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A Family of Maximal Algebras of Block
Toeplitz Matrices

Muhammad Ahsan Khan

Abstract

The maximal commutative subalgebras containing only Toeplitz ma-
trices have been identified as generalized circulants. A similar simple
description cannot be obtained for block Toeplitz matrices. We intro-
duce and investigate certain families of maximal commutative algebras
of block Toeplitz matrices.

1 Introduction

Toeplitz matrices are one of the most well-studied and understood classes of

structured matrices, that arise naturally in several fields of mathematics, as

well as applied areas as signal processing or time series analysis. The subject

is many decades old; among the monographs dedicated to the subject are [8],

[7], and [11].

The related area of block Toeplitz matrices is less studied, one of the rea-

sons being the new difficulties that appear with respect to the scalar case.

Besides its theoretical interest, the subject is also important in view of the

applications to multivariate control theory. As references for block Toeplitz

matrices one can use [1] and [6].

Multiplication properties of Toeplitz matrices have been discussed in [10, 9].

Since the product of two Toeplitz matrices is not necessarily a Toeplitz matrix,
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it is interesting to investigate subsets of Toeplitz matrices that are closed under

multiplication—that is, algebras of Toeplitz matrices. It is not obvious that

such nontrivial algebras exist (besides scalar multiples of the identity); but it

turns out that one can identify all such maximal algebras [10]; they are given

by the so-called generalized circulants [5].

The investigation of the similar problem for block Toeplitz matrices has

been proposed as an open question in [10], and it does not appear that much

progress has been done since. The general problem of characterizing all maxi-

mal algebras of block Toeplitz matrices seems very hard. In the current paper

we make a few steps in this direction, describing a certain family of such

algebras.

The plan of the paper is the following. We start with a section of prelimi-

naries. Then, as we will be interested in block Toeplitz matrices whose entries

are themselves elements of maximal commutative subalgebras of matrices, we

discuss in Section 3 several such examples. In Section 4 we introduce a certain

family of maximal algebras that we will consider and prove some basic results.

Finally, in the last three sections we discuss this family corresponding to the

different maximal commutative subalgebras considered in Section 3.

2 Preliminaries

As usual, C will stand for the complex plane. We designate the algebra of all

d× d matrices with entries from C by Md×d(C). An algebra is a vector space

A over C which is closed to multiplication. A subset B of an algebra is called

a subalgebra if it is itself an algebra; it is commutative if ab = ba for every

a, b ∈ B. A subalgebra B of A is maximal commutative if for any commutative

subalgebra B1 the inclusion B ⊂ B1 implies that B = B1.

If B is a subalgebra of Md×d(C), then B
′

denotes the commutant of B (the

set of all d×d matrices commuting with every element of B). It is not difficult

to see that B
′

is also an algebra.
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For diagonal matrices we will use the notation

diag
(
a1 a2 · · · ad

)
=


a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . ad


Classical Toeplitz matrices are square matrices whose entries are constant

parallel to the main diagonal; that is, they are of the form

T = (tp−q)
n−1
p,q=0 : tj ∈ C.

The linear space of all n× n Toeplitz matrices will be denoted by Tn.

If we replace the scalar entries of Toeplitz matrices by d× d matrices, we

obtain block Toeplitz matrices. Thus a block Toeplitz matrix is actually an

nd × nd matrix, but which has been decomposed in n2 blocks of dimension

d, and these blocks are constant parallel to the main diagonal. We will use

the notation T = (Tp−q)
n−1
p,q=0, for a block Toeplitz matrix, and we will denote

by Tn,d the linear space of all n× n block Toeplitz matrices whose entries are

d× d matrices; thus

Tn,d =
{

(Tp−q)
n−1
p,q=0 : Tj ∈Md×d(C)

}
.

The scalar case is Tn = Tn,1.

It is well known that the product of two scalar Toeplitz matrices is not

necessarily a Toeplitz matrix. The main multiplicative properties of Tn can

be found in [10, Theorem 1.3]. The next two theorems summarize then in a

convenient form.

Theorem 2.1. The following statements are equivalent:

1. A is a maximal subalgebra of Tn.

2. A is a maximal commutative subalgebra of Tn.

3. There exist a, b ∈ C, not both zero, such that

A =
{
T =


t0 bt1 . . . btn−1

atn−1 t0 . . . btn−2
...

...
. . .

...
at1 at2 . . . t0

 : t0, . . . , tn−1 ∈ C
}
. (2.1)
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It is immediate that the algebra A defined by (2.1) depends only on the

quotient a/b. Shalom denotes, for any complex number α, by Πα the set of all

Toeplitz matrices of the form (2.1), where a = 1, b = α and by Π∞ the set of

all Toeplitz matrices of the form (2.1), where a = 0 and b = 1 (i.e. the set of

all upper triangular Toeplitz matrices). These algebras are called generalized

circulants.

Theorem 2.2. If T ∈ Tn is invertible, then there exists α ∈ C ∪ {∞} such

that T as well as T−1 belong to Πα.

As noted in [10], there is no satisfactory analog of the above results for block

Toeplitz algebras, and a classification of maximal commutative subalgebras

seems beyond reach. Our purpose in this paper is to explore a class of maximal

commutative subalgebras of the subspace of block Toeplitz matrices.

3 Maximal commutative subalgebras of matrices

We have already noted that the class of block Toeplitz matrices is not closed

with respect to multiplication. In fact, the next lemma can be proved after

some slightly tedious computations.

Lemma 3.1. Suppose T = (Tp−q)
n−1
p,q=0 and U = (Up−q)

n−1
p,q=0 are two block

Toeplitz matrices with entries in Md×d(C). The product TU is a block Toeplitz

matrix if and only if

TpUq−n = Tp−nUq for all p, q = 1, 2, · · ·n− 1. (3.1)

The main purpose of the present article is to study certain subalgebras

of Tn,d. Their form is suggested by the generalized circulants that appear in

Theorem 2.1; we will see however, first that some care must taken with their

definition, and secondly that they do not exhaust all subalgebras of Tn,d.

As a preparation, let us remember that the entries of scalar Toeplitz ma-

trices are complex numbers. Therefore, as a first step in the study of subalge-

bras of block Toeplitz matrices, we will assume that their entries belong to a

fixed maximal commutative subalgebra of Md×d(C), that we will denote by B.

There are many examples of maximal commutative subalgebras of Md×d(C),
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and their classification is far from being achieved (see, for instance, [2, 3, 4]).

Here is a non-exhaustive list to which we will refer in the sequel.

1. If we fix a basis in Cd, then the algebra of diagonal matrices D is maximal

commutative.

2. The generalized circulant algebras Πα defined in section 2 are maxi-

mal commutative subalgebras. In particular, Π0 is the algebra of lower

triangular scalar Toeplitz matrices, while Π∞ is the algebra of upper

triangular scalar Toeplitz matrices.

3. Fix positive integers σ, τ , such that σ + τ = d. Consider the family of

matrices that have with respect to the decomposition Cd = Cσ ⊕Cτ the

form

Oσ,τ =

{(
λIσ X
0 λIτ

) ∣∣∣λ ∈ C, X ∈Mσ×τ (C)

}
It is shown in [2] that, for |σ − τ | ≤ 1, Oσ,τ is a maximal commutative

algebra. We will call it a Schur algebra.

4. Suppose that M is a nonderogatory matrix; that is, its minimal polyno-

mial is equal to its characteristic polynomial. Then the algebra P(M)

generated by M is maximal commutative.

These examples show the large variety of maximal commutative subalge-

bras of matrices. We will use them as main test cases for our development.

Let us note, for further use, the following simple result. Recall that a

subalgebra B is said to be inverse-closed if, wheneverB ∈ B andB is invertible,

it follows that B−1 also is in B.

Lemma 3.2. If B is a maximal commutative subalgebra of Md×d(C), then B

is inverse closed.

Proof. If B is a commutative subalgebra, then B ⊂ B′, and B is a maximal

commutative subalgebra if and only if B = B′. Suppose then A ∈ B is

invertible. Since AB = BA implies A−1B = BA−1, it follows that A−1 ∈
B′ = B.
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4 A class of subalgebras

Fixing a maximal commutative subalgebra B in Md×d(C), we will denote by

Tn,d(B) the linear space of block Toeplitz matrices with entries in B. We are

interested in identifying maximal subalgebras of Tn,d that are contained in

Tn,d(B).

The class we will consider is inspired by the generalized circulants Πα in

Section 2. We start by noting that we can also define

Πα = {T = (tp−q)
n−1
p,q=0 : atj = btj−n for j = 1, . . . , n− 1}.

Let us then fix A,B ∈ B′, and define the family FB
A,B by

FB
A,B =

{
T = (Tp−q)

n−1
p,q=0 : Tj ∈ B, ATj = BTj−n, j = 1, 2, · · ·n− 1

}
. (4.1)

We will use the following simple lemma.

Lemma 4.1. Suppose A,B ∈Md×d(C) satisfy the condition

KerA ∩KerB = {0}. (4.2)

If T is any d× d matrix such that AT = BT = 0 then T = 0.

Proof. To prove T = 0 we will show that Tx = 0 for all x ∈ Cd. The

assumption that ATx = 0 and BTx = 0 for all x ∈ Cd implies that Tx ∈ KerA
and Tx ∈ KerB. It follows that Tx ∈ KerA ∩ KerB. But since we have

KerA ∩KerB = {0}, it follows that Tx = 0 and hence T = 0.

We obtain then the main result of this section.

Theorem 4.2. Suppose B is a commutative subalgebra of Md×d(C), and

A,B ∈ B′. Then the family FB
A,B is a commutative linear subspace of Tn,d(B).

If A,B satisfy condition (4.2), then FB
A,B is an algebra.

Proof. It is easy to see that FB
A,B is a commutative linear space. Let us then

assume that condition (4.2) is satisfied. To show that FB
A,B is closed under

matrix multiplication, suppose that T and U are two arbitrary elements of

FB
A,B ; so

T = (Tp−q)
n−1
p,q=0, ATj = BTj−n j = 1, 2, · · · , n− 1,

U = (Up−q)
n−1
p,q=0, AUj = BUj−n j = 1, 2, · · · , n− 1.

(4.3)
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The entry at the position (i, j) of TU is

(TU)i,j =

n−1∑
k=0

Ti−kUk−j , i, j = 0, 1, · · ·n− 1, (4.4)

and therefore

(TU)i,j − (TU)i+1,j+1 = Ti−n+1Un−1−j − Ti+1U−1−j .

Multiplying with A and with B respectively and using formulas (4.3), it follows

that

A((TU)i,j − (TU)i+1,j+1) = 0,

B((TU)i,j − (TU)i+1,j+1) = 0.

We may then apply Lemma 4.1 to conclude that

(TU)i,j − (TU)i+1,j+1 = 0,

and thus V := TU ∈ Tn,d(B). Therefore V = (Vi−j)
n−1
i,j=0.

To prove that V ∈ FB
A,B , consider j = 0 in (4.4). Then

AVi = A(TU)i,0 = A(

n−1∑
k=0

Ti−kUk) =

n−1∑
k=0

Ti−kAUk

=

n−1∑
k=0

Ti−kBUk−n = B(

n−1∑
k=0

Ti−kUk−n) = B(TU)i,n = BVi−n.

Therefore V ∈ FB
A,B . This proves, along with the earlier fact that FB

A,B is

a linear subspace, that FB
A,B is an algebra in Tn,d.

Remark 4.3. Condition (4.1) has been shown to imply that FB
A,B is an alge-

bra. However, the converse is not true; an example will appear in Section 6

below.

The next result concerns the maximality of FB
A,B as a commutative algebra

in Tn,d.

Theorem 4.4. Let B be a commutative subalgebra of Md×d(C). The following

assertions are equivalent:
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1. B is a maximal commutative subalgebra of Md×d(C).

2. The family FB
A,B is a maximal commutative algebra in Tn,d.

Proof. Suppose that B is a maximal commutative subalgebra of Md×d(C).

Suppose that F is a commutative algebra in Tn,d such that FB
A,B ⊂ F. Let

T = (Tp−q)
n−1
p,q=0 be any arbitrary element of F. For an arbitrary U ∈ B

define U = diag
(
U U · · ·U

)
. Then U ∈ FB

A,B . Since FB
A,B ⊂ F and F is a

commutative algebra in Tn,d, we have TU = UT. Comparing corresponding

entries of TU and UT, we obtain TpU = UTp for all p, |p| ≤ n − 1. Since

U ∈ B and B is a maximal commutative subalgebra of Md×d(C), it follows

that Tp ∈ B for all p.

Now let T ∈ F be any arbitrary element of the form T = (Tp−q)
n−1
p,q=0 and

consider the fixed element J ∈ FB
A,B defined by

J =


0 0 0 . . . A
B 0 0 . . . 0
0 B 0 . . . 0
...

...
...

. . .
...

0 0 . . . B 0


Using formula (4.4) for JT, one obtains

(JT)i,j =

{
ATn−1−j for i = 0, j = 0, . . . , n− 1,

BTi−1−j for i 6= 0, j = 0, . . . , n− 1.
(4.5)

Since F is contained in Tn,d, the entries along the main diagonals of JT should

be equal. In particular,

(JT)0,j = (JT)1,j+1

for j = 1, . . . , n− 2. By (4.5) this means ATn−1−j = BT−j−1, or, by denoting

i = n− 1− j,
ATi = BTi−n

for i = 1, . . . , n − 1. Therefore T ∈ FB
A,B . Consequently F ⊂ FB

A,B . whence

FB
A,B is a maximal commutative algebra in Tn,d.

Conversely, suppose that FB
A,B is a maximal commutative algebra in Tn,d.

If B1 is a subalgebra of Md×d(C) such that B ⊂ B1, then FB
A,B ⊂ FB1

A,B . The
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maximality of FB
A,B implies that FB

A,B = FB1

A,B , whence it follows easily that

B = B1. Therefore B is a maximal commutative subalgebra of Md×d(C).

As a consequence of Theorem 4.4, we will consider in the sequel only max-

imal commutative algebras B, whence B = B′. We will therefore take in the

definition of the algebras FB
A,B matrices A,B ∈ B.

These algebras include an important general class of maximal block Toeplitz

algebras, as shown by the next result.

Theorem 4.5. Let B a maximal commutative subalgebra of Md×d(C) and A

an algebra contained in Tn,d(B). Suppose A contains an element T such that

Tr is invertible for some r 6= 0. Then A ⊂ FB
A,B for some A and B.

Proof. Let T = (Tp−q)
n−1
p,q=0 and U = (Up−q)

n−1
p,q=0 be two elements of A. Since

A is an algebra contained in Tn,d, the product TU ∈ A if and only if

TpUq−n = Tp−nUq (q = 1, 2, · · ·n− 1). (4.6)

Suppose r > 0. Since we have assumed that Tr is invertible, it follows from

(4.6) that

Uq−n = T−1r Tr−nUq (q = 1, 2, · · ·n− 1).

The subalgebra B is inverse closed by Lemma 3.2, and so T−1r Tr−n ∈ B. It

follows then that, if we take A = I and B = T−1r Tr−n, then A ⊂ FB
A,B . A

simlar argument works for r < 0, finishing the proof.

Corollary 4.6. Let B a maximal commutative subalgebra of Md×d(C) and A

a maximal subalgebra of Tn,d(B). Suppose A contains an element T such that

Tp is invertible for some p 6= 0. Then A = FB
A,B for some A and B.

In the next sections we will investigate the algebras FB
A,B corresponding to

several cases of maximal subalgebras B.

5 Diagonal entries

To discuss the cases of entries belonging to the algebra of diagonal matrices

with respect to a given basis, we use the next lemma, which describes the

structure of such block Toeplitz matrices.
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Lemma 5.1. Suppose T = (Tp−q)
n−1
p,q=0 is a block Toeplitz matrix, such that

each Tj is diagonal. Then there is a change of basis that brings T into the

following form

T′ = diag
(
T ′1 T ′2 · · ·T ′d

)
,

where for every k = 1, 2, · · · d, T ′k is a scalar Toeplitz matrix of order n.

Proof. Suppose that the original basis is

E = {e01, e02, · · · e0d, e11, e12, · · · e1d, · · · en−11 , en−12 , · · · en−1d },

and Tj = diag
(
tj1 tj2 · · · tjd

)
for j = 0,±1, · · · ± (n− 1). The new basis is

then

E′ = {e01, e11, · · · en−11 , e02, e
1
2, · · · en−12 , · · · e0d, e1d, · · · en−1d }

(it is obtained by “reshuffling”). With respect to E′, T has the required form

T′ = diag
(
T ′1 T ′2 · · ·T ′d

)
, where, for each k = 1, 2, · · · d, T ′k = (tr−s,k)nr,s=0,

i.e. T ′k is a Toeplitz matrix of order n.

It is clear from the proof that E′ depends only on the basis E, not on the

particular matrix T.

Proposition 5.2. Suppose that A is any commutative algebra of block Toeplitz

matrices contained in Tn,d(D). Then A ⊂ FD
A,B for some A,B ∈ D.

Proof. Applying Lemma 5.1, we obtain a basis E′ with respect to which any

element T ∈ A has the form T′ = diag
(
T ′1 T ′2 · · ·T ′d

)
, where for each

k = 1, 2, · · · d we have T ′k = (tr−s,k)dr,s=0; that is, T ′k is a scalar Toeplitz

matrix. Since A is closed with respect to multiplication, each of the component

blocks has to be closed with respect to multiplication. It follows that for every

k = 1, 2, · · · d, T ′k ∈ Παk for some αk ∈ C ∪ {∞}.
We may then defineB = diag

(
b1 b2 · · · bd

)
, A = diag

(
a1 a2 · · · ad

)
as follows:

— if αk 6=∞, then ak = αk and bk = 1;

— if αk =∞, then ak = 1 and bk = 0.

Then KerA ∩KerB = {0}, and it is easily checked that A ⊂ FD
A,B .

Corollary 5.3. If A is a maximal subalgebra of Tn,d(D), then A = FD
A,B for

some A,B ∈ D.
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6 Entries in the Schur algebras

We start with the following simple lemma.

Lemma 6.1. An element T ∈ Oσ,τ is invertible if and only if λ 6= 0.

Proof. Let T ∈ Oσ,τ be an element of the form

T =

(
λIσ X
0 λIτ

)
.

Then T is invertible if and only if det(T ) = λd 6= 0 if and only if λ 6= 0.

Suppose now that A is a maximal commutative subalgebra that has its

entries in the Schur algebra Oσ,τ . If at least one element of A has an invertible

off-diagonal entry, then we can apply Theorem 4.5 and obtain that A = F
Oσ,τ
A,B

for some A,B ∈ Oσ,τ . The next theorem shows that there is only one other

maximal commutative subalgebra contained in Tn,d(Oσ,τ ).

Theorem 6.2. The set S of block Toeplitz matrices that have entries in Oσ,τ ,

and all off diagonal entries are noninvertible forms a maximal commutative

algebra. It is of type FB
A,B for some A,B that do not satisfy condition (4.2).

Proof. First we will show that S is an algebra. Clearly S is a linear subspace.

we have to show only that it is closed under block matrix multiplication. For

this let T = (Tp−q)
n−1
p,q=0 and U = (Up−q)

n−1
p,q=0 be any two arbitrary elements

of S then TU ∈ S if and only if

TpUq−n = Tp−nUq (p, q = 1, 2, · · ·n− 1).

Since each Ti and Ui is noninvertible, lemma 6.1 implies that for every i 6= 0

Ti and Ui are strictly upper triangular 2× 2 block matrices. Therefore

TpUq−n = Tp−nUq = 0 (p, q = 1, 2, · · ·n− 1), (6.1)

whence it follows that TU ∈ S.

We will show that S is a maximal commutative subalgebra contained in

Tn,d(Oσ,τ ). Suppose U = (Up−q)
n−1
p,q=0 commutes with S and denote

Uk =

(
λkIσ Xk

0 λkIτ

)
, λk ∈ C , Xk ∈Mσ×τ (C),
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Suppose, for instance, that k ≥ 1. Take then T = (Tp−q)
n−1
p,q=0 ∈ S defined by

Tp =

(
0 0
0 0

)
, Tp−n =

(
0 Y
0 0

)
, p = 1, 2, · · ·n− 1,

with Y some nonzero matrix in Oσ,τ . Then

TpUk−n = 0, Tp−nUk =

(
0 λk
0 0

)
, p = 1, 2, · · ·n− 1.

From (3.1) it follows then that λk = 0. A similar argument works for k < 0.

Therefore U ∈ S, whence S is maximal commutative.

To obtain S = F
Oσ,τ
A,B , take two linearly independent matrices X,Y ∈ Oσ,τ ,

and define

A =

(
0 X
0 0

)
, B =

(
0 Y
0 0

)
.

If T = (Tp−q)
n−1
p,q=0 ∈ S, then ATj = BTj−n = 0 for all j = 1, . . . , n. So

S ⊂ F
Oσ,τ
A,B .

To prove the reverse, take T = (Tp−q)
n−1
p,q=0 ∈ F

Oσ,τ
A,B . If

Ti =

(
λi Xi

0 λi

)
,

then

ATi =

(
0 λiX
0 0

)
, BTi−n =

(
0 λi−nY
0 0

)
.

Since X,Y are linearly independent, condition (4.1) implies λi = λi−n = 0 for

i = 1, . . . , n− 1. Therefore T is not invertible, so it belongs to Oσ,τ .

It is interesting to note that in this case FB
A,B is an algebra, although A,B

do not satisfy condition (4.2). Note that we cannot write S = FB
A,B with some

A,B satisfying condition (4.2). Indeed, for a noninvertible matrix A ∈ Oσ,τ

we have Cσ ⊕ 0 ∈ kerA. Therefore, to satisfy condition (4.2), at least one of

A and B has to be invertible. Suppose then that

A =

(
λ X
0 λ

)
, B =

(
µ Y
0 µ

)
.

For a noninvertible T = (Tp−q)
n−1
p,q=0, with

Ti =

(
0 Xi

0 0

)
,
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condition (4.1) becomes (
0 λXi

0 0

)
=

(
0 µXi−n
0 0

)
,

or λXi = µXi−n If at least one of λ, µ is nonzero, this equality is not satisfied

by every T ∈ S.

Corollary 6.3. If A is a maximal subalgebra of Tn,d(Oσ,τ ), then A = F
Oσ,τ
A,B

for some A,B ∈ Oσ,τ .

7 Entries in a singly generated algebra

Suppose M is a nonderogatory matrix, with minimal polynomial pM of degree

δ, and B is the algebra generated by M , that is

B = P(M) := {p(M) : p polynomial } = {p(M) : p polynomial ,deg p < δ}.

The next lemma is well known.

Lemma 7.1. An element p(M) ∈ P(M) is invertible if and only if p and pM

are relatively prime.

As a consequence of Theorem 4.5, we have then the next result.

Corollary 7.2. Suppose A ⊂ T is an algebra with entries in P(M). Suppose

A contains an element T such that for some j 6= 0, Tj = p(M) with p and pM

relatively prime. Then A ⊂ F
P(M)
A,B for some A,B ∈ P(M).

However, not all maximal subalgebras of Tn,d are of type F
P(M)
A,B . To see

this, we will discuss in the rest of this section the particular case of a nilpotent

matrix of order 2; that, we assume that M 6= 0 and M2 = 0.

Theorem 7.3. Suppose M is a nonderogatory matrix such that M2 = 0. The

set A of all block Toeplitz matrices that have entries in P(M), and all off

diagonal entries are noninvertible, form a maximal commutative algebra that

is not of the type F
P(M)
A,B .
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Proof. It is easy to see that A is an algebra: if T,S ∈ A, then any nondiagonal

entry of TS is a sum of products, and each of the products contains at least

one term that has M as a factor, and is thus noninvertible.

To show that A is maximal commutative, suppose that TU = UT for all

T ∈ A. Take T with

Tp = 0, Tp−n = M for p = 1, . . . , n. (7.1)

Formula (3.1) tells us that 0 = MUq for all q = 1, . . . , n, whence it follows

that Uq cannot be invertible. Similarly, by taking T with

Tp = M, Tp−n = 0 for p = 1, . . . , n, (7.2)

we obtain Uq−n is noninvertible for all q = 1, . . . , n. Therefore U has all its

off-diagonal entries noninvertible, and therefore it belongs to A.

Suppose now that A = F
P(M)
A,B for some A,B ∈ A. In particular, using

again T from (7.1) it follows from (4.1) that BM = 0. Similarly, using (7.2)

we obtain AM = 0. So A and B are noninvertible elements in P(M), say

A = aM , B = bM .

If a = b = 0, then F
P(M)
A,B = Tn,d(P(M)) 6= A. Otherwise, suppose at least

one of a, b is nonzero. If we define T by

Tj = bId, Tn−j = aId,

and Ti = 0 for other values of T , Then T satisfies (4.1), and therefore T ∈
F
P(M)
A,B . But obviously T /∈ A, so A 6= F

P(M)
A,B .
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