2g̃(X,JαY )JαZ]} ,

∀X,Y, Z ∈ Γ(TM̃).
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For a submanifold M of M̃ , if {e1, . . . , en} is an orthonormal basis of TpM
and {en+1, . . . , e4m} is an orthonormal basis of T⊥p M, p ∈M,

H(p) =
1

n

n∑
i=1

h(ei, ei)

represents the mean curvature vector.
One denotes by

hrij = g(h(ei, ej), er), i, j = 1, n, r = n+ 1, 4m,

‖h‖2(p) =

n∑
i,j=1

g(h(ei, ej), h(ei, ej)).

For a quaternionic Kaehler manifold, we have

∇̃XJα =

3∑
β=1

Qαβ(X)Jβ , α = 1, 3, ∀X ∈ Γ(TM̃),

where Qαβ are certain 1-forms locally defined on M̃ such that Qαβ +Qβα = 0.

Let M̃ be a quaternionic Kaehler manifold and M be a real submanifold
of M̃ . A distribution D : x→ Dx ⊂ TxM is called a quaternionic distribution
if Jα(D) ⊂ D, ∀α = 1, 2, 3, so D is carried into itself by the quaternionic
structure.

M is called a quaternionic CR-submanifold if it admits a differential quater-
nionic distribution D such that its orthogonal complementary distribution D⊥

is totally real, i.e., Jα(D⊥x ) ⊂ T⊥x M, α = 1, 2, 3, ∀x ∈M .
A submanifold M in a quaternionic manifold M̃ is called quaternionic sub-

manifold (respectively, a totally real submanifold) if dimD⊥x = 0 (respectively,
dimDx = 0). A quaternionic CR-submanifold is called proper if it is neither
totally real nor quaternionic.

Let Dαx = Jα(D⊥x ), ν⊥x = D1x ⊕D2x ⊕D3x a 3q-dimensional distribution
ν⊥ : x→ ν⊥x globally defined on M , where q = dimD⊥x and ν the orthogonal
complementary distribution of ν⊥.

Then
TM̃ = TM ⊕ T⊥M, TM = D⊕D⊥,

T⊥M = ν ⊕ ν⊥, ν, ν⊥ ⊂ T⊥M, ν⊥x = D1x ⊕D2x ⊕D3x.

M is called mixed geodesic if h(X,Y ) = 0, ∀X ∈ Γ(D), Y ∈ Γ(D⊥).
M is called D-geodesic if h(X,Y ) = 0, ∀X,Y ∈ Γ(D).
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Let π = Sp{X,Y } be a tangent plane to M̃ at a point p ∈ M̃ . The sectional
curvature of π is

K(π) =
R̃(X,Y,X, Y )

g̃(X,X)g̃(Y, Y )− g̃2(X,Y )
.

Thus, we obtain

K̃(X ∧ Y ) =
c

4

[
1 + 3

3∑
α=1

g̃2(JαX,Y )

]
,

∀X,Y ∈ Γ(TM̃) unit vector fields; moreover, from the Gauss equation, we
have

K(X ∧ Y ) = K̃(X ∧ Y ) + g̃(h(X,X), h(Y, Y ))− g̃(h(X,Y ), h(X,Y )).

In this article we will use the convention R(X,Y, Z,W ) = g(R(X,Y )W,Z)
and similar for R̃.

3 A Chen Invariant and a Chen-type Inequality

The CR δ-invariant δ(D) ([5], [1]) is given by

δ(D)(x) = τ(x)− τ(Dx), x ∈ M̃,

where τ and τ(D) denote the scalar curvature of M and the scalar curvature
of the quaternionic distribution D ⊂ TM , respectively.

IfM is a quaternionic CR-submanifold of minimal codimension, i.e., dim νx =
0 for x ∈M , we choose the following orthonormal basis:

Dx = Sp{ e1, . . . , en},

D⊥x = Sp{en+1, . . . , en+q},

and then
TM = Sp{e1, . . . , en; en+1, . . . , en+q},

T⊥M = Sp{J1en+1, . . . , J1en+q; J2en+1, . . . , J2en+q; J3en+1, . . . , J3en+q},

which correspond to the definition of a quaternionic CR-submanifold given in
[2].
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For x ∈M , we have

dimDx = n; dimD⊥x = q; dimTxM = n+ q;

dim νx = 0, dimT⊥x M = 3q = dim ν⊥x .

We will use the following convention on range of indices, unless mentioned
otherwise:

i, j, k = 1, n ; α, β, γ = 1, 3 ; r, s, t = n+ 1, n+ q ; A,B,C = 1, n+ q.

In [1], the authors proved an inequality for δ(D) in case of an anti-holomorphic
submanifold of a complex space form:

Theorem 3.1. [1] Let M be an anti-holomorphic submanifold of a complex
space form M̃h+p(c) with h = rankC D ≥ 1 and p = rankD⊥ ≥ 2. Then we
have

δ(D) ≤ (2h+ p)2

2
· p− 1

p+ 2
‖H‖2 +

p(4h+ p− 1)

2
· c

4
.

The equality sign holds identically if and only if the following three condi-
tions are satisfied:

(a) M is D-minimal,
(b) M is mixed totally geodesic, and
(c) there exists an orthonormal frame {e2h+1, . . . , en} of D⊥ such that the

second fundamental form σ of M satisfies
σrrr = 3σrss, for 2h+ 1 ≤ r 6= s ≤ 2h+ p, and
σtrs = 0 for distinct r, s, t ∈ {2h+ 1, . . . , 2h+ p}.

In this paper we prove a corresponding inequality for a quaternionic CR-
submanifold with minimal codimension of a quaternionic space form, by using
a different method, more precisely the method of constrained extrema.

Theorem 3.2. If M is a quaternionic CR-submanifold of a quaternionic
space form M̃ , of minimal codimension, i.e. dim νx = 0, for x ∈M , dimDx =
n, dimD⊥x = q and dim ν⊥x = 3q = dimT⊥x M then

(∗) δ(D) ≤ (n+ q)2

2
· q + 2

q + 5
‖H‖2 +

q(2q + n− 1)

2
· c

4
.

The equality sign holds at a point x ∈ M if and only if the following
conditions are satisfied:

a) M is mixed totally geodesic;
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b) there is an orthonormal basis {e1, e2, . . . , en+q} at x such that with re-
spect to this basis the second fundamental form h satisfies the following con-
ditions:

(i)

n∑
i=1

g̃(h(ei, ei), Jαer) = g̃(h(er, er), Jαer) = 3g̃(h(es, es), Jαer),

∀α = 1, 3, ∀r 6= s ∈ {n+ 1, . . . , n+ q},

(ii)
g̃(h(er, es), Jαet) = 0,

∀α = 1, 3, r, s, t = n+ 1, n+ q, r 6= s 6= t 6= r.

Proof.

With the above notations and orthonormal basis, we have

τ(x) =
∑

1≤i<j≤n

K(ei ∧ ej) +
∑

n+1≤r<s≤n+q

K(er ∧ es) +

n∑
i=1

n+q∑
r=n+1

K(ei ∧ er),

τ(Dx) =
∑

1≤i<j≤n

K(ei ∧ ej).

From these two relations, we obtain

(3.1) δ(D)(x) =

n∑
i=1

n+q∑
r=n+1

K(ei ∧ er) +
∑

n+1≤r<s≤n+q

K(er ∧ es).

From the Gauss equation (see also section 2), one obtains:

(3.2) K(X ∧ Y ) =
c

4

[
1 + 3

3∑
α=1

g̃2(JαX,Y )

]
+

+g̃(h(X,X), h(Y, Y ))− g̃(h(X,Y ), h(X,Y )).

Applying (3.2) for X = ei, Y = er, i = 1, n, r = n+ 1, n+ q we obtain

(3.3) K(ei ∧ er) =
c

4

[
1 + 3

3∑
α=1

g̃2(Jαei, er)

]
+
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+g̃(h(ei, ei), h(er, er))− g̃(h(ei, er), h(ei, er)).

Because Jαei ∈ D and er ∈ D⊥, we have

g̃(Jαei, er) = 0

and it follows that

(3.4) K(ei ∧ er) =
c

4
+ g̃(h(ei, ei), h(er, er))− g̃(ei, er), h(ei, er)).

By summation in (3.4) over i = 1, n, and r = n+ 1, n+ q we find

(3.5)

n∑
i=1

n+q∑
r=n+1

K(ei ∧ er) = nq
c

4
+

+

n∑
i=1

n+q∑
r=n+1

[g̃(h(ei, ei), h(er, er))− g̃(h(ei, er), h(ei, er))] .

Applying Gauss equation for X = er, Y = es, r, s = n+ 1, n+ q, r 6= s,
we get

(3.6) K(er ∧ es) =
c

4

[
1 + 3

3∑
α=1

g̃2(Jαer, es)

]
+

+g̃(h(er, er), h(es, es))− g̃(h(er, es), h(er, es)).

Because Jαer ∈ T⊥M and es ∈ TM, α = 1, 3, r, s = n+ 1, n+ q, r 6= s,
it follows that g̃(Jαer, es) = 0.

By summation in (3.6) over r, s = n+ 1, n+ q, r < s we obtain

(3.7)
∑

n+1≤r<s≤n+q

K(er ∧ es) =
q(q − 1)

2

c

4
+

+
∑

n+1≤r<s≤n+q

[g̃(h(er, er), h(es, es))− g̃(h(er, es), h(er, es))] .

Using the relations (3.5) and (3.7) in (3.1), it follows that

(3.8) δ(D)(x) =
q(q − 1)

2

c

4
+ nq · c

4
+

∑
n+1≤r<s≤n+q

g̃(h(er, er), h(es, es))+
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+

n∑
i=1

n+q∑
r=n+1

g̃(h(ei, ei), h(er, er))−
∑

n+1≤r<s≤n+q

‖h(er, es)‖2−

−
n∑
i=1

n+q∑
r=n+1

‖h(ei, er)‖2.

Thus, we get

δ(D)(x) =
∑

n+1≤r<s≤n+q

g̃(h(er, er), h(es, es))+

n∑
i=1

n+q∑
r=n+1

g̃(h(ei, ei), h(er, er))−

−
∑

n+1≤r<s≤n+q

‖h(er, es)‖2 −
n∑
i=1

n+q∑
r=n+1

‖h(ei, er)‖2 +
q(2n+ q − 1)

2
· c

4
,

which implies

(3.9) δ(D)(x) ≤ q(2n+ q − 1)

2
· c

4
+

∑
n+1≤r<s≤n+q

g̃(h(er, er), h(es, es))+

+

n∑
i=1

n+q∑
r=n+1

g̃(h(ei, ei), h(er, er))−
∑

n+1≤r<s≤n+q

‖h(er, es)‖2.

We denote
htAB = g̃(h(eA, eB), J1et),

h̃tAB = g̃(h(eA, eB), J2et),

˜̃
htAB = g̃(h(eA, eB), J3et),

where A,B = 1, n+ q, t = n+ 1, n+ q.
From (3.9), we get

(3.10) δ(D)(x) ≤ q(2n+ q − 1)

2
· c

4
+

+
∑

n+1≤r<s≤n+q

n+q∑
t=n+1

(htrrh
t
ss + h̃trrh̃

t
ss +

˜̃
htrr

˜̃
htss)+
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+

n∑
i=1

n+q∑
r=n+1

n+q∑
t=n+1

(htiih
t
rr + h̃tiih̃

t
rr +

˜̃
htii

˜̃
htrr)−

−
∑

n+1≤r<s≤n+q

n+q∑
t=n+1

[
(htrs)

2 + (h̃trs)
2 + (

˜̃
htrs)

2
]
.

We consider the following sums (3.11.1)-(3.11.3):

(3.11.1) S =
∑

n+1≤r<s≤n+q

n+q∑
t=n+1

htrrh
t
ss +

n∑
i=1

n+q∑
r=n+1

n+q∑
t=n+1

htiih
t
rr−

−
∑

n+1≤r<s≤n+q

n+q∑
t=n+1

(htrs)
2,

(3.11.2) S̃ =
∑

n+1≤r<s≤n+q

n+q∑
t=n+1

h̃trrh̃
t
ss +

n∑
i=1

n+q∑
r=n+1

n+q∑
t=n+1

h̃tiih̃
t
rr−

−
∑

n+1≤r<s≤n+q

n+q∑
t=n+1

(h̃trs)
2,

(3.11.3) ˜̃S =
∑

n+1≤r<s≤n+q

n+q∑
t=n+1

˜̃
htrr

˜̃
htss +

n∑
i=1

n+q∑
r=n+1

n+q∑
t=n+1

˜̃
htii

˜̃
htrr−

−
∑

n+1≤r<s≤n+q

n+q∑
t=n+1

(
˜̃
htrs)

2.

From the relations (3.10) and (3.11) we obtain

(3.12) δ(D)(x) ≤ q(2n+ q − 1)

2
· c

4
+ S + S̃ + ˜̃S.

For each of the sums S, S̃ and ˜̃S we must find the maximum. Let’s consider
first the sum S (we’ll proceed in the same manner for the other two sums S̃

and ˜̃S).

S =
∑

n+1≤r<s≤n+q

n+q∑
t=n+1

htrrh
t
ss +

n∑
i=1

n+q∑
r=n+1

n+q∑
t=n+1

htiih
t
rr−
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−
∑

n+1≤r<s≤n+q

n+q∑
t=n+1

(htrs)
2 =

=
∑

n+1≤r<s≤n+q

(hrrrh
r
ss + hsrrh

s
ss) +

∑
n+1≤r<s≤n+q

t/∈{r,s}∑
n+1≤t≤n+q

htrrh
t
ss+

+

n∑
i=1

n+q∑
r=n+1

hriih
r
rr +

n∑
i=1

∑
n+1≤r<t≤n+q

htiih
t
rr−

−
∑

n+1≤r<s≤n+q

[
(hrrs)

2 + (hsrs)
2
]
−

∑
n+1≤r<s≤n+q

t/∈{r,s}∑
n+1≤t≤n+q

(htrs)
2,

which implies

(3.13) S ≤
∑

n+1≤r<s≤n+q

(hrrrh
r
ss+hsrrh

s
ss)+

∑
n+1≤r<s≤n+q

t/∈{r,s}∑
n+1≤t≤n+q

htrrh
t
ss+

+

n∑
i=1

n+q∑
r=n+1

hriih
r
rr +

n∑
i=1

∑
n+1≤r<t≤n+q

htiih
t
rr −

∑
n+1≤r<s≤n+q

[
(hsrr)

2 + (hrss)
2
]
.

We recall the following result.
Let (M, g) be a Riemannian submanifold of a Riemannian manifold (M̃, g̃)

and f ∈ C∞(M̃), with the attached optimum problem:

(3.14) min
x∈M

f(x).

Theorem. [8] If x0 ∈M is a solution of the problem (3.14), then
(a) (grad f)(x0) ∈ T⊥x0

M ;
(b) The bilinear form α : Tx0

M × Tx0
M → R,

α(X,Y ) = Hessf (X,Y ) + g̃(h(X,Y ), (grad f)(x0))

is semipositive definite, where h is the second fundamental form of the sub-
manifold M in M̃ .

For t = n+ 1, n+ q, we consider the quadratic forms ft : Rn+q → R
defined by

(3.15) ft(h
t
11, h

t
22, . . . , h

t
nn, h

t
n+1n+1, . . . , h

t
n+qn+q) =
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=
∑

n+1≤r<s≤n+q

htrrh
t
ss +

n∑
i=1

n+q∑
r=n+1

htiih
t
rr −

r 6=t∑
n+1≤r≤n+q

(
htrr
)2
.

Now, we consider fn+1 as

fn+1(hn+1
11 , hn+1

22 , . . . , hn+1
nn , hn+1

n+1n+1, . . . , h
n+1
n+qn+q) =

=
∑

n+1≤r<s≤n+q

hn+1
rr hn+1

ss +

n∑
i=1

n+q∑
r=n+1

hn+1
ii hn+1

rr −
∑

n+2≤r≤n+q

(
hn+1
rr

)2
.

We must find an upper bound for fn+1, subject to

(3.16) P : hn+1
11 + hn+1

22 + . . .+ hn+1
nn + hn+1

n+1n+1 + . . .+ hn+1
n+qn+q = cn+1,

where cn+1 is a real number.

The bilinear form α : TxP × TxP → R has the expression

α(X,Y ) = Hess(fr)(X,Y ) + 〈h′(X,Y ), grad fr(q)〉,

where h′ is the second fundamental form of P in Rn+q and 〈 , 〉 is the standard
inner-product on Rn+q.

Searching for the partial derivatives of the function fn+1, we get

∂fn+1

∂hn+1
ii

=

n+q∑
r=n+1

hn+1
rr , i = 1, n,

∂fn+1

∂hn+1
n+1n+1

=

n+q∑
s=n+2

hn+1
ss +

n∑
i=1

hn+1
ii ,

∂fn+1

∂hn+1
rr

=

s6=n+2∑
n+1≤s≤n+q

hn+1
ss +

n∑
i=1

hn+1
ii − 2hn+1

rr , r = n+ 2, n+ q.

In the standard frame of Rn+q, the Hessian of fn+1 has the matrixOn A B
At 0 C
Bt Ct D

 ,

where On ∈ Mn(R), with all the elements equals to 0, A ∈ Mn,1(R), with all
the elements equals to 1, B ∈ Mn,q−1(R), with all the elements equals to 1,
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C ∈M1,q−1(R), with all the elements equals to 1 and D is the matrix

D =


−2 1 1 . . . 1
1 −2 1 . . . 1
. . . . . . . . . . . . . . . . . . . . .
1 1 1 . . . −2

 , D ∈Mq−1,q−1(R) .

As P is totally geodesic in Rn+q (see [8]), we obtain

α(X,X) = 2

n+q∑
r=n+1

X1Xr + 2

n+q∑
r=n+1

X2Xr + . . .+ 2

n+q∑
r=n+1

XnXr+

+2

n+q∑
r=n+1

Xn+1Xr + 2
∑

n+2≤r<s≤n+q

XrXs − 2

n+q∑
n+2

(Xr)
2 =

=

(
n+q∑
A=1

XA

)2

− 2
∑

1≤i<j≤n

XiXj −
n∑
i=1

(Xi)
2 − (Xn+1)2 − 3

n+q∑
r=n+2

(Xr)
2 =

=

(
n+q∑
A=1

XA

)2

−

(
n∑
i=1

Xi

)2

− (Xn+1)2 − 3

n+q∑
r=n+2

(Xr)
2 < 0

and then the Hessian of fn+1 is negative semidefinite.

Searching for the critical point (hn+1
11 , hn+1

22 , . . . , hn+1
n+qn+q) of fn+1, we find

∂fn+1

∂hn+1
11

=
∂fn+1

∂hn+1
n+1n+1

=⇒

(3.17) hn+1
n+1n+1 =

n∑
i+1

hn+1
ii = 3λ.

∂fn+1

∂hn+1
n+2n+2

=
∂fn+1

∂hn+1
n+3n+3

=⇒

(3.18) hn+1
n+2n+2 = hn+1

n+3n+3 = . . . = hn+1
n+qn+q = λ.

∂fn+1

∂hn+1
n+2n+2

=
∂fn+1

∂hn+1
n+1n+1

=⇒

(3.19) hn+1
n+1n+1 = 3hn+1

n+2n+2 = 3λ.
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From (3.16), (3.17), (3.18) and (3.19) we obtain

3λ+ 3λ+ (q − 1)λ = cn+1 =⇒ λ =
cn+1

q + 5
,

which gives

(3.20)

n∑
i+1

hn+1
ii = hn+1

n+1n+1 =
3cn+1

q + 5

and

(3.21) hn+1
n+2n+2 = hn+1

n+3n+3 = . . . = hn+1
n+qn+q =

cn+1

q + 5
.

Using the relations (3.20) and (3.21) in the expression of fn+1 we have

(3.22) fn+1(hn+1
11 , hn+1

22 , . . . , hn+1
nn , hn+1

n+1n+1, . . . , h
n+1
n+qn+q) ≤

≤ 3cn+1

q + 5
· (q − 1) · c

n+1

q + 5
+

(q − 1)(q − 2)

2
·
(
cn+1

q + 5

)2

+

(
3cn+1

q + 5

)2

+

+(q − 1) · 3cn+1

q + 5
· c

n+1

q + 5
− (q − 1) ·

(
cn+1

q + 5

)2

=

=

(
cn+1

q + 5

)2

· 6q − 6 + q2 − 3q + 2 + 18 + 6q − 6− 2q + 2

2
=

=

(
cn+1

q + 5

)2

· q
2 + 7q + 10

2
=

(
cn+1

q + 5

)2

· (q + 2)(q + 5)

2
= (cn+1)2 · q + 2

2(q + 5)
.

Then

(3.23) fn+1 ≤
q + 2

2(q + 5)
· (n+ q)2(Hn+1)2,

where Hn+1 =
1

n+ q

n+q∑
A=1

hn+1
AA .

In a similar manner one can prove that

(3.24) fr ≤
q + 2

2(q + 5)
· (n+ q)2(Hr)2, ∀r = n+ 1, n+ q,

where Hr =
1

n+ q

n+q∑
A=1

hrAA.
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For S̃ we have the functions f̃r and the relations

(3.25) f̃r ≤
q + 2

2(q + 5)
· (n+ q)2(H̃r)2, ∀r = n+ 1, n+ q,

where H̃r =
1

n+ q

n+q∑
A=1

h̃rAA and for ˜̃S we have the functions
˜̃
fr and the

relations

(3.26)
˜̃
fr ≤

q + 2

2(q + 5)
· (n+ q)2( ˜̃Hr)2, ∀r = n+ 1, n+ q,

where ˜̃Hr =
1

n+ q

n+q∑
A=1

˜̃
hrAA.

Using the relations (3.24), (3.25) and (3.26) in (3.12), we get the relation
(*); the conditions for the equality case are obtained from (3.9), (3.13), (3.20)
and (3.21).
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