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Abstract
We study some properties of restricted and associated Fubini num-
bers. In particular, they have the natural extensions of the original
Fubini numbers in the sense of determinants. We also introduce modi-
fied Bernoulli and Cauchy numbers and study characteristic properties.

1 Introduction

The Fubini numbers (or the ordered Bell numbers) form an integer sequence
in which the nth term counts the number of weak orderings of a set with n
elements. The Stirling numbers of the second kind S (n, k) counts the number
of ways that the set A = {1,2,...,n} with n elements can be partitioned into
k non-empty subsets. Fubini numbers are defined by

n

Fo= KISy (n,k)

k=0

([18]). They can be expanded involving binomial coefficients or given by an
infinite series.

n k 0o n
=S () -5 3 5
k=0 5=0 J 2 m=0 2
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The first Fubini numbers are presented as
{Fn}oro ={1,1,3,13,75,541, 4683, 47293, 545835, 7087261, 102247563, . .. }

([22, A000670]). The (exponential) generating function of Fubini numbers is
given by

oo

1 tm
fet:ZFnﬁ (1)

n=0

The Fubini numbers satisfy the recurrence relation:

F, = i (?) Frj. 2)

j=1

The literature contains several generalizations of Stirling numbers; see [16].
Among them, the so-called restricted and associated Stirling numbers of both
kinds (cf. [3, 6, 7, 10, 11, 12, 18, 20]). The restricted Stirling number of the
second kind Sy (n, k), gives the number of partitions of n elements into k
subsets under the restriction that none of the blocks contain more than m
elements. The associated Stirling number of the second kind S (n, k), gives
the number of partitions of an n element set into k subsets such that every
block contains at least m elements.

In this paper, we are interested in the sequence of the number of weak
orderings of a set with n elements in blocks with at most (and at least) m
elements. These two integer sequences are called the restricted Fubini numbers
and associated Fubini numbers, respectively. In particular, we give some new
determinant expressions for these sequences, and for some related sequences
such as the modified Bernoulli and Cauchy numbers. We also apply the Trudi’s
formula to obtain new explicit combinatorial formulas for these sequences.

Recently, studies on the determinantal representations involving interesting
combinatorial sequences appeared. For example, Bozkurt and Tam [4] estab-
lished formulas for the determinants and inverses of r-circulant matrices of
second-order linear recurrences. Li and MacHenry [14] gave a general method
for finding permanental and determinantal representations of many families
of integer sequences such as Fibonacci and Lucas polynomials. In [15], Li
obtained three new Fibonacci-Hessenberg matrices and studied its relations
with Pell and Perrin sequence. Xu and Zhou [26] studied a determinantal
representation for a generalization of the Stirling numbers, called »-Whitney
numbers, see also [19]. More examples can be found in [23, 24, 27].
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2 Determinants

In [8], Glaisher gave determinant expressions of several numbers, including
Bernoulli numbers B,,, Cauchy numbers ¢,, and Euler numbers F,,, defined by

t " t " 1 — "
et —1 nZ:o "n!” In(1+t) nzzoc" nl MY Coshit nZ:O "l

respectively. A determinant expression of the classical Bernoulli numbers is
given by

L 1
3 ar
B, =(—-1)"n! : 1 (3)
L 5 a5 1
T R
S nl 33

A determinant expression of Cauchy numbers is given by

1 1

T

3 2

e =mnll : 1 (4)

1 1 1

a1 3 1

11 11

n+1 n 3 2

The value of this determinant, that is, b, = ¢, /n! are called Bernoulli numbers
of the second kind.
A determinant expression of Euler numbers is given by

1
357 1
[
'
Eon = (=1)"(2n)! g (5)
;‘ % % 1
(2n1—2). (2n1—4). l 1
(2n)! (2n—2)! 4! 2!

Several hypergeometric numbers can be also expressed in similar ways ([1,
2, 13]). However, all numbers cannot be expressed in such simpler determinant
expressions. In general, we have the following relation:
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Theorem 1. Let {a, }n>0 be a sequence with ag = 1, and R(j) be a function
independent of n. Then

R(1) 1
R(2) R(1)
Qn = L 1 : (6)
R(n—1) R(n-2) R(1) 1
R(n) R(n—1) R(2) R(1)
if and only if .
o = Z(—l)jflR(J’)%—j (n=1) (7)

with ag = 1.

Proof. When n = 1, the result is clear because oy = R(1). Assume that (7)
is valid for any positive integer n. Suppose that (6) is true up to n — 1. Then
by expanding the first row, we have

R(1) 1
R(2) R(1)
R(n—1) R(n:— 2) R(1) 1
R(n) R(n—1) R(2) R(1)
R(2) 1
R(3) R(1)
= R(l)an,l - : 1
R(n—1) R(n-—3) R(1) 1
R(n) R(n—2) R(2) R(1)
R(3) 1
R(4) R(1)
= R(1)an_1 — R(2)an_s + : 1
R(n—1) R(n-—4) R(1) 1
R(n) R(n —3) R(2) R(1)
= R(1)ap1 — RQ2)an 2+ +(=1)" R(g(;)l) R%l)
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On the contrary, if (6) is true, by expanding the determinant, we get the
relation (7). O

Fubini numbers satisfy the required relation. Therefore, we have a deter-
minant expression of Fubini numbers similarly.

Theorem 2. For n > 1, we have

1
= 1
1!1 1
a2t 1!
F, =n! 1
nr2 (—pn? 1 1
(n—1)! (n—2)! 1!
O e 1 1
n (n—1)! T2 1!

Proof. From the relation (2), we apply Theorem 1 with

(-1t

Fy
anp=— and R(j) = ]
J!

n!

Examples. Since it is well-known that
= 1
§:<”+ )Bm:o,
m

we get
n

—n!
P G

j=1
Applying Theorem 1 with

B, 1
n — -n" d R(j)= B 5
0= (1" and RG) =
we have the determinant expression (3).
Since
e C T e S (O ey
n! = n—k+1 k! = ji+1 (n—j)!

([17, Theorem 2.1]), applying Theorem 1 with

Cn . 1
an:H and R(]):mv
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we have the determinant expression (4).
Since it is well-known that

we get

By x~ (1) (1) By
(2n)! _; (27)!  (2n—2j)!

Applying Theorem 1 with

(=n"

Eon 1

(2n)!

we have the determinant expression (5).

Op = (_1)n

2.1 Applications of the Trudi’s Formula

We can use the Trudi’s formula to obtain an explicit formula for the num-
bers a,, in Theorem 1. This relation is known as Trudi’s formula [21, Vol.3,
p.214],[25] and the case ag = 1 of this formula is known as Brioschi’s formula
[5],[21, Vol.3, pp.208—-209].

Theorem 3 (Trudi’s formula [25]). Let m be a positive integer. Then

al a2 .. am
Gop Qi

0 0 R aq a9
0 0 e ap aq

ittt m—t tm t1 .t

— —ti = =tlm jt1 T2 tm

- Z ( t t (—ao) ! Ay Qg - Ay (8)
t1+2to o tmt=m N LM

bttt

where ( A
m

) is the multinomial coefficient.

geeay

From Trudi’s formula, it is possible to give the combinatorial formula
ti+ -+t L
D O G (G O CER O
tla tn
t14+2ta+--4nt,=n

In addition, there exists the following inversion formula, which follows from
Theorem 1.
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Lemma 4. If {a,}n>0 is a sequence defined by ag =1 and

R(1) 1 a1
n = R(2) , then R(n) = oy
; PR | : |
R(n) --- R(2) R(1) an 0 ay o

1
(&3] 1 R(l) 1
A= . ) , then A™1 = .
ap - oap 1 R(n) -+ R(1) 1

From above relations and Theorem 2 we obtain an explicit formula for the
Fubini sequence.

Corollary 5. Forn >1
Fn t1++tn —ty——t
L _1 n 1 n
we s (e

t1+2to 4+ Fntp=n
() () (=)
X p— “ e ———— .
1! 2! n!

Moreover,
I
ST
F: n—1
5 _ (=1
. B n!
: .1 ’
Fn R
n! PI
and
-1
1 1
F 1
T N
B R 1 _1 L1 1
ar ar = 2! 1!
Fp .. F F g (=nm* 11
n! 2! 1! nl R TR 1]

Example. For n = 4, we have the integer partitions 1414141, 1+1+42, 143,
242 and 4. Then
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4404040\ /1\*
= 4! _1)4-4 _
5 4’<( ) ( 4,0,0,0 )(1!>
2414+0+0\ /1\?/ 1
_1\4—2-1 - -
ey < 2,1,0,0 >(1!) ( 2!>
1404140\ /1) /1
_q)4-1-t 4 <
0 ( 1,0,1,0 ><1!> <3!>

0+2+0+0 1\? 0+04+0+1 1
_1\4—2 - _1)4-1 -
ey ( 0,2,0,0 >< 2!) e ( 0,0,0,1 )( 4!))

301 1 1
=4 (1+2+24-4—) =15
(+2+3+4+M) 75

3 Restricted Fubini numbers

The restricted Fubini numbers are defined by

n

Frcm =Y KISy (n,k)_,, .
k=0

They satisfy the recurrence relation:

m

Phgm::§:<?>ﬂ%%gm. 9)

Jj=1

Theorem 6. The (exponential) generating function of restricted Fubini num-
bers is given by

1 Nt tn
1-t—t = 2 Focny

2! m! n=0

Proof. Since the generating function of the restricted Stirling numbers of the
second kind is given by

1 2 ﬂlk_"ms ot
Uttt =Y S:(n, J<m
n=k

we have

o

X%Fn,gmf:! = Z kLSa (n, k)<, g = Z k! Z Sz (n, k), %n'
n= k=0 =k

n=0 k=0
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TN (AR D
T 7' = 12 tm
— k: m! 1—t—-5 - — s
O
Theorem 7. Forn > 1,
B 0
—3 1T 1
(_1)'771.71 (_1)'771.72 _1)'771.73
Fn,gm =nl m! (m,fl)!1 (m—2)!
—1 m—
0 (- 1 0
: 1 L1
(—1ym— L
0 0 ol a1

Namely, all the values (7

2 are replaced by 0.

Remark. When m > n, the determinant in Theorem
rem 2. In fact, F}, <p, = F,, when m > n.

(m+1 < j <mn)in the determinant in Theorem

7 matches that in Theo-

Proof of Theorem 7. The result is trivial for n = 1, because Fj <p, =1 (m >

1). Assume that the result is true, up to n — 1.
determinant at the first row,
no ] "
—a i )
(71)'m—1 (-1 2 (71).771,73
m! (m— 1)‘ (m—2)!
-1 m—1
o &2 1
: 1
: ) 1
(71)771,— 1
0 0 m! T2t

Then, by expanding the

[= = o

[
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_ 1 1 0
2!
B 1 !
1 Fh1,<m (—1).”"”’1 (—1).”“”’2 (—1)'”"3
= S0 — m! (m—1)! (m—2)!
0 oS g
_ 1 Fn—l,gm 1 Fn—2,§m
1! (n—1)! * o (n —2)! +
0 1 0 0
o & 1
1 Foom,<m - (*1).7”_2 (*1).7"_3
4 ——nmmsm |0 (m—1)! (m—2)!
m! (n —m)! (—1)m=1
o 1 0
: B |
0o .- 0 (*12,1! SRR
Zm:l n— ],<m o Fn,gm
ot < j! (n—j)! n!
Here, we used the relation (9). O
Example. By Theorem 2,
1 1 0 0 0
-+ 1 1 0 0
6| ¢ —3 1 1 0|=541
_1 1 -1 1 1
G U G B
120 24 6 2
and
1 1 0 0 0
-+ 1 1 0 0 0
1 _1
5' 61 12 11 1 0 O = 4683 .
~3 5 —3 1 10
[ U L B
120 24 6, 12 L
20 12 “21 6 2 1
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Since

Loy, 30 1360 95th 5AL° 156160 472931 36389¢°
2 et 2 76 8 120 ' 240 5040 2688

we also have

541 1561
Fy; = —5! =541 d Fg=——6!=4683.
5 1205 5 an 6 210 6 683

On the other hand, by Theorem 7,

1 1 0 0 0
-5 1 1 0 0
510§ —3 1 1 0]=530
0 & -3 1 1
1 1
0 0 5 —3 1
and
1 1 0 0 0
—% 1 1 0 0 O
1 1 0 0
1| & 2 _
6! o % _% 1 I 4550.
o 0 & -1 1 1
0 0 0 % —% 1
Since
1 B 1+t+%+13t3+37t4+53t5+455t6 +217t7+207t8+
1_(15.4_%4_%) - 2 6 12 12 72 24 16
we also have
53 455

F5_’§3 = ﬁ5' =530 and F67S3 = 66' = 4550.

From Trudi’s formula and Lemma 4 we obtain the following relations.

Corollary 8. Forn > 1

Fy<m _ t1 4+ +1tn
n! - Z tl,.

.t
t14+2ta++mtm=n o

e (G (5 ()




SOME DETERMINANTS INVOLVING INCOMPLETE FUBINI NUMBERS 154

Moreover,
Fi,<
T 1
Fo<m
2!
=0,
1
Fno<m . Fo<m  Fr<m
n! . 2! 1!
and
—1
1
<
T 1
F2,§'m F1,§7n 1
2! 1!
Fr <m Focm  Fi<m 1
n! 2! 1!
1
1
1 1
1 1 1
2! 1!
— (_1)m71 (_1)77172 (_1)77173
m! (m—1)! (m—2)!
(_1)777,71
0 oo 1
. 1
(_1)m71 1
L0 T 1 1

4 Associated Fubini numbers

The associated Fubini numbers are defined by

Fosm =Y _KSy(n,k)s,, -
k=0

They satisfy the recurrence relation:
" /n
Fozm= ) ( .>Fn—j72m- (10)
j=m J

Theorem 9. The (exponential) generating function of restricted Fubini num-
bers is given by
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Proof. Since the generating function of the associated Stirling numbers of the
second kind is given by

1 ﬁ_Fﬂ ZS k), —
E'\m!  (m+1)! 2\t >m n!’
we have

ZFn>m ':ZZ 15, ( nk>m— Zk'ZSQ nk>m—n!
0 k=0 n=

_Sul ﬁ+ﬂ+ ’“_ 1
TR \ml (m+ 1) oot

Theorem 10. Forn>m > 1,

0 0 0
o 1 0
0 :
Fpom=nl| B0
: 0
<—17§*1 ContoL et g

Namely, all the values ¢ (1 < j <m—1) in the determinant in Theorem

2 are replaced by 0.

Remark. When m = 1, the determinant in Theorem 10 matches that in
Theorem 2. In fact, Fy, >1 = F,.
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Proof of Theorem 10. For convenience, put

0 1 0 0
0 1 0
0
G = | E 0
: 0
e

Expanding the determinant at the first row of G,, ,, continually, if n < 2m,
then

(—1ym—1

(m—1)! 1
Gn,m = (_l)m_l
: 1
w0
m—1 n—m (_1)”‘71 _ 1
(=)™ (1) e

Since Fy >m =1 (n < 2m), we have F), >, = nlG,, ,,, as desired.
If n > 2m, then

(=ym-
m!

Gn m = (_1)m—1

: 1
CU— Qo
0 1 0
= | :
; 1
7(*(1")::;:1 (*173177'"71 0 --- 0
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(=™
(m+1)! 1
_(_1)m—1 :
: 1
(71)”—1 (-1)n—m™
n! (n—m—1)! 0
0 1 0
1 anm >m 1 0
=— = (=™
m! (n—m)!  (m+1)! g 0
: 1
_1\yn—m _1ym—1
ey B0 0
(_1)7n+1
(m+2)! 1
— (=)™ _ - J,Z. _ =m
Z =gl
(_1)71—1 (_1)71—n1+1
n! (n—m—2)!
Here, we use the relation (10). O
Example.
By Theorem 10,
0 1 0 0 0
0 0 1 0 0
511 ¢ 0 0 1 0f=1
1 1
— 5 = 0 0 1
ﬁl ERCU 0 0
120 24 6
and
0 1 0 0 0 0
0 0 1 0 0 0
1
6! 6, (1) 0 100 =21.
—51 g 0 0 1 0
i N
120 24 6,
~70 120 ~2a 5 00
Since
1 ¢t 5 s en®  21014°

: =14ttt b b
- (E+ Lt 6 ' 24 120 ' 240 ' 13440 ' 362880
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we also have

1 7
F5123 = 66' =1 and FG,Z,?, = mG' =21.

From Trudi’s formula and Lemma 4 we obtain the following relations.

Corollary 11. Forn >1

Fn>m b + -+ tp M=ty ——ty,
2m )3 (e

Ty .-
Mt 4 (M4 tmp1 4+ +ntn=n mo

g <(_;):1> ((gf;!)tw (Hn)'l) )

Moreover,
Fy>m
i 1
Fo>m . - _
S (-
. . = | )
1 n:
FTL,ZW‘L c. F2,2m F1,27n
n! ’ 2! 1!
and
-1
1
Fi>m
i 1
Fy >m Fy >m 1
2! 1!
Fn>m Fo>m  Fi>m 1
nl 21 1!
- 1 -
0 1
0 1
— (_1)77171
m! 0
: 0
(Gl D i
(n—1)! 0 1
(_1)7171 (_1)n72 (_1)m71
L n! (n—1)! e m! 0 - 0 1-
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5 Modified incomplete Bernoulli and Cauchy numbers

In [9, 11], restricted Cauchy numbers ¢, <,, and associated Cauchy numbers
Cn,>m are introduced as

© tn eFm,(t) —1

Y epem =1 (12)
Sm

opard n! F.(t)

and
eln(l+t)—F,n_1(t) -1

(o) tn
E Cn,>m = )
o n! In(l1+1t)— Fph_1(¢)

(13)

respectively, where

t2 m_ltm
Fot)=t— 5+ + ()" —

5 - (m>1).

Both incomplete Cauchy numbers are natural extensions of the original Cauchy
numbers c¢,, because they have expressions:

ey
“n,<m = /;) {Z}gm k+1

and .
B n n (—l)n_
wen =[],

with ¢, = ¢p, <00 = Cp,>1. However, such incomplete Cauchy numbers cannot
be natural extensions of the original one in terms of the determinants, though
Fubini numbers do as seen in Theorems 2, 7 and 10. Therefore, we introduced
modified incomplete Cauchy numbers. The modified restricted Cauchy numbers

C.<m are defined by
t = tn
—_— = - — > 2 14
Fm(t) nz:% cn,gm nl (m = ) ( )

instead of (12). The modified associated Cauchy numbers c;, -, are defined
by B
o

t . tn
(1 +¢)— Fp1(t) +1 2 Cnomoy (M22) (15)

instead of (13). Note that ¢, = ¢}, ,,, if n <m —1, and ¢, = ¢}, 5.
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Theorem 12. For integersn > 1 and m > 2,

1
I 1 0
i
C:,,Sm:n' m
0 0
1
N

Theorem 13. For integers n and m withn —1>m > 2,

0 1 0
1
*
Cp>m = n! T

m—+1 0
: . 1

... 1 1 0

n+1 m+1 m

Remark. If n < m — 1, this result is reduced to (4).

Proof of Theorem 12. By (14),

m—1 . o oo min{n,m—1} -
) t! (=1) Cj<m
1= (> (-1)- <§ < >:§ > I A
ST Y
j=0 j+1 1=0 i n=0 =0 j+1 (n—j)
Hence,
Ch<m (=1 e
=" — E = >1). 16
W T () (n21) (16)

By (14), it is clear that cj ,, = 1. Assume that the result is valid up to n—1.
Then, by expanding the determinant at the first row, we have

1 0 10

N|—=
ol

Nl= = O
N = O

gl
3=
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L 10
0 3
1 :; 1,<m 1 :;—2<m
S - = (=D 0
2l 3oz TN
: 1
0 3
_lczfl,gm_lcszgm_’__”_k( D™ Chmt1,<m Ch.<m
2(n—-1! 3(n-2)! m (n—m-+1) n!

Here, we used the relation (16).
Remark. If m = 2, this result is reduced to (4).

Proof of Theorem 13. If n+ 1 < 2m, the identity is equivalent to

1
w 1 0
0
C;’Zm_ m :
] =(-1) 0
- 0
: : 0 1
1 1 1
o nomm = 0O --- 0

If n+ 1 > 2m, the identity is equivalent to

L1 0
o >m ml 0 0
ST ) _
: : 1
1
Py 0 0

By (15), we have

S (zc;ml,)
j=m—1 =0
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Hence, for n > 1

Thzm _ 2": (=1 jom
1 i —
n! Pt 1 (n—3)!

By using this relation, we can obtain the result, similarly to the proof of
Theorem 12. O

For the modified Cauchy numbers, we can also give an explicit expression
similar to that given in Corollaries 5, 8 and 11.

Corollary 14. Forn > 1

C:L,Sm o tl + -+ tmfl
n' a Z ( tlv' )

ey tm—
t1+2t 4+ A (m—1)tm_1=n rim—l

Moreowver,
C1,<m
1! 1
C2,§7n
2! _
_0,
1
C:z,gm c. C;,Sm CT,Sm
n! : 2! 1!
and
-1
1
Cl,gm,
1! .
Ca <m C1,<m 1
2! 1!
* * *
(’n,g'm cZ,S'm cl.§7n 1
n! 2! 1!
1 _
T |
O
3 3 1
= |1 1 1
m ml—l m—2
0 o 1
. 1
' A
_0 PR 5 1_
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Corollary 15. Forn > 1

*

cn,zm _ tmfl + st + tn
2n > ( )

ti—1,...,¢t
M —1+(Mm+1)tm+--+(n+1)t,=n m—1, s ln

1 tm—1 1 tm 1 tn
-1 n—tm—_1—"—1tn _— e . 17

Moreowver,
C1,>m
1! 1
o
2,>m
21 1
- )
C;,Zm T, C;.z'm CI.E'm
n! ! 2! 1!
and
—1
1
Cl,zm,
*11 *
Ca2,>m C1,>m 1
2! 1!
C:.,z'm c;,z'm c;.z'm 1
n! 2! 1!
-1 -
0 1
0 1
1
pon 0
L 0 1
1 1 1
LT w m 0 0 1]

In [10], restricted Bernoulli numbers B,, <., and associated Bernoulli num-
bers By, >, are introduced. However, similarly to incomplete Cauchy numbers,
these incomplete Bernoulli numbers must be modified to have determinant ex-
pressions.

Define modified restricted Bernoulli numbers B by

n,<m

n
n!

t > t
—  =N"Br_ — 18
En(t) -1 EO = 18



SOME DETERMINANTS INVOLVING INCOMPLETE FUBINI NUMBERS 164

and define modified associated Bernoulli numbers By, -, by

t > tm
= B* —_
et — Ep(t) — 1+t 2 2]

n=0

where

Then these modified incomplete Bernoulli numbers have determinant ex-
pressions. The proofs are similar and omitted.

Theorem 16. For integers n > 1 and m > 2,

5z 1 0
1
B} e = (-1)"nl|
0 0
1
0 el
Remark. If n < m — 1, this result is reduced to (3).
Theorem 17. For integers n and m withn —1>m > 2,
0 1 0
hem = (=DMl
> 1 0
(m+1)!
: 1
1 1 1
(n+1)! e (m+1)!T  m! 0

Remark. If m = 2, this result is reduced to (3).

Corollary 18. Forn > 1

(_1)nB:,§m o Z i+ + il
n! tl»-“;tmfl

ti4+2ta 4+ (m—1)tm_1=n
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t t ton—
e (D) (A) ()
2! 3! m)! ’

Moreover,
_B* m
— 1
(*1)2B;,§m . .
21 —0,
: ’ 1
(=D)"B < -, (-1)°B} <, —Bicm
nl 21 1
and
_ ) S
=]
(-1)°B} <,  —Bi < 1
21 1!
(=1)"B; <m (-1)’B5cn  —Bicm 1
nl 21 1 J
o -
1
a7 1
1
& 1
=1 1 1
m! (m—1)! (m—2)!
0 = 1
m
1
5 1
: 2!
L 0 e % e % 1]
Corollary 19. Forn > 1
(=B} 5 Z <tm1 NI tn)
tm—17 A atn

|
n:
mtpy—1+(m+1)ty+-+(n+1)t,=n
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Moreover,
—-B7 m
on 1
—1)2B: . .
( )212,Zm . . - 1
(=D)"B} >m -. (-1)°B} >, —Bism
nl : 21 1!
and
- 1 - -1
_Biinn 1
(_1)2B;,Zm —Bf,zm 1
21 1!
(— 1)" n,>m (-1)°Bj>m  —Bism 1
L n! 21 1! i
-1 _
0 1
0 1
L 0
% e 0 1
' 1 1
RSyl 0 0 1]

6 The Generalized Fubini Numbers

The generalized Fubini numbers Fy(Lk) are defined by

(k) T +
( —et> ZF+1 ',keZ .

Note that

(k)
Foi 3 Fjiv1 Fjop1 Fj (21)

T i 1(5 | i N
ot s, G DG+ D (e £ 1)!
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The generating functions of the generalized Fubini numbers for k£ = 2 and
3 are

I , 225 TTEY 653t5 6497t 7414117
=142t + 4% +

2—¢l 3 * 6 30 * 180 + 1260
1\ 143+ 15¢2 N 33t? N 269¢* N 2601t° N 5809¢t° N
2—¢) 2 2 8 40 48
Let T;, = [t; ;] be the n-square Toeplitz-Hessenberg matrix defined as in
Theorem 2, i.e.,
LT iti> g
lij=ti—j =191, ifi+1=y;
0, otherwise.

Let A and C be matrices of size n x n and m X m, respectively, and B be a
n X m matrix. Since

det [O c

A B} = det Adet C,

the principal minor M (¢) of the matrix T, is equal to % (i’l‘i:’ll)! . It follows that
the principal minor M (iy,4s,...,%;) of the matrix T, is obtained by deleting

rows and columns with indices 1 < i1 < ip < -+ <14 < 0

_ F’il Fiz*il Fi[*ilfl F’I’L*i[‘l’l

M(i1,%9,...,1 - - - - - .
(1,02, 1) i1 (io —i1)! (i — i) (n— 4 + 1)!

(22)

Then from (22) we have the following theorem.

Theorem 20. Let S,_¢,(£ = 0,1,2,...,n — 1) be the sum of all principal
minors of the matrixz T, of order n —{. Then

Jitjet A i=n—¢ G+ G+ (e + 1!
Since the coefficients of the characteristic polynomial of a matrix are, up to

the sign, sums of principal minors of the matrix, then we have the following.
(t+1)

Corollary 21. The generalized Fubini number (:’Qfll)! is equal, up to the

sign, to the coefficient of x* in the characteristic polynomial p,,(x) of the matrix
T’VL
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For example,

=|—

N =
i
2= o

)—A‘t—‘
[~

T5 =

X
N
=

[~
[—=
[—
e o o

N
&
=y
=
PR o oo

=
‘)—‘

sl
|
w

!

o
=

then its characteristic polynomial is ps(z) = —2°+52* — 1223+ % — Tz 24l
@)

So, it is clear that the coefficient of z! is Fgl = 7 Note that this is the 4-th

coefficient of the ordinary generating function of (32 )2.
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