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A revised moment error expression for the AIRGA
algorithm

Heike Faßbender and Julius Mayer

Abstract

The fully adaptive rational global Arnoldi method (AIRGA) for the model-
order reduction of second-order multi-input multi-output systems with propor-
tional damping is revisited. The method automatically generates a reduced sys-
tem approximating the transfer function. It is based on a moment-matching ap-
proach. The expansion points are determined iteratively. The reduced order and
the number of moments matched per expansion point are determined adaptively
using a heuristic based on an error estimation. A revised moment error expres-
sion is presented as well as some related findings.

1 Introduction

A continuous time-invariant second-order multi-input multi-output linear dynamical
system is of the form

Mẍ(t) =−Dẋ(t)−Kx(t)+Fu(t),

y(t) = Cpx(t)+Cvẋ(t),
(1)

where M, D, K ∈ Rn×n, F ∈ Rn×m,Cp,Cv ∈ Rq×n are constant matrices. In (1),
x(t) ∈ Rn is the state, u(t) ∈ Rm is the input, and y(t) ∈ Rq is the output. The mass
matrix M and the stiffness matrix K need not have any specific property (e.g., sym-
metry, positive definiteness etc.), but only the special case of proportional damping is
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considered. That is, the damping matrix is chosen as D = αM+βK for some choice
of real α and β .

In many cases, the original system dimension n is too large to allow for an effi-
cient simulation of (1). Therefore, the goal of model reduction is to generate a low
dimensional system that has, as best as possible, the same characteristics as the orig-
inal system, but whose simulation requires significantly less computational effort.
The reduced system of (1) is described by

M̂ ¨̂x(t) =− D̂ ˙̂x(t)− K̂x̂(t)+ F̂u(t),

ŷ(t) = Ĉpx̂(t)+Ĉv ˙̂x(t),
(2)

where M̂, K̂, D̂ ∈Rr×r, F̂ ∈Rr×m, Ĉp, Ĉv ∈Rq×rand r� n. In order to capture the
relevant features of the original model, the damping matrix D̂ of the reduced order
model is required to be D̂ = αM̂+β K̂.

We will revisit the fully adaptive rational global Arnoldi method (AIRGA) for the
model-order reduction of second-order multi-input multi-output systems with pro-
portional damping [3]. This method uses a projection based on a moment-matching
approach in order to compute the reduced order system. The AIRGA algorithm is
recalled in Section 2. It makes use of a heuristic based on an error estimation of the
moment error in order to adaptively determine the number of moments to be matched
per expansion point. It turned out that the moment error given in [3] is not correct. In
order to present our key findings, a revised moment error, the AIRGA algorithm has
to be discussed in some detail. In particular, some technicalities from well-known
facts are needed. For that matter, we also present some known facts whose proofs in
the existing literature seem to be gappy. Our main result, a revised moment error, is
given in Section 3. Some concluding remarks are given in Section 4. As all proofs
are very technical, they have been moved to Section A.

2 AIRGA revisited

In this section we briefly review the AIRGA method [3]. This section is longer than
usual because we have to present some well-known facts as we need some technical
details of their proofs for further discussion. Moreover, we state some known facts
whose proofs in the existing literature seem to be gappy.

Moment-Matching and Projection based Model Order Reduction

The objective is to generate a reduced order system (2) for which the first moments of
the transfer function match those of the original system. The transfer function H(s)
of (1) is the linear mapping of the Laplace transform U(s) of the input u(t) to the



A REVISED MOMENT ERROR EXPRESSSION FOR THE AIRGA ALGORITHM 89

Laplace transform Y (s) of the output y(t),Y (s) = H(s)U(s). It is given by

H(s) = (Cp + sCv)(s2M+ sD+K)−1F =: (Cp + sCv)T (s). (3)

Here and throughout the paper, s ∈ C has to be chosen such that s2M + sD+K is
nonsingular. The power series expansion of T (s) around an expansion point si ∈C is
given by (see, e.g., [10])

T (s) =
∞

∑
k=0

T (k)(si)(s− si)
k, (4)

where the k-th system moments T (k)(si) ∈ Cn×m at si are given by

T (0)(si) = L−1
i F,

T (1)(si) = L−1
i BiT (0)(si), and for k = 2,3, . . .

T (k)(si) = L−1
i [BiT (k−1)(si)−MT (k−2)(si)]

(5)

with
Li = s2

i M+ siD+K and Bi =−(2siM+D). (6)

From (4) we obtain

H(s) =
∞

∑
k=0

(Cp + sCv)T (k)(si)(s− si)
k

=
∞

∑
k=0

(Cp + siCv)T (k)(si)(s− si)
k +CvT (k)(si)(s− si)

k+1

=:
∞

∑
k=0

hk(si)(s− si)
k

with the moments h0(si) = (Cp + siCv)T (0)(si), and for k = 1,2, . . .

hk(si) =CvT (k−1)(si)+(Cp + siCv)T (k)(si) ∈ Cq×m.

Similarly, the transfer function of the reduced system (2) is given by

Ĥ(s) = (Ĉp + sĈv)T̂ (s), (7)

with T̂ (s) = (s2M̂ + sD̂ + K̂)−1F̂ . Clearly, here s ∈ C has to be chosen such that
not only L = s2M + sD+K is nonsingular, but also such that L̂ = s2M̂ + sD̂+ K̂ is
nonsingular as well. In a projection based framework as considered below this will
be satisfied automatically, as L̂ =V HLV is nonsingular if L is nonsingular and V is a
n× r matrix with linearly independent columns.
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The power series expansion of T̂ (s) around an expansion point si ∈C is given by

T̂ (s) =
∞

∑
k=0

T̂ (k)(si)(s− si)
k, (8)

where T̂ (k)(si) ∈ Cr×m is defined analogously to T (k)(si). The moments ĥk(si) of the
reduced system are thus defined analogously to hk(si) for k ∈ N0.

The goal of the moment-matching approach is to find a reduced order model such
that the first few moments of (7) match those of (3), that is,

hk(si) = ĥk(si) for k = 0,1, . . . ,ki−1

for some ki ∈ N.
A projection based method to generate a reduced oder model of order r constructs

a projection Π =VV † with a full rank matrix V ∈ Cn×r and the pseudoinverse V † =
(V HV )−1V H . Since Π = ΠH holds, Π is an orthogonal projection. The reduced order
model is given by

V †(MV ¨̂x(t)+DV ˙̂x(t)+KV x̂(t)−Fu(t)) = 0,

ŷ(t) = CpV x̂(t)+CvV ˙̂x(t).
(9)

Thus, we have

M̂ =V †MV, D̂ =V †DV, K̂ =V †KV, F̂ =V †F, Ĉp =CpV and Ĉv =CvV. (10)

The following well-known theorem [5, 1, 9] states how to choose V in order to
achieve the desired moment-matching property. We restate the theorem as we will
need the relation (12) later on.

Theorem 2.1. Assume si is chosen such that Li is nonsingular. Let V ∈ Cn×r have
linearly independent columns such that

colspan(V ) ⊃ colspan([T (0)(si),T (1)(si), . . . ,T (ki−1)(si)]). (11)

Then for the reduced order system (9) it holds that

T (k)(si) =V T̂ (k)(si) (12)

and thus the moment-matching property hk(si) = ĥk(si) holds for k = 0,1, . . . ,ki−1.

First and second-order Krylov Subspace

Theorem 2.1 tells us how to choose V. A numerically efficient and stable way to
obtain such V makes use of Krylov subspace methods.
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A first-order Krylov subspace Kk(P,Q) of order k ∈ N generated by an n× n
matrix P and an n×m matrix Q is the linear subspace spanned by the columns of the
images of Q under powers of P

Kk(P,Q) = colspan([Q,PQ,P2Q, . . . ,Pk−1Q]).

A second-order Krylov subspace Gk(P1,P2,Q) of order k for n×n matrices P1,P2 and
an n×m matrix Q is defined as follows:

Gk(P1,P2,Q) = colspan([G0,G1, . . . ,Gk−1])

with G0 = Q, G1 = P1G0 and G j = P1G j−1 +P2G j−2, j = 2,3, . . . ,k−1.
As already observed in [1], the system moments T (k)(si) are just the blocks of the

second-order Krylov subspace Gki(L
−1
i Bi,L−1

i M,L−1
i F); that is

colspan([T (0)(si),T (1)(si), . . . ,T (ki−1)(si)]) = Gki(L
−1
i Bi,−L−1

i M,L−1
i F).

This also follows directly from (5).
For the special case of proportionally damped second-order systems, the second-

order Krylov subspace is essentially identical to a first order Krylov subspace. This
has already been observed, e.g., in [2, 5], but no discussion given so far seems to
include all special cases. Let us first consider the following lemma (a similar relation
has already been noted in [5, Section 3]); for a proof see the Appendix.

Lemma 2.2. Assume si is chosen such that Li is nonsingular and siβ 6=−1. Then

L−1
i Bi =−(γi,1In + γi,2L−1

i M)

with

γi,1 =
β

siβ +1
and γi,2 = si +

si +α

siβ +1
.

With the help of Lemma 2.2 the following theorem can be proven (see the Ap-
pendix).

Theorem 2.3. Assume si is chosen such that Li is nonsingular and siβ 6= −1. Let
γi,1,γi,2 be defined as in Lemma 2.2. Then, for any ki ∈ N, it holds

Gki(L
−1
i Bi,−L−1

i M,L−1
i F) =Kki(−L−1

i M, L−1
i F), if γi,2 6= 0,

Gki(L
−1
i Bi,−L−1

i M,L−1
i F) =Kdki/2e(−L−1

i M, L−1
i F), if γi,2 = 0.

Remark 2.4. Assume siβ 6=−1. Note that γi,2 = 0 holds iff either β = 0 and si =−α

2
or β 6= 0 and si =−β−1±β−1

√
1−αβ .
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In general, the choice siβ =−1 is not feasible. Assume for a moment that siβ =
−1. This implies si 6= 0 and β 6= 0. As Li = s2

i M + siD+K = si(si +α)M must be
nonsingular, it further implies that M has to be nonsingular and si 6=−α . Moreover,

Kki(−L−1
i M,L−1

i F) =Kki((s
2
i +αsi)

−1M−1M,L−1
i F) =Kki(In,L−1

i F)

= colspan(M−1F)

and by an easy manipulation

Gki(L
−1
i Bi,−L−1

i M,L−1
i F) =Kki(M

−1K,M−1F).

Therefore, unless M = µK,µ ∈ R or K = 0n×n, it follows for siβ =−1

Kki(−L−1
i M, L−1

i F) 6⊃ Gki(L
−1
i Bi,−L−1

i M,L−1
i F).

So, when an expansion point si is chosen, it always has to be checked that siβ 6=−1
as we will make use of Theorem 2.3 when constructing the matrix V .

The Global Arnoldi Method

Theorem 2.3 suggests to generate the desired matrix V from Kki (−L−1
i M, L−1

i F);
in case γi,2 = 0, only Kdki/2e(−L−1

i M, L−1
i F) has to be considered. Standard efficient

and numerically sound methods to compute a basis (and thus V ) of a Krylov subspace
are, e.g., the block or the global Arnoldi algorithm [7, 6, 8].

The AIRGA method uses the global Arnoldi method. It constructs a basis Wi,1,
Wi,2, . . . , Wi,ki ∈ Cn×m of the Krylov subspace Kki(Pi,Qi) with Pi =−L−1

i M ∈ Cn×n

and Qi = L−1
i F ∈ Cn×m which is block-orthonormal in the following sense

〈Wi, j,Wi,p〉= 0 j 6= p,

〈Wi, j,Wi,p〉= 1 j = p
for j, p = 1, . . . ,ki. (13)

Here, < Y,Z >= trace(Y HZ) where Y,Z ∈ Cn×s. The associated norm is the Frobe-
nius norm ‖ · ‖F .

In order to simplify the discussion, we assume that ki is chosen such that the
global Arnoldi algorithm does not break down; that is, for each si it produces a ma-
trix Wi = [Wi,1 · · · Wi,ki ] ∈ Cn×ki·m, representing a block-orthonormal basis of the
block Krylov subspace Kki(−L−1

i M,L−1
i F). Then the following relation holds for the

block-orthonormal matrix Wi

PiWi =Wi(H
(i)
ki
⊗ Im)+h(i)ki+1,ki

[0, . . . ,0,Wi,ki+1], (14)

with
Wi,1 = Qi/h(i)1,0, h(i)1,0 = ‖Qi‖F . (15)

Here H(i)
ki

is an unreduced ki× ki upper Hessenberg matrix and ⊗ denotes the usual
Kronecker product. If m = 1, the global Arnoldi algorithm reduces to the standard
Arnoldi algorithm.
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Multiple expansion points

In order to ensure a good reduced model in the entire problem dependent frequency
domain of interest, one usually employs not just one expansion point, but a set of `
expansion points. That is, one considers a set S = {s1, . . . ,s`} of ` expansion points
and the corresponding block Krylov subspaces

Kki(Pi,Qi) =Kki(−L−1
i M,L−1

i F) for i = 1, . . . , `

together with the associated block-orthonormal basis Wi ∈ Cn×ki·m (computed by the
global Arnoldi algorithm such that each Wi satisfies (14).). Recall that the expansion
points si, i = 1, . . . , `, have to be chosen such that Li = s2

i M+ siD+K is nonsingular
and siβ 6=−1.

Generating the projection Π

Let

W = [W1 W2 ... W` ] ∈ Cn×rmax , rmax = m
`

∑
i=1

ki. (16)

Clearly,
colspan(W )⊃ colspan(Wi)⊃ colspan(T (k)(si))

for i = 1,2, . . . , ` and k = 0,1, . . . ,ki−1. Now Π =VV † can be set up using any full
rank matrix V ∈Cn×r which has the same column space as W . Then, due to Theorem
2.1, the first ki moments at the expansion point si, i = 1, . . . , ` of the reduced order
system (9) generated with V are matching those of the original system (1), that is,

h j(si) = ĥ j(si) holds for j = 0, . . . ,ki−1 and i = 1,2, . . . , `.

Choosing the expansion points iteratively

Given the number ` of expansion points, the set S = {s1, . . .s`} of expansion points
and the number ki of moments to be matched at each si, the algorithm sketched so far
will compute the desired reduced order model. As it is a priori not obvious how to
choose ki, the AIRGA algorithm [3] chooses the ki adaptively given a fixed set S and
the total number of number of moments to be matched, rmax/m. Thus, unlike as de-
scribed so far, the algorithm does not generate Wi corresponding to Kki(L

−1
i M,L−1

i F)
at once. Instead, the following approach is used: The expansion points are picked
iteratively. The first time si is picked, just K1(L−1

i M,L−1
i F) is used to generate

Wi ∈ Cn×m and just one moment is matched at si. The next time si is picked, this
is expanded to K2(L−1

i M,L−1
i F) and Wi ∈ Cn×2m matching two moments at si, and

so forth. Assume that the algorithm has picked the expansions points such that the
first ki moments are matched at expansion point si, that is, hk(si) = ĥk(si) holds for
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k = 0,1, . . . ,ki−1. The choice of the next expansion point to be considered is based
on the ki-th moment error at expansion point si

||hki(si)− ĥki(si) ||F = εki(si). (17)

The expansion point sp chosen next is the one corresponding to the maximum mo-
ment error by sp = argmaxsi

εki(si).

3 AIRGA revised

The idea for the adaptive choice of the expansion points is based on an expression
which describes the ki-th moment error εki(si). The expression given in [3] is not
correct. Here is the revised version of the result.

Theorem 3.1. Assume that si is chosen for all i = 1, . . . , `, such that Li = s2
i M +

siD+K is nonsingular and siβ 6=−1. Let Wi, i = 1, . . . , `, be computed by the global
Arnoldi method such that (14) and (15) hold. Let W = [W1 W2 · · · W`] ∈ Cn×rmax

be as in (16). Let V ∈ Cn×r be a full rank matrix which has the same column space
as W. Let the reduced order system (9) be generated via (10). Then the error of the
ki +1-th moment at si can be expressed as

εki(si) := ||hki(si)− ĥki(si) ||F

= |γki
i,2| ·

(
ki

∏
k=0

h(i)k+1,k

)
· ||(Cp + siCv)

(
In−V

(
V †LiV

)−1
V †Li

)
Wi,ki+1||F .

In order to be able to prove Theorem 3.1 the following observation which is in-
spired by [4, Theorem 2] will be useful.

Lemma 3.2. Let Pi ∈ Cn×n, Qi ∈ Cn×m, H̃i = H(i)
ki
⊗ Im and Ei = ei ⊗ Im, where

ei ∈ Rki denotes the ki-th unit vector. Let Wi be computed by the global Arnoldi
method such that (14) and (15) hold. Then it holds

Pki
i Qi = h(i)1,0WiH̃

ki
i E1 +

(
ki

∏
k=0

h(i)k+1,k

)
Wi,ki+1.

Theorem 3.1 gives rise to Algorithm 1. It starts with an initial set of expan-
sion points and automatically and adaptively chooses the number of moments to be
matched at each expansion point si based on Theorem 3.1. This is controlled by the
inner while loop starting at line 10 where V is computed.

One can use different methods to obtain a full rank matrix V ∈Cn×r which has the
same column space as W ∈ Cn×rmax . A numerically safe way to generate the matrix
V from W is the use of the rank-revealing QR-decomposition of W. The relevant part
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Algorithm 1 Revised Adaptive Iterative Rational Global Arnoldi Algorithm
1: Input: M, D, K, F, Cp, Cv, α,β such that D = αM+βK,

rmax, initial set of exp. points S = {s1, . . . ,s`}
2: Output: r, M̂, D̂, K̂, F̂ , Ĉp, Ĉv, such that D̂ = αM̂+β K̂
3: while no convergence do
4: W = [ ], seq = [ ], rW = 0, [n,m] = size(F)
5: for i = 1 : ` do
6: Li = s2

i M+ siD+K
7: Ri = L−1

i F
8: hi = ||Ri||F , Ri = Ri/hi, hi,Π = hi, γi,Π = 1, γi,2 = si +

si+α

siβ+1
9: end for

10: while rW ≤ rmax−m and no convergence do
11: if rW = 0 then
12: p = argmaxi ||γi,Πhi,Π (Cp + siCv)Ri||F
13: else
14: p = argmaxi ||γi,Πhi,Π (Cp + siCv)

(
In−V

(
V HLiV

)−1 V HLi

)
Ri ||F

15: end if
16: seq = [seq, p ], W = [W Rp ], rW = rW +m
17: Rp =−L−1

p M Rp
18: for k = 1 : length(seq) do
19: if seq(k) = p then
20: h = trace(W (:,(k−1)m+1 : km)HRp)
21: Rp = Rp−hW (:,(k−1)m+1 : km)
22: end if
23: end for
24: hp = ||Rp||F , hp,Π = hp,Π ·hp, γp,Π = γp,Π · γp,2
25: if hp 6= 0 then
26: Rp = Rp/hp
27: end if
28: Determine V from [Q,R,E] = qr(W,0) (to deflate all linear
29: dependent columns)
30: end while
31: Choose new set of expansion points S = {s1, . . . ,s`}
32: end while
33: Determine V from [Q,R,E] = qr([Re(V), Im(V)],0)
34: r = size(V,2)
35: Compute the reduced order system as in (18)
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of its unitary factor is then used as V such that V has orthonormal columns. Thus it
holds V † =V H and the projection Π =VV † =VV H becomes a Galerkin projection.
The system matrices of the reduced order system are given by

M̂ =V HMV, D̂ =V HDV, K̂ =V HKV, F̂ =V HF, Ĉp =CpV and Ĉv =CvV. (18)

The size of the resulting reduced system can not be predetermined. At the end, V will
have rmax or less columns.

Please note that hp in line 24 corresponds to a lower subdiagonal element of the
associated Hessenberg matrix. In case hp = 0, we have Rp = 0n×m. The algorithm
does not break down, as this implies that the corresponding moment error is equal to
zero. Thus, the corresponding expansion point will not be chosen again.

The quality of the reduced order system heavily depends on the choice of the
expansion points. As a good set of expansion points is usually not available, typically
such a set is determined iteratively. This is controlled by the outer while loop starting
at line 3 of Algorithm 1. One starts with an initial set of expansion points, computes
the corresponding reduced order model and selects a new set of expansion points,
e.g., based on the eigenvalues of λ 2M̂+λ D̂+ K̂. The actual selection criterion has to
be based on the problem considered, see, e.g., the discussion in [3] and the references
therein. This process is repeated till convergence, measured, e.g., in terms of the
H2-error between the previously computed reduced order system and the current one

err = ‖Ĥprevious− Ĥcurrent‖H2 .

Here ‖H −G‖H2 = 1
2π

∫
∞

−∞
‖H(ıω)−G(ıω)‖F dω, where the transfer functions H

and G belong to systems with the same input and output dimension. For a thorough
discussion on how to determine convergence as well as a new set of expansion points
in the outer loop see [3].

Finally note that allowing complex-valued expansion points si leads to W ∈Cn×r.
Thus V and the reduced order system (9) is complex-valued, even though usually a
real-valued one is desired. Using complex-conjugate pairs of expansion points, at
least theoretically, the entire computations can be done in real arithmetic. A different
option is to split the complex-valued matrix V into its real and imaginary part and
to use a rank-revealing QR decomposition of [Re(V ), Im(V )] to obtain a real matrix
with orthonormal columns and the same column space. This real-valued matrix may
have twice the number of columns as desired. Hence, the dimension of the reduced
order system will be doubled. The number of moments matched does not change.

4 Concluding Remarks

In [3] the AIRGA algorithm for model-order reduction of second-order multi-input
multi-output systems with proportional damping has been proposed. The method
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relies on the moment error εki(si)as in (17). Unfortunately the expression for the mo-
ment error given in [3] is not correct. Section 3 presents our main contribution: the
revised moment error given in Theorem 3.1 as well as Lemma 3.2 which is needed to
proof Theorem 3.1. The idea of the AIRGA algorithm and all further details neces-
sary to proof Theorem 3.1 have been summarized in Section 2. In doing so, we have
rounded off some of the results employed (by explicitily stating all assumptions and
findings which may have been obscured in previous publications). In [3] numerical
examples have been considered. Repeating those with the revised moment error do
not reveal any major differences in the results. Thus, these experiments have not been
included here.

A Proofs

In this section we provide the details of the proofs for the theorems and lemmas of
Sections 2 and 3. For ease of reference, the theorems and lemmas are restated except
for Theorem 2.1 which is well-known. Lemma 2.2 and Theorem 2.3 appeared in
slightly different form in, e.g., [2, 5], while Lemma 3.2 and Theorem 3.1 are new.

Lemma 2.2 Assume si is chosen such that Li is nonsingular and siβ 6=−1. Then

L−1
i Bi =−(γi,1In + γi,2L−1

i M)

with

γi,1 =
β

siβ +1
and γi,2 = si +

si +α

siβ +1
.

Proof.

−L−1
i Bi = L−1

i (2siM+D) = L−1
i (2siM+αM+βK)

= (2si +α)L−1
i M+βL−1

i K

= (2si +α)L−1
i M+

β

siβ +1
(siβ +1)L−1

i K

= (2si +α)L−1
i M+

β

siβ +1
L−1

i
(
−(s2

i + siα)M+(s2
i + siα)M+(siβ +1)K

)
=

(
2si +α− β (s2

i + siα)

siβ +1

)
L−1

i M+
β

siβ +1
L−1

i
(
s2

i M+ siD+K
)

=

(
si +

si +α

siβ +1

)
L−1

i M+
β

siβ +1
L−1

i Li

= γi,2L−1
i M+ γi,1In.
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Theorem 2.3 Assume si is chosen such that Li is nonsingular and siβ 6= −1. Let
γi,1,γi,2 be defined as in Lemma 2.2. Then for any ki ∈ N it holds

Gki(L
−1
i Bi,−L−1

i M,L−1
i F) =Kki(−L−1

i M, L−1
i F), if γi,2 6= 0,

Gki(L
−1
i Bi,−L−1

i M,L−1
i F) =Kdki/2e(−L−1

i M, L−1
i F), if γi,2 = 0.

Proof. From γi,2 = si +
si+α

siβ+1 it follows that for β 6= 0

γi,2 =
s2

i β +2si +α

siβ +1
=

s2
i β 2 +2siβ +αβ

β (siβ +1)
= 0

iff the numerator s2
i β 2 +2siβ +αβ is zero. This yields siβ =−1±

√
1−αβ .

Assume γi,2 6= 0. Set P :=−L−1
i M, Q := L−1

i F such that the blocks of the Krylov
subspace Kk(−L−1

i M,L−1
i F) are given as Q, PQ, P2Q, . . . ,Pk−1Q. Since

T (0)(si) = L−1
i F = Q,

we have G1(L−1
i Bi,−L−1

i M,L−1
i F) =K1(−L−1

i M, L−1
i F). Next with Lemma 2.2, it

holds

T (1)(si) = L−1
i BiL−1

i F =−(γi,1In + γi,2L−1
i M)L−1

i F =−γi,1Q− γi,2PQ.

Thus, as γi,2 6= 0 we have G2(L−1
i Bi,−L−1

i M,L−1
i F) =K2(−L−1

i M, L−1
i F).

Now, assume G j(L−1
i Bi,−L−1

i M,L−1
i F) =K j(−L−1

i M, L−1
i F) for j = 1,2, . . . , p.

Then we can find µ
( j−1,k)
i ∈ C for k = 0,1, . . . , j− 1 and j = 1,2, . . . , p such that

T ( j−1)(si) = ∑
j−1
k=0 µ

( j−1,k)
i PkQ. With Lemma 2.2 it follows

T (p)(si) = L−1
i BiT (p−1)(si)−L−1

i MT (p−2)(si)

=−(γi,1In + γi,2L−1
i M)T (p−1)(si)−L−1

i MT (p−2)(si)

=−γi,1T (p−1)(si)− γi,2PT (p−1)(si)−PT (p−2)(si)

=−γi,1

p−1

∑
k=0

µ
(p−1,k)
i PkQ− γi,2P

p−1

∑
k=0

µ
(p−1,k)
i PkQ−P

p−2

∑
k=0

µ
(p−2,k)
i PkQ

=−γi,1

p−1

∑
k=0

µ
(p−1,k)
i PkQ− γi,2

p

∑
k=1

µ
(p−1,k−1)
i PkQ−

p−1

∑
k=1

µ
(p−2,k−1)
i PkQ

=−γi,1µ
(p−1,0)
i Q−

p−1

∑
k=1

(γi,1µ
(p−1,k)
i + γi,2µ

(p−1,k−1)
i +µ

(p−2,k−1)
i )PkQ
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− γi,2µ
(p−1,p−1)
i PpQ

=:
p

∑
k=0

µ
(p,k)
i PkQ. (19)

The above directly reveals the recursion formula

µ
(p,0)
i =−γi,1µ

(p−1,0)
i

µ
(p,k)
i =−γi,1µ

(p−1,k)
i − γi,2µ

(p−1,k−1)
i −µ

(z−2,k−1)
i , for k = 1,2, . . . , p−1

µ
(p,p)
i =−γi,2µ

(p−1,p−1)
i

for any p≥ 2 with µ
(0,0)
i = 1, µ

(1,0)
i =−γi,1 and µ

(1,1)
i =−γi,2. Particularly, it holds

µ
(p,p)
i = (−γi,2)

p. (20)

As γi,2 6= 0, we immediately have Gk(L−1
i Bi,−L−1

i M,L−1
i F) = Kk(−L−1

i M, L−1
i F),

so that the first equation of the theorem is proven by induction.
In order to prove the second statement of the theorem, assume γi,2 = 0. With

Lemma 2.2, it follows

Gki(L
−1
i Bi,−L−1

i M,L−1
i F) = Gki(−γi,1In,−L−1

i M,L−1
i F) =Kdki/2e(−L−1

i M, L−1
i F).

Lemma 3.2 Let Pi ∈Cn×n, Qi ∈Cn×m, H̃i =H(i)
ki
⊗Im and Ei = ei⊗Im, where ei ∈Rki

denotes the ki-th unit vector. Let Wi be computed by the global Arnoldi method such
that (14) and (15) hold. Then it holds

Pki
i Qi = h(i)1,0WiH̃

ki
i E1 +

(
ki

∏
k=0

h(i)k+1,k

)
Wi,ki+1.

Proof. Observe

PiWi =Wi(H
(i)
ki
⊗ Im)+h(i)ki+1,ki

[0, . . . ,0,Wi,ki+1] =WiH̃i +h(i)ki+1,ki
Wi,ki+1ET

ki
. (21)

Multiplication from the left by Pki−1
i and repeated use of (21) yields

Pki
i Wi = Pki−2

i (PiWi) H̃i +Pki−1
i h(i)ki+1,ki

Wi,ki+1ET
ki

= Pki−2
i

(
WiH̃i +h(i)ki+1,ki

Wi,ki+1ET
ki

)
H̃i +h(i)ki+1,ki

Pki−1
i Wi,ki+1ET

ki
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= Pki−3
i (PiWi) H̃2

i +h(i)ki+1,ki

1

∑
k=0

Pki−1−kWi,ki+1ET
ki

H̃k
i

= Pki−3
i

(
WiH̃i +h(i)ki+1,ki

Wi,ki+1ET
ki

)
H̃2

i

+h(i)ki+1,ki

1

∑
k=0

Pki−1−kWi,ki+1ET
ki

H̃k
i

= Pki−4
i (PiWi) H̃3

i +h(i)ki+1,ki

2

∑
k=0

Pki−1−kWi,ki+1ET
ki

H̃k
i

= . . .

=WiH̃
ki
i +h(i)ki+1,ki

ki−1

∑
k=0

Pki−1−kWi,ki+1ET
ki

H̃k
i .

As Qi = h(i)1,0Wi,1 = h(i)1,0WiE1, we have

Pki
i Qi = h(i)1,0Pki

i WiE1 = h(i)1,0WiH̃
ki
i E1 +h(i)1,0h(i)ki+1,ki

ki−1

∑
k=0

Pki−1−kWi,ki+1ET
ki

H̃k
i E1. (22)

Since Hi is an upper Hessenberg matrix, H̃i is a block upper Hessenberg matrix. It
follows that

ET
ki

H̃ p
i E1 = 0 for p = 0,1, . . . ,ki−2, and

ET
ki

H̃ki−1
i E1 =

ki−1

∏
k=1

h(i)k+1,k Im.

Substituting this into (22) gives

Pki
i Qi = h(i)1,0WiH̃

ki
i E1 +h(i)1,0h(i)ki+1,ki

Wi,ki+1

ki−1

∏
k=1

h(i)k+1,k Im

= h(i)1,0WiH̃
ki
i E1 +

ki

∏
k=0

h(i)k+1,kWi,ki+1.

Theorem 3.1 Assume that si is chosen for all i= 1, . . . , `, such that Li = s2
i M+siD+K

is nonsingular and siβ 6=−1. Let Wi, i = 1, . . . , `, be computed by the global Arnoldi
method such that (14) and (15) hold. Let W = [W1 W2 · · · W`] ∈ Cn×rmax be as in
(16). Let V ∈Cn×r be a full rank matrix which has the same column space as W. Let
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the reduced order system (9) be generated via (10). Then the error of the ki + 1-th
moment at si can be expressed as

εki(si) := ||hki(si)− ĥki(si) ||F

= |γki
i,2| ·

(
ki

∏
k=0

h(i)k+1,k

)
· ||(Cp + siCv)

(
In−V

(
V †LiV

)−1
V †Li

)
Wi,ki+1||F .

Proof. First consider ki = 0. Recall T̂ (0)(si) = L̂−1
i F̂ .

ε0(si) = ||(Cp + siCv)T (0)(si)− (Ĉp + siĈv)T̂ (0)(si)||F
= ||(Cp + siCv)T (0)(si)− (Cp + siCv)V T̂ (0)||F

= ||(Cp + siCv)
(

T (0)(si)−V L̂i
−1F̂

)
||F

= ||(Cp + siCv)
(

T (0)(si)−V
(
V †LiV

)−1
(V †F)

)
||F

= ||(Cp + siCv)
(

T (0)(si)−V
(
V †LiV

)−1
V †(LiL−1

i )F
)
||F

= ||(Cp + siCv)
(

In−V
(
V †LiV

)−1
V †Li

)
T (0)(si)||F . (23)

Next consider ki = 1. Recall T̂ (1)(si) = L̂−1
i B̂iT̂ (0)(si), and T (0)(si) =V T̂ (0)(si), but

in general T (1)(si) 6=V T̂ (1)(si).

ε1(si) = ||(Cp + siCv)T (1)(si)− (Ĉp + siĈv)T̂ (1)(si)||F
= ||(Cp + siCv)T (1)(si)− (Cp + siCv)V L̂−1

i B̂iT̂ (0)(si)||F

= ||(Cp + siCv)
(

T (1)(si)−V
(
V †LiV

)−1 (
V †BiV

)
T̂ (0)(si)

)
||F

= ||(Cp + siCv)
(

T (1)(si)−V
(
V †LiV

)−1 (
V †Bi

)(
V T̂ (0)(si)

))
||F

= ||(Cp + siCv)
(

T (1)(si)−V
(
V †LiV

)−1 (
V †Bi

)
T (0)(si)

)
||F

= ||(Cp + siCv)
(

T (1)(si)−V
(
V †LiV

)−1
V †(LiL−1

i )BiT (0)(si)
)
||F

= ||(Cp + siCv)
(

In−V
(
V †LiV

)−1
V †Li

)
T (1)(si)||F . (24)

Consider ki > 1. Recall T̂ (ki)(si) = L̂−1
i

(
B̂iT̂ (ki−1)(si)− M̂T̂ (ki−2)(si)

)
and T ( j)(si) =

V T̂ ( j)(si), for j = 1, . . . ,ki−1, but in general T (ki)(si) 6=V T̂ (ki)(si).

εki(si) = ||(Cp + siCv)T (ki)(si)− (Ĉp + siĈv)T̂ (ki)(si)||F
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= ||(Cp + siCv)T (ki)(si)− (Cp + siCv)V L̂−1
i

(
B̂iT̂ (ki−1)(si)− M̂T̂ (ki−2)(si)

)
||F

= ||(Cp + siCv)
{

T (ki)(si)−V
(
V †LiV

)−1
V †
(

BiT (ki−1)(si)−MT (ki−2)(si)
)}
||F

= ||(Cp + siCv)
(

In−V
(
V †LiV

)−1
V †Li

)
T (ki)(si)||F . (25)

Consider now ki ∈ N0 arbitrarily. With (19) and (23), (24) or (25) we obtain further

εki(si) = ||
ki

∑
k=0

µ
(ki,k)
i (Cp + siCv)

(
In−V

(
V †LiV

)−1
V †Li

)
Pk

i Qi||F .

As W is built as in (16) and the column space of V and W are the same, we have

colspan(V )⊃ colspan(Wi)⊃ colspan([Qi,PiQi,P2
i Qi, . . . ,P

ki−1
i Qi]).

Thus, we can write P j
i Qi as a linear combination of the blocks Wi,1, . . . ,Wi, j+1 and

further as
P j

i Qi =VA( j)
i , j = 0, . . . ,ki−1

for some A( j)
i ∈ Cr×m. Applying this relation and Lemma 3.2 we obtain

εki(si) = ||

(
ki−1

∑
k=0

µ
(ki,k)
i (Cp + siCv)

(
In−V

(
V †LiV

)−1
V †Li

)
VA(k)

i

)
+µ

(ki,ki)
i (Cp + siCv)

(
In−V

(
V †LiV

)−1
V †Li

)
Pki

i Qi||F

= ||µ(ki,ki)
i (Cp + siCv)

(
In−V

(
V †LiV

)−1
V †Li

)
Pki

i Qi||F

= |µ(ki,ki)
i | · ||(Cp + siCv)

(
In−V

(
V †LiV

)−1
V †Li

)(
h(i)1,0WiH̃

ki
i E1 +

ki

∏
k=0

h(i)k+1,kWi,ki+1

)
||F

= |µ(ki,ki)
i | · ||(Cp + siCv)

(
In−V

(
V †LiV

)−1
V †Li

)
Wih

(i)
1,0H̃ki

i E1

+(Cp + siCv)
(

In−V
(
V †LiV

)−1
V †Li

) ki

∏
k=0

h(i)k+1,kWi,ki+1||F

Since colspan(V )⊃ colspan(Wi) we have

Wi =VAWi

for some AWi ∈ Cr×(ki·m). Recalling µ
(ki,ki)
i = (−γi,2)

ki from (20) it holds

εki(si) = |γki
i,2| · ||(Cp + siCv)

(
In−V

(
V †LiV

)−1
V †Li

)
VAWih

(i)
1,0H̃ki

i E1
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+(Cp + siCv)
(

In−V
(
V †LiV

)−1
V †Li

) ki

∏
k=0

h(i)k+1,kWi,ki+1||F

= |γki
i,2| · ||(Cp + siCv)

(
In−V

(
V †LiV

)−1
V †Li

) ki

∏
k=0

h(i)k+1,kWi,ki+1||F

= |γki
i,2|

ki

∏
k=0

h(i)k+1,k · ||(Cp + siCv)
(

In−V
(
V †LiV

)−1
V †Li

)
Wi,ki+1||F
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