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Abstract

In the simulation and optimization of natural gas �ow in a pipeline

network, a hierarchy of models is used that employs di�erent formula-

tions of the Euler equations. While the optimization is performed on

piecewise linear models, the �ow simulation is based on the one to three

dimensional Euler equations including the temperature distributions.

To decide which model class in the hierarchy is adequate to achieve a

desired accuracy, this paper presents an error and perturbation analysis

for a two level model hierarchy including the isothermal Euler equations

in semilinear form and the stationary Euler equations in purely alge-

braic form. The focus of the work is on the e�ect of data uncertainty,

discretization, and rounding errors in the numerical simulation of these

models and their interaction. Two simple discretization schemes for the

semilinear model are compared with respect to their conditioning and

temporal stepsizes are determined for which a well-conditioned problem

is obtained. The results are based on new componentwise relative con-

dition numbers for the solution of nonlinear systems of equations. More-

over, the model error between the semilinear and the algebraic model

is computed, the maximum pipeline length is determined for which the

algebraic model can be used safely, and a condition is derived for which

the isothermal model is adequate.
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1 Introduction

Natural gas plays a crucial role in the energy supply of the world. It is suf-
�ciently and readily available, it is traded, and it is storable. In Germany
e.g., after oil, natural gas is the second most used energy supplier, with a
total share of more than 20% of the energy consumption in 2015 [1]. The
high demand for natural gas and the deregulation of the energy markets call
for a reliable mathematical modeling, simulation, and optimization of the gas
transport through existing pipeline networks.

In view of this demand,in the last decades considerable research on the
simulation and optimization of gas networks has been performed, see e.g. [2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], where di�erent simulation models for
the �ow through a pipe or a network of pipes and compressor stations have
been proposed. Since the simulation models are a key factor in optimization
tools, adequate accuracy and high e�ciency is very important. So, using
error estimation, typically the grid is adapted in space and time and as a new
component of the simulation process we will discuss the adaptation of the
model within a model hierarchy. We will focus on the pure pipe �ow, where
the model hierarchy is easily constructed and where it can be used to �nd
an appropriate trade-o� between accuracy and computational complexity, see
[15, 16, 17, 18].

It is well known, see e.g. [19, page 5], that the numerical solution of a com-
putational problem contains errors from all or some of the following sources:
modeling, discretization, iteration, data uncertainty, and rounding errors, see
Figure 1 for a schematic overview. These errors should be balanced to achieve
an adequate simulation result. We derive error estimates and a sensitivity
analysis within the typical model hierarchy with respect to the discretization
scheme, while also considering the iteration and rounding errors for the so-
lution of the resulting nonlinear systems of equations. To demonstrate the
new techniques and to keep the presentation simple we present a deterministic
as well as statistical error and sensitivity analysis only for two speci�c com-
ponents of the model hierarchy, a purely algebraic model and an isothermal
semilinear model, but the analysis can be carried out also for more complex
components in the model hierarchy. For these two models, model and dis-
cretization error estimators for an arbitrary cost functional have been derived
in [17, 20]. However, the e�ect of data uncertainty and rounding errors on the
solution of these two models has not been considered in the literature and is
the main topic of this paper.

To estimate the errors, we perform a backward error analysis, see e.g. [19],
and derive �rst order upper bounds as well as mean statistical estimates for the
error in the solution due to data uncertainty, modeling, discretization, round-
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Real world problem

Mathematical model
(ODE/DAE/PDE)

Modeling error

Discretized model
(linear/nonlinear)

Solution with ite-
rative method

Iteration, rounding,
and data uncer-
tainty errors

Algebraic model

Solution with ite-
rative method

Iteration, rounding,
and data uncer-
tainty errors

Discretization error Modeling error

Figure 1: Overview of di�erent error sources contained in the numerical sim-
ulation of a real world problem.

ing, and iteration errors. A perturbation analysis in which also higher order
error terms are included usually leads to very pessimistic upper error bounds,
see [21], and is therefore not considered. We derive componentwise condition
numbers and, based on these, deterministic �rst order error bounds. The ad-
vantage of the componentwise relative condition number over the traditional
normwise condition number for nonlinear systems is demonstrated.

This paper is organized as follows. Section 2 introduces di�erent mod-
els that describe the gas �ow through a pipeline. Section 3 gives a concise
introduction into error analysis and conditioning. Moreover, several kinds
of condition numbers are derived. Section 4 presents a sensitivity analysis
for two di�erent discretization schemes applied to the semilinear model and
applies the derived condition numbers to the resulting nonlinear systems of
equations. Moreover, the e�ect of rounding errors and the iteration error is
investigated and the relative model error between the semilinear and the al-
gebraic model is determined. In Section 5 both a theoretical worst case and
a statistical mean error analysis for the stationary Euler equations in purely
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algebraic form is presented. Some conclusions are given in Section 6.

2 The Model Hierarchy

As a model problem for the balanced error analysis in a model hierarchy, the
gas �ow through a pipeline is modeled via the one dimensional Euler equations
that represent a system of nonlinear hyperbolic partial di�erential equations
for the behavior of compressible, non-viscous �uids. The model consist of,
see e.g. [22], the continuity equation, the impulse equation, and the energy
equation, respectively,

∂ρ

∂t
+

∂

∂x
(ρv) = 0, (1a)

∂

∂t
(ρv) +

∂

∂x
(p+ ρv2) = − λ

2D
ρv|v| − gρh′, (1b)

∂

∂t

(
ρ(

1

2
v2 + e)

)
+

∂

∂x

(
ρv(

1

2
v2 + e) + pv

)
= −kw

D
(T − Tw). (1c)

Moreover, the state equation for real gases is added, which is given by

p = RρTz(p, T ). (2)

In this system of equations the variables have the following physical meaning:
ρ is the density of the gas, t is the time, v the velocity of the gas, x the space
coordinate along the pipeline, p the pressure of the gas, λ the pipe friction
coe�cient, D the diameter of the pipeline, g the gravitational constant, h
the height of the pipeline, h′(x) the slope of the pipeline, cv the volumetric
heat capacity, e = cvT + gh the internal (thermal plus potential) energy, T
the temperature of the gas, kw the heat conductivity coe�cient, Tw the wall
temperature of the pipeline, and R the gas constant. Finally, z(p, T ) denotes
the compressibility factor for which we use the model of the American Gas
Association (AGA)

z(p, T ) = 1 + 0.257
p

pc
− 0.533

pTc
pcT

, (3)

where pc and Tc denote the pseudo-critical pressure and temperature, which
provides a good approximation of z for pressures up to 70 bar [23, 24]. The
full Euler equations (even in the one-dimensional case (1)) are mathematically
quite involved and their numerical solution requires large computational e�ort.
For this reason, in particular when the solution is part of an optimization
procedure, usually several simpli�cations are made. Such simpli�cations are
e.g. to use an approximate semilinear model as derived in subsection 2.1 or a
purely algebraic model as considered in subsection 2.2.
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2.1 Derivation of the Semilinear Isothermal Model

Starting from the full one dimensional Euler equations (1), to derive the
isothermal model, the temperature T = T0 is assumed to be constant within
the pipeline, such that the energy equation (1c) can be dropped and the
isothermal Euler equations (1a) and (1b) are obtained. According to the In-
ternational Standard Metric Conditions for natural gas [25], the value T0 =
15.0 ◦C (which is equal to 288 K) is taken for this constant temperature. Then,
in the isothermal case, the compressibility factor z in the AGA model (3) only
depends on p and we get

z(p) = 1 + αp, with α =
0.257

pc
− 0.533

Tc
pcT0

. (4)

If one also assumes that this compressibility factor z(p) = z0 is constant in p,
then one can use the average

z0 =
z(0) + z(70 bar)

2
= 0.928

as its value. For constant temperature T0 and compressibility factor z0, the
state equation for real gases (2) then reduces to

p(ρ) = RT0z0ρ. (5)

If also the entropy of the gas is assumed to be constant, which is a reasonable
assumption when the temperature of the gas is constant [17, page 7], then the
speed of sound is given by c =

√
∂p/∂ρ, see also [22, Eq. (14.32)]. From (5)

it follows that
c =

√
RT0z0 =

√
p/ρ. (6)

Hence, we have ρ = p/c2, and inserting this in (1b), the momentum equation
can be rewritten as

∂

∂t
(ρv) +

∂

∂x
(p(1 + v2/c2)) = − λ

2D
ρv|v| − gρh′.

As further simpli�cations often the term v2/c2 is neglected in the case of small
gas �ow velocities v, see [26], and it is assumed that h′(x) ≡ 0, i.e., the pipeline
is assumed to be (essentially) horizontal. These simpli�cations result in the
isothermal semilinear model (see [17, 27])

∂ρ

∂t
+

∂

∂x
(ρv) = 0, (7a)

∂

∂t
(ρv) +

∂p

∂x
= − λ

2D
ρv|v|. (7b)
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Introducing the mass �ow rate q = Aρv, with a constant cross-sectional
area A, and using (6), system (7) may be rewritten in the form

∂p

∂t
+
c2

A

∂q

∂x
= 0, (8a)

∂q

∂t
+A

∂p

∂x
= − λc2

2DA

q|q|
p
, (8b)

q(xR, t) = qs(t), (8c)

p(xL, t) = ps(t), (8d)

where as boundary conditions the mass �ow rate is prescribed by qs(t) at the
right-hand side of the pipeline xR and the pressure is prescribed by ps(t) at
the left-hand side of the pipeline xL.

When considering all these drastic model simpli�cations it has to be an-
alyzed whether these perturbations in the model have a large e�ect on the
simulation results.

2.2 Derivation of the Algebraic Model

Another simpli�ed model (presented in an even more reduced form in [16]) is
obtained by neglecting the terms ∂

∂x (ρv2), ∂
∂x (ρv3), and ∂

∂t (ρv) in (1). This
results in the model

∂ρ

∂t
+

∂

∂x
(ρv) = 0, (9a)

∂p

∂x
= − λ

2D
ρv|v| − gρh′, (9b)

∂

∂t
(ρe) +

∂

∂x
(ρve+ pv) = −kw

D
(T − Tw). (9c)

If, as further simpli�cation, a stationary model is assumed, i.e., the time-
derivatives ∂

∂t are set to zero, the pipeline is again assumed to be horizontal,
i.e., h′ = 0, and the compressibility factor z is set to be constant, then a set
of ordinary di�erential equations is obtained, which can be solved analytically
via

q̂ = ρinvin, (10a)

p(x) =

√
p2in −

λc2

2r
ρv|ρv|(x− x0), (10b)

T (x) = (Tin − Tw)e−
kw

Dcvρv
(x−x0) + Tw. (10c)

Here, q̂ = ρv is the mass �ux, which is constant in space, ρin is the inlet den-
sity, vin the inlet velocity, pin the inlet pressure, c the constant speed of sound,
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r the radius of the pipeline, x0 the starting point of the pipeline, and Tin the
inlet temperature. Equations (10) are referred to as the temperature dependent
algebraic model of the one dimensional Euler equations. Again, an isothermal
simpli�cation is obtained by taking the temperature T constant. This leaves
us with (10a) and (10b), which are referred to as the isothermal algebraic
model. A detailed derivation of this model is given in [18]. In the optimiza-
tion of natural gas networks, this nonlinear algebraic model is often further
approximated by piecewise linear functions, see e.g. [28] and [29, page 115]. Al-
though usually within the optimization methods the approximation accuracy
by the piecewise linear approximations is controlled, the modeling error of the
nonlinear algebraic model is usually not considered. If this modeling error is
large, then the linear relaxation techniques used in the optimization methods
inevitably lead to inaccurate results. This motivates our consideration of the
model error in subsection 4.5.

The discussed model hierarchy is depicted schematically in Figure 2. We
will analyze the errors in this model hierarchy, however, it should be clear that
the analysis can be extended by considering all simpli�cations separately and
by also starting from a more detailed original model.

Euler equations (1)

Temperature dependent
algebraic model (10)

[ ∂∂x (ρv2), ∂∂x (ρv3), ∂∂t , h
′] = 0,

z = const.

Semilinear isother-
mal model (7)

Isothermal algebraic
model (10a), (10b)

∂
∂t = 0

T = const.

[ ∂∂x (ρv2), h′] = 0,

[z, T ] = const.

Figure 2: Two level model hierarchy for the simulation of �ows in gas networks.

3 Error Analysis and Conditioning

The aim of error analysis is to construct an estimate or upper bound of the
e�ect that modeling, rounding, data uncertainty, and discretization errors have
on the solution of a given problem, see e.g. [30, 19, 31]. Rounding errors in the
numerical computations due to �oating point arithmetic can be interpreted
as perturbations in the data using a backward error analysis, see [32]. We
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investigate the data uncertainty error by means of a sensitivity analysis. A
deterministic perturbation analysis, as given in subsection 3.1, results in a �rst
order upper error bound, which can possibly be very pessimistic for certain
input parameter values. Therefore, it is important to compare this upper
bound with an average error estimate, which can be obtained using a statistical
analysis as described in subsection 3.2.

3.1 Deterministic Perturbation Analysis

The term condition number is used to describe the sensitivity of problems
to uncertainties in the input parameters [31]. Using the classical concepts of
backward and forward error, we have the rule of thumb [19]

forward error ≤̇ condition number× backward error,

with ≤̇ meaning "less than or equal to except for higher order terms". It in-
sightfully shows that despite of a small backward error (which is often given
by the residual), a problem can have a large forward error due to a high con-
dition number. Formal de�nitions for normwise and componentwise condition
numbers are given in e.g. [33].

Suppose that the solution of a problem is obtained by evaluating the di�er-
entiable function of a single variable f(d). Denoting the derivative of f with
respect to d by f ′(d), then the quantity [19]

κrel(f ; d) =

∣∣∣∣d f ′(d)

f(d)

∣∣∣∣ ,
with | . | denoting the absolute value, is the relative condition number of f
and it measures, for small perturbations ∆d, the relative change in the output
for a given relative change in the input. On the other hand, if the solution
of a problem is obtained by evaluating a di�erentiable function of several
variables f(d) with d ∈ Rn, then, using a �rst order Taylor series expansion,
we have

f(d + ∆d)− f(d)

f(d)

.
=

n∑
i=1

∂f(d)

∂di

di
f(d)

∆di
di

,

where
.
= denotes a �rst order approximation, cf. [33, page 28]. Taking the

absolute value results in the �rst order upper bounds

|f(d + ∆d)− f(d)|
|f(d)|

≤̇
n∑
i=1

∣∣∣∣∂f(d)

∂di

di
f(d)

∣∣∣∣ |∆di||di|

≤
n∑
i=1

∣∣∣∣∂f(d)

∂di

di
f(d)

∣∣∣∣ ·max
i

|∆di|
|di|

,
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such that the quantities, cf. [21],

κrel(f ; di) =

∣∣∣∣∂f(d)

∂di

di
f(d)

∣∣∣∣ , i = 1, . . . , n, (11)

are the individual relative condition numbers of f with respect to di and the
quantity

κrel(f ;d) =

n∑
i=1

∣∣∣∣∂f(d)

∂di

di
f(d)

∣∣∣∣ =

n∑
i=1

κrel(f ; di) (12)

is the relative condition number of f with respect to d.
For systems of nonlinear equations, normwise relative condition numbers

were �rst studied in [34], and the results are extended and summarized in [19].
We develop componentwise condition numbers for nonlinear systems of equa-
tions

F (x;d) = 0, (13)

where F : Dx × Dd → Rm with Dx × Dd an open subset of Rm × Rn. In
the following we assume that F ∈ C1,1, i.e., it is (at least once) continuously
di�erentiable with respect to both x and d. Given a solution x∗ ∈ Rm we are
interested in the sensitivity of x∗ with respect to perturbations in the data
vector d ∈ Rn, i.e., we are interested in the condition number κrel(x

∗;d) of x∗

with respect to perturbations d̃ in the data d. So instead of (13) one solves
the problem

F (x̃; d̃) = 0, (14)

and we determine a relation between the norms ||x̃∗ − x∗|| for the solutions
x̃∗,x∗ and the deviation in the data ||d̃− d||, where the norm || · || should be
chosen such that it �ts the problem [34, page 374]. The �rst order term in the
Taylor series expansion gives

F (x̃∗; d̃)
.
= F (x∗;d) + F ′x(x∗;d)(x̃∗ − x∗) + F ′d(x∗;d)(d̃− d), (15)

where F ′x and F ′d denote the Jacobians of F with respect to x∗ and d, re-

spectively. Since both F (x∗;d) = 0 and F (x̃∗; d̃) = 0, (15) can be rewritten
as

F ′x(x∗;d)(x̃∗ − x∗)
.
= −F ′d(x∗;d)(d̃− d). (16)

If F ′x is invertible and bounded in (x∗;d), then we obtain that

||x̃∗ − x∗|| ≤̇ ||F ′x(x∗;d)−1F ′d(x∗;d)|| ||d̃− d||, (17)

so that
||x̃∗ − x∗||
||x∗||

≤̇ ||d|| ||F
′
x(x∗;d)−1F ′d(x∗;d)||
||x∗||

||d̃− d||
||d||

, (18)
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where the matrix norm ||F ′x(x∗;d)−1F ′d(x∗;d)|| is the one induced by the
vector norm. >From (17) and (18) it follows that the normwise absolute and
relative condition numbers of the solution x∗ with respect to the data d are
given by

κabs,n(x∗;d) = ||F ′x(x∗;d)−1F ′d(x∗;d)|| (19)

and, see [34, page 377] and [19, Eq. (25.11)],

κrel,n(x∗;d) =
||d|| ||F ′x(x∗;d)−1F ′d(x∗;d)||

||x∗||
, (20)

respectively. Considering individual components, one can determine the sen-
sitivity of the i-th component x∗i of the solution vector x∗ of the problem (13)
with respect to small perturbations in the data vector d. We rewrite (16) as

x̃∗ − x∗
.
= −F ′x(x∗;d)−1F ′d(x∗;d)(d̃− d). (21)

For the i-th component (x̃∗ − x∗)i of the vector x̃
∗ − x∗ we obtain

(x̃∗ − x∗)i
.
= −

(
F ′x(x∗;d)−1F ′d(x∗;d)(d̃− d)

)
i

.
= −

(
F ′x(x∗;d)−1F ′d(x∗;d)

)
i,:

(d̃− d), (22)

where Mi,: denotes the i-th row of the matrix M . Taking the absolute value
and using the Cauchy-Schwarz inequality [35, page 107] result in �rst order
upper bounds for the absolute and relative error

|x̃∗i − x∗i | ≤̇ ‖
(
F ′x(x∗;d)−1F ′d(x∗;d)

)T
i,:
‖2‖d̃− d‖2, (23)

|x̃∗i − x∗i |
|x∗i |

≤̇
‖d‖2‖

(
F ′x(x∗;d)−1F ′d(x∗;d)

)T
i,:
‖2

|x∗i |
‖d̃− d‖2
‖d‖2

. (24)

It follows that the absolute and relative condition number of component x∗i
with respect to d are given by

κabs(x
∗
i ;d) = ‖

(
F ′x(x∗;d)−1F ′d(x∗;d)

)T
i,:
‖2, (25)

κrel(x
∗
i ;d) =

‖d‖2‖
(
F ′x(x∗;d)−1F ′d(x∗;d)

)T
i,:
‖2

|x∗i |
. (26)

Let us now consider, analogous to [36, Example 3.7], componentwise condition
numbers in both the input and the output parameters. Since we are interested
in the maximum componentwise error in the output parameters, we take the
in�nity norm in (21), which yields

‖∆x∗‖∞ ≤̇ ‖F ′x(x∗;d)−1F ′d(x∗;d)‖∞‖∆d‖∞,
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where ∆x∗ = x̃∗ − x∗ and ∆d = d̃ − d. Thus, the componentwise absolute
condition number is given by

κabs,c(x
∗;d) = ‖F ′x(x∗;d)−1F ′d(x∗;d)‖∞. (27)

In order to derive the componentwise relative condition number, we de�ne
matrices Dx∗ = diag(x∗i ) and Dd = diag(di), analogous to [36, Def. 3.1].
Then, (21) is equivalent to

D−1x∗ ∆x∗
.
= −D−1x∗ F ′x(x∗;d)−1F ′d(x∗;d)DdD

−1
d ∆d,

where we assume that all components of x∗ and d are nonzero, such that the
inverses D−1x∗ and D−1d exist. Taking the in�nity norm again yields

‖D−1x∗ ∆x∗‖∞ ≤̇ ‖D−1x∗ F ′x(x∗;d)−1F ′d(x∗;d)Dd‖∞‖D−1d ∆d‖∞. (28)

Hence, the componentwise relative condition number of x∗ with respect to d
is given by

κrel,c(x
∗;d) = ‖D−1x∗ F ′x(x∗;d)−1F ′d(x∗;d)Dd‖∞. (29)

Note that by choosing the in�nity norm in (20), we have the relation

κrel,c(x
∗;d) ≤ κrel,n(x∗;d) (30)

due to the sub-multiplicativity of the in�nity norm. Surprisingly, the compo-
nentwise relative condition number (29) for general nonlinear problems (13)
has not been formulated in the literature before. E.g., in [33, Example 2.17],
[36, Example 3.7] the componentwise relative condition number for the more
speci�c nonlinear system F (x) = d is derived. In [19, 34] only the normwise
relative condition number for nonlinear system (13) is given. We note that the
amount of literature considering the conditioning of general nonlinear systems
is relatively small. This observation is also made in [19, page 468].

Remark. If the nonlinear system (13) is solved using (a variant of) the New-
ton method, then in each Newton iteration the linear system

F ′(xj)∆xj = −F (xj), (31)

has to be solved, where ∆xj = xj+1 − xj. It is shown in [34] that the data
uncertainty error in x∗ depends on the sensitivity of the nonlinear system (13)
and not on the sensitivity of the linear system (31).
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3.2 Statistical Perturbation Analysis

The condition number leads to a �rst order worst case perturbation bound.
However, in practice, this error bound is rarely attained and the actual error
could be much smaller. In order to have a more detailed description of the data
uncertainty error, we therefore also compute average perturbation estimates
by means of a statistical sensitivity analysis.

We perform this analysis by using the Univariate Reduced Quadrature
(URQ) method, see [37]. This method presents a convenient trade-o� between
computational complexity and accuracy. In contrast to the large sample size
that is required for a Monte Carlo Simulation (MCS), the URQ method only
utilizes a sample size of 2n+ 1, where n is the number of uncertain data com-
ponents. This makes the URQ method computationally much less expensive
than a MCS. The mean µxk and the variance σ2

xk
, k = 1, . . . ,m, of a solution

component xk in x are approximated in the URQ method using the quadrature
formulas in [37, (20) and (21)]. We use the factor

φ(x;d) =
maxk σxk/µxk
maxi σdi/µdi

(32)

as a statistical measure for the average ampli�cation of the uncertainties in
the data di, i = 1, . . . , n.

Having established normwise and componentwise condition numbers for
general nonlinear systems of equations as well as an average uncertainty am-
pli�cation measure, in the next sections we apply these results to study the
sensitivity of the two classes of Euler equations with respect to perturbations
in the data.

4 Error Analysis for the Semilinear Isothermal Model

In this section, an error analysis is performed for the isothermal Euler equa-
tions in semilinear form, called the semilinear model. Subsections 4.1 and 4.2
discuss two simple discretization schemes applied to the semilinear model (7).
These simple discretization schemes, here called the 1S-scheme and the MP-
scheme, are typically used in the optimization of large gas networks, see [9, 38].
A theoretical worst case and a statistical mean sensitivity analysis for both
systems is presented in subsection 4.3. A rounding and iteration error analysis
for the two resulting nonlinear systems is contained in subsection 4.4. Finally,
a �rst order upper bound for the relative model error between the semilinear
and the algebraic model is derived in subsection 4.5.
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4.1 Discretization using a One-Sided Evaluation

For notational convenience, we consider one space interval [xL, xR] as a piece of
length H of a pipeline and discretize system (8) �rst in space. There are many
di�erent possibilities to obtain such a discretization. Here, we approximate
the space derivative by

∂q

∂x
≈ q(xR, t)− q(xL, t)

H
. (33)

Furthermore, we use the evaluation p(xR, t) as an approximation of p(x, t) and
q(x, t) ≈ q(xL, t). Inserting the boundary conditions (8c), (8d) into (8a), (8b)
results in a system of ordinary di�erential equations (ODEs), which is given
by

ṗ(xR, t) +
c2

AH

(
qs(t)− q(xL, t)

)
= 0,

q̇(xL, t) +
A

H

(
p(xR, t)− ps(t)

)
= − λc2

2DA

q(xL, t)|q(xL, t)|
p(xR, t)

.

Using the implicit Euler discretization scheme in time and introducing the
vector xi = [p(xR, ti), q(xL, ti)]

T , yields the nonlinear system of equations

F1(xi,d) =
1

τ
(xi1 − xi−11 ) +

c2

AH
(qis − xi2) = 0, (34a)

F2(xi,d) =
1

τ
(xi2 − xi−12 ) +

A

H
(xi1 − pis) +

λc2

2DA

xi2|xi2|
xi1

= 0. (34b)

Here, the (uncertain) data are collected in the vector

d = [A, λ,D, c, pis, q
i
s, x

i−1
1 , xi−12 ]T . (35)

These are the cross-sectional area A, the Darcy friction factor λ, the diam-
eter D, the speed of sound c, the boundary conditions, and the solution of
the previous time step xi−1. The �rst three parameters are uncertain because
their values cannot be determined accurately for pipelines that lie deep in the
ground for a long period of time. The speed of sound c within the gas is
uncertain because the temperature T and the compressibility factor z are set
to a constant in (6) and thus a modeling error is made. The boundary values
are subject to measurement errors (or simulation errors when the pipeline is
split into smaller pieces), and xi−1 is uncertain due to the accumulation of
discretization errors, as well as the rounding and data uncertainty errors in
the previous time steps. We call this discretization scheme the 1S-scheme in
the following. It is similar to the discretization in [9, 38]; the only di�erence is
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that p and q are there both evaluated in xR, given that the gas �ows from xL
to xR. Equations (34) de�ne a two-dimensional nonlinear system with solu-
tion xi. The Jacobian F ′xi(x

i,d) of F = [F1, F2]T with respect to xi is given
by

F ′xi(x
i,d) =

 1
τ − c2

AH

A
H −

λc2

2DA
xi2|x

i
2|

(xi1)
2

1
τ + λc2

DA
|xi2|
xi1

 . (36)

For the solution xi of the nonlinear system (34) we use the Newton method,
see e.g. [39], with stopping criterion ‖xij − xij−1‖∞ ≤ tol. In our simulations

that we present below we use tol = 10−3, the concrete parameters values

τ = 15 s, pi−1R = 5 · 106 Pa, qi−1L = 300 kg s−1, (37a)

c =
√
RT0z0 =

√
518.3 · 288.15 · 0.928 = 372 m s−1, see (6), (37b)

H = 500 m, pis = 5.07 · 106 Pa, qis = 302 kg s−1, (37c)

A = 0.785 m2, λ = 0.06, D = 1 m, (37d)

and starting values xi0 = [5 · 106 Pa, 300 kg s−1]T . These values result in an
approximate solution xi which is given by

xi =

[
piR
qiL

]
=

[
5.01 · 106 Pa
3.03 · 102 kg s−1

]
. (38)

An important question is, how sensitive this solution is with respect to small
perturbations in the uncertain data d in (35). To determine this sensitivity,
the Jacobian of F with respect to d is computed, which is given by

F ′d(xi,d) =



c2

A2H (xi2 − qis) 1
H (xi1 − pis)− λc2

2DA2

xi2|x
i
2|

xi1

0 c2

2DA
xi2|x

i
2|

xi1

0 − λc2

2D2A
xi2|x

i
2|

xi1

2c
AH (qis − xi2) λc

DA
xi2|x

i
2|

xi1

0 −A
H

c2

AH 0

− 1
τ 0

0 − 1
τ



T

. (39)

The results of the sensitivity analysis are presented in subsection 4.3.
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4.2 Discretization using the Midpoint Rule

As an alternative space discretization of the system (8) we use the midpoint
rule for the pressure p(x, t) and the mass �ow rate q(x, t). For example, for
p(x, t) we obtain

p(x, t) ≈ p(xR, t) + p(xL, t)

2
.

Again, the boundary conditions (8c), (8d) are inserted into (8a), (8b). This
results in the system of ODEs

1

2
ṗ(xR, t) +

c2

AH

(
qs(t)− q(xL, t)

)
+

1

2
ṗs(t) = 0,

1

2
q̇(xL, t) +

A

H

(
p(xR, t)− ps(t)

)
+

1

2
q̇s(t)

+
λc2

4DA

(
qs(t) + q(xL, t)

)
|qs(t) + q(xL, t)|

p(xR, t) + ps(t)
= 0.

Using again the implicit Euler scheme for the time discretization yields the
nonlinear system

F1(xi,d) =
1

τ
(xi1 − xi−11 ) +

2c2

AH
(qis − xi2) + ṗis = 0, (41a)

F2(xi,d) =
1

τ
(xi2 − xi−12 ) +

2A

H
(xi1 − pis) + q̇is

+
λc2

2DA

(qis + xi2)|qis + xi2|
xi1 + pis

= 0, (41b)

with data vector

d = [A, λ,D, c, pis, q
i
s, ṗ

i
s, q̇

i
s, x

i−1
1 , xi−12 ]T . (42)

We call this discretization scheme the MP-scheme. It is equivalent to the
implicit box scheme in [40]. The Jacobian F ′xi of F = [F1, F2]T with respect
to xi in this case is given by

F ′xi(x
i,d) =

 1
τ − 2c2

AH

2A
H −

λc2

2DA
(qis+x

i
2)|q

i
s+x

i
2|

(xi1+p
i
s)

2
1
τ + λc2

DA
|qis+x

i
2|

xi1+p
i
s

 . (43)

We again use the Newton method for the solution xi of (41) with stopping
criterion ‖xij − xij−1‖∞ ≤ tol. For the numerical simulations presented below
we use the parameter values (37),

ṗis = 100, q̇is = 0.05, (44)
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and the starting values xi0 = [5 · 106 Pa, 300 kg s−1]T . This results in an ap-
proximate solution xi given by

xi =

[
piR
qiL

]
=

[
5.01 · 106 Pa
3.03 · 102 kg s−1

]
. (45)

In order to determine the sensitivity of xi with respect to perturbations in the
data, the Jacobian of the function F with respect to d in (42) is calculated as

F ′d(xi,d) =



2c2

A2H (xi2 − qis) 2
H (xi1 − pis)− λc2

2DA2

(qis+x
i
2)|q

i
s+x

i
2|

xi1+p
i
s

0 c2

2DA
(qis+x

i
2)|q

i
s+x

i
2|

xi1+p
i
s

0 − λc2

2D2A
(qis+x

i
2)|q

i
s+x

i
2|

xi1+p
i
s

4c
AH (qis − xi2) λc

DA
(qis+x

i
2)|q

i
s+x

i
2|

xi1+p
i
s

0 − 2A
H −

λc2

2DA
(qis+x

i
2)|q

i
s+x

i
2|

(xi1+p
i
s)

2

2c2

AH
λc2

DA
|qis+x

i
2|

xi1+p
i
s

1 0

0 1

− 1
τ 0

0 − 1
τ



T

. (46)

The sensitivity results are presented in subsection 4.3.

4.3 Sensitivity Analysis for the two Discretizations

This subsection contains both a worst case �rst order and a statistical mean
sensitivity analysis for the 1S- and the MP- discretization scheme. Moreover,
we show that the normwise condition number yields a too pessimistic upper
error bound.

We use the Jacobians in (36), (39), (43), (46) to calculate the individual
condition numbers (26) of the components piR and qiL of the solutions xi in
(38), (45) with respect to perturbations in the uncertain data. Using the pa-
rameter values in (37), (44) we obtain the results presented in Table 1. We �nd
that the largest individual condition number is κrel(q

i
L; pis) for both schemes.

Moreover, one observes that the mass �ow rate qiL is more sensitive to small
perturbations in the parameters than the pressure piR. We note that a scal-
ing of the parameter values or using di�erent units, e.g. by choosing the unit
metric ton rather than kg, does not change the results.
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Calculating the normwise relative condition numbers (20) of xi with re-
spect to d in (35), (42) for the 1S- and the MP-scheme with parameter values
(37), (44) yields κ1Srel,n(xi;d) = 1.39 · 106, κMP

rel,n(xi;d) = 1.45 · 106. We �nd
that these normwise condition numbers are at least three orders of magnitude
larger than the individual condition numbers in Table 1. Hence, the normwise
condition number considerably overestimates the sensitivity of the correspond-
ing nonlinear root �nding problem, i.e., it constitutes a very pessimistic upper
bound. Considering also (30), this leads to the conclusion that it is more ade-
quate to use the componentwise relative condition number in (29) in order to
determine the sensitivity of xi with respect to d.

The componentwise condition numbers for the two di�erent discretization
schemes are calculated for spatial stepsizes H ∈ [1, 1000 m] and for temporal
stepsizes τ ∈ [10−2, 30 s]. The results are depicted in Figure 3. In order to
get a more detailed description of the sensitivity of the nonlinear systems, we

Table 1: Individual relative condition numbers in (26) for the 1S- and the MP-
scheme. The condition numbers are computed for the solution components piR
and qiL with respect to the uncertain input parameters d in (35), (42). The
values in (37), (44) are used.

κ1Srel κMP
rel

piR qiL piR qiL

A 2.30 · 10−2 7.65 · 10−2 2.40 · 10−2 4.07 · 10−2

λ 1.15 · 10−2 3.60 · 10−2 1.20 · 10−2 1.88 · 10−2

D 1.15 · 10−2 3.60 · 10−2 1.20 · 10−2 1.88 · 10−2

c 2.28 · 10−2 8.09 · 10−2 2.40 · 10−2 4.38 · 10−2

pis 9.44 · 10−1 2.94 1.00 1.57

qis 2.53 · 10−2 9.16 · 10−1 2.53 · 10−2 9.57 · 10−1

ṗis − − 6.23 · 10−6 4.58 · 10−4

q̇is − − 3.13 · 10−6 4.89 · 10−6

pi−1R 7.93 · 10−2 2.87 2.08 · 10−2 1.53

qi−1L 2.37 · 10−3 7.39 · 10−3 1.25 · 10−3 1.96 · 10−3
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also perform a statistical mean error analysis for the 1S- and the MP-scheme
using the URQ method, see subsection 3.2. The relative standard deviations
σdj/µdj , j = 1, . . . , n, for the input parameters is set to 0.5% and the values
in (37) are taken for the mean values µdj . Subsequently, the relative standard
deviations σxik/µxik , k = 1, 2, of the solution xi are computed. Factor φ(xi;d)

in (32) is again calculated for H ∈ [1, 1000 m] and τ ∈ [10−2, 30 s]. The
results are depicted in Figure 4. We �nd that the di�erences between the
mean uncertainty ampli�cation factors φ and the �rst order worst case bounds
in Figure 3 are relatively small. Furthermore, we observe in both �gures
that given H and τ , the sensitivity of the MP-scheme is smaller than that of
the 1S-scheme. Using Figures 3 and 4 for a given discretization scheme, the
spatial and temporal stepsizes H and τ can be chosen such that the sensitivity
of the corresponding nonlinear system is low. Note that while reducing H
and τ decreases the discretization error, it increases the sensitivity of the
problem and thus both the error due to data uncertainty and the e�ect of
rounding are ampli�ed. Hence, a balance between the discretization and the
data uncertainty error should be determined to �nd appropriate values for H
and τ .
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Figure 3: The componentwise relative condition numbers in (29) of the 1S-
scheme (left) and the MP-scheme (right) as a function of the spatial and
temporal stepsize. The condition number is computed for the solution xi =
[piR, q

i
L]T with respect to the uncertain data d in (35), (42). The numbers at

the colorbar denote the values of κrel,c.
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Figure 4: The mean uncertainty ampli�cation factor φ(xi;d) in (32), calcu-
lated with the URQ method, for the 1S-scheme (left) and MP-scheme (right)
as a function of H and τ . The values in (37) are taken for the mean values of
the uncertain data. The numbers at the colorbar denote the values of φ.

4.4 Rounding and Iteration Error Analysis

In this subsection a �rst order upper bound for the rounding errors and the
iteration error that are committed in the Newton method is derived. The
result is applied to both the 1S- and the MP-scheme.

A rounding error analysis for the solution of the linear system (31) arising
in the Newton method is presented in [41], together with a condition for which
the intermediate solution xj cannot be improved due to rounding errors, see

[41, page 117]. If ej is an upper bound for the rounding error ‖F (xj)−F̃ (xj)‖,
where F is the exact function evaluation and F̃ is the computed function
evaluation, then this condition is given by

‖F̃ (xj)‖ ≤ ej or ‖F̃ (xj)‖ ≥ ‖F̃ (xj−1)‖. (47)

In the following we assume that the �rst condition of (47) is satis�ed before
the second condition of (47). We de�ne the set

S := {x | ‖F̃ (x)‖ ≤ ej} (48)



ERROR ANALYSIS FOR FLOWS IN GAS NETWORKS 250

and assume that x∗ ∈ S. Then, provided that the Jacobian of F̃ is invertible
for all x ∈ S, it follows from the implicit function theorem that

‖xj − x∗‖ ≤̇ ‖[F̃ ′(xj)]−1‖ ‖F̃ (xj)− F̃ (x∗)‖
≤ ‖[F̃ ′(xj)]−1‖ (‖F̃ (xj)‖+ ‖F̃ (x∗)‖)
≤ ‖[F̃ ′(xj)]−1‖ (‖F̃ (xj)‖+ ej) (49)

for all xj ∈ S. Let B(r) denote the ball with radius r around x∗, i.e.,

B(r) = {x | ‖x− x∗‖ < r}.

It is well-known, see e.g. [39, Theorem 5.1.1], that under certain assumptions
on the function F , e.g., Lipschitz continuity of F ′, there exists a ξ > 0 such
that if xj ∈ B(ξ) \ S, then the Newton method converges quadratically, i.e.,
‖xj+1 − x∗‖ = O(‖xj − x∗‖2). This implies that

‖xj − x∗‖ ≤ ‖xj − xj+1‖+O(‖xj − x∗‖2), for all xj ∈ B(ξ) \ S. (50)

Thus, we have the following theorem.

Theorem 1. Let a solution xj of the nonlinear system arising in the gas �ow
simulation that is computed with the Newton method be given. Let ηri denote
the error in xj both due to rounding errors in the solution of (31) and due to
a preliminary stopping of the Newton iteration. Let ej be an upper bound for

the rounding error ‖F (xj) − F̃ (xj)‖. Suppose that S ⊆ B(ξ) and xj ∈ B(ξ),
then

ηri ≤̇

{
‖[F̃ ′(xj)]−1‖ (‖F̃ (xj)‖+ ej) if xj ∈ S,

‖xj − xj+1‖ if xj ∈ B(ξ) \ S.
(51)

Proof. If xj ∈ B(ξ) \ S, then the Newton method converges quadratically
despite rounding errors in the solution of (31), see [41, page 117]. Thus, ηri is
given by (50). On the other hand, if xj ∈ S, then condition (47) is satis�ed and
we do not have convergence. An upper bound for ηri is then given by (49).

To apply this result, we compute ηri for the 1S- and the MP-scheme. For
the 1S-scheme we may write

F̃1(xi,d) =
xi1 − xi−11

τ
(1 + 3ε) +

c2(qis − xi2)

AH
(1 + 6ε),

F̃2(xi,d) =
xi2 − xi−12

τ
(1 + 4ε) +

A(xi1 − pis)
H

(1 + 5ε) +
λc2xi2|xi2|
2DAxi1

(1 + 8ε),
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where |ε| ≤ u and u denotes the unit roundo�. Hence, we have

|F1 − F̃1| ≤
|xi1 − xi−11 |

τ
3u +

c2|qis − xi2|
AH

6u =: α1S,

|F2 − F̃2| ≤
|xi2 − xi−12 |

τ
4u +

A|xi1 − pis|
H

5u +
λc2(xi2)2

2DAxi1
8u =: β1S

and, thus, e1Sj = ‖[α1S, β1S]T ‖. For the MP-scheme we obtain

F̃1 =
xi1 − xi−11

τ
(1 + 4ε) +

2c2(qis − xi2)

AH
(1 + 7ε) + ṗis(1 + ε),

F̃2 =
xi2 − xi−12

τ
(1 + 5ε) +

2A(xi1 − pis)
H

(1 + 6ε) + q̇is(1 + 2ε)

+
λc2(qis + xi2)|qis + xi2|

2DA(xi1 + pis)
(1 + 11ε),

and, hence

|F1 − F̃1| ≤
|xi1 − xi−11 |

τ
4u +

2c2|qis − xi2|
AH

7u + |ṗis|u =: αMP,

|F2 − F̃2| ≤
|xi2 − xi−12 |

τ
5u +

2A|xi1 − pis|
H

6u + |q̇is|2u

+
λc2(qis + xi2)2

2DA(xi1 + pis)
11u =: βMP,

and eMP
j = ‖[αMP, βMP]T ‖. Assuming the use of IEEE standard double preci-

sion arithmetic, such that u = 2.22 · 10−16, see [19, page 39], and choosing the
in�nity norm, we obtain the following error estimates. For the 1S-scheme with
the values in (37) and the solution xi in (38) we have e1Sj = 1.16 · 10−12 and

‖F̃ (xi)‖ = 1.74 · 10−11. Thus, xi is not an element of the set S. We assume
that xi ∈ B(ξ) such that we have ηri ≤̇ 1.56 · 10−10. For the MP-scheme with
the values in (44) and the solution xi in (45) we have eMP

j = 1.73 · 10−12 and

‖F̃ (xi)‖ = 2.22 · 10−11. Hence, xi again is not contained in S. We again as-
sume that xi ∈ B(ξ) such that we have ηri ≤̇ 7.82 · 10−11. It can be concluded
that for both schemes the rounding and iteration errors can be neglected in
comparison with the data uncertainty error.

4.5 Modeling Error between the Semilinear and Algebraic Model

In this subsection we analyze the modeling error that is committed when the
isothermal semilinear model (7) is simpli�ed to the isothermal algebraic model
(10a), (10b) that is obtained by assuming a stationary gas �ow, see Figure 2.
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We consider the semilinear and the algebraic model on the spatial interval
[0, L], with pipeline length L, and the temporal interval [0, T ]. We de�ne
gridpoints (xi, t

k), i = 0, . . . , N and k = 0, . . . ,M , with stepsizes H = L/N
and τ = T/M . Let the solution of the semilinear model at the gridpoints be
denoted by ysem(xi, t

k), the solution of the discretized semilinear model with
stepsizes H and τ at the gridpoints (xi, t

k) be denoted by yki (H, τ), and the
solution of the algebraic model at the gridpoints be denoted by yalg(xi), with
y(x, t) = [p(x, t), q(x, t)]T . We de�ne the relative model error ηm between the
semilinear and the algebraic model by

ηm := max
i,k

∥∥D−1
yki (H/2,τ/2)

(
ysem(xi, t

k)− yalg(xi)
)∥∥
∞,

with Dx := diag(x). Using the triangle inequality, we have

ηm ≤ max
i,k

(∥∥D−1
yki (H/2,τ/2)

(
ysem(xi, t

k)− yki (H/2, τ/2)
)∥∥
∞

+
∥∥D−1

yki (H/2,τ/2)

(
yki (H/2, τ/2)− yalg(xi)

)∥∥
∞

)
. (54)

The term ysem(xi, t
k)− yki (H/2, τ/2) in (54) denotes the discretization error

of the semilinear model at the gridpoint (xi, t
k). We note that the right-hand

side of the semilinear model in (8) is only once continuously di�erentiable in
both space and time due to the term q|q|. Thus, in general, the maximum
attainable convergence order in space and time for �nite di�erence schemes
is one. However, if q does not change sign during the simulation, i.e., if no
back�ow occurs, which we assume in the following, then higher order conver-
gence rates can be achieved. Suppose that the discretization scheme for the
semilinear model converges with order γ in space and order δ in time. Then,
the discretization error has an asymptotic expansion of the form

ysem(xi, t
k)−yki (H/2, τ/2) = e(xi, t

k)
(
(H/2)γ + (τ/2)δ

)
+O

(
Hγ+1 + τ δ+1

)
,

with coe�cient function e(x, t) that is independent of H and τ , cf. [42]. Hence,
we have the �rst order approximations

ysem(xi, t
k)− yki (H/2, τ/2)

.
= e(xi, t

k)
(
(H/2)γ + (τ/2)δ

)
, (55)

ysem(xi, t
k)− yki (H, τ)

.
= e(xi, t

k)
(
Hγ + τ δ

)
. (56)

Subtracting (55) from (56) and rewriting yields

e(xi, t
k)

.
=

yki (H, τ)− yki (H/2, τ/2)

Hγ + τ δ − (H/2)γ − (τ/2)δ
.
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Inserting this into (55) and inserting (55) into (54) results in the �rst order
upper bound for the relative model error

ηm ≤̇ max
i,k

( (H/2)γ + (τ/2)δ

Hγ + τ δ − (H/2)γ − (τ/2)δ

·
∥∥D−1

yki (H/2,τ/2)

(
yki (H, τ)− yki (H/2, τ/2)

)∥∥
∞

+
∥∥D−1

yki (H/2,τ/2)

(
yki (H/2, τ/2)− yalg(xi)

)∥∥
∞

)
. (57)

In order to apply this result, we discretize the semilinear model with the 1S-
scheme from subsection 4.1. This discretization scheme is consistent of order 1
both in space and time. The stability of the 1S-scheme is secured by the use of
the implicit Euler method in time. Hence, we have convergence of order 1 in
space and time, i.e., γ=δ=1. Using e.g. the concrete values pin = 5.06 · 106 Pa,
q = 300 kg s−1 for the algebraic model and the values in (37) for the semilinear
model, we compute the discrete semilinear solutions yki (H, τ), yki (H/2, τ/2)
and the algebraic solution yalg(xi). From (57), this results for these concrete
data in ηm ≤̇ 1.16 %.

Having analyzed di�erent error sources for the semilinear model, in the
next section we step down one level in the model hierarchy in Figure 2 and
perform a similar analysis for the algebraic model.

5 Error Analysis for the Algebraic Model

In this section an error analysis is performed for the temperature dependent
algebraic model in (10). This analysis is performed both in terms of backward
and forward errors, resulting in �rst order upper error bounds, in subsec-
tion 5.1 and statistically, yielding mean error estimates, in subsection 5.2.
Furthermore, it is analyzed in subsection 5.3 under which condition the tem-
perature dependent model can safely be simpli�ed to the isothermal algebraic
model. Further details and examples can be found in [43].

5.1 Deterministic Error Analysis

In this subsection a backward error analysis is performed for the algebraic
model (10). The rounding errors due to �nite precision arithmetic and the
uncertainties in the data are interpreted as perturbations in the input param-
eters. Then, the relative errors in the output parameters are calculated using
the individual relative condition numbers and their magnitudes are analyzed
for certain concrete input parameter values.

In the equation for the mass �ux

q̂(d) = ρinvin, (58)
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which is constant in space, only one multiplication is performed with relative
error ε1, which yields

˜̂q(ρin, vin) = ρin(1 + ερin)vin(1 + εvin)(1 + ε1)

= ρinvin(1 + ερin + εvin + ε1 +O(ε2))

= q̂(ρin, vin(1 + ε2)), (59)

with ε2 = ερin + εvin + ε1 +O(ε2). Here, ερin is the relative measurement error
in ρin, εvin the relative data error in vin, and |ε1| < u the relative error of the
multiplication, with u the rounding unit in �nite precision arithmetic. For the
absolute relative error in q̂, using (59), we obtain

|q̂(d)− q̂(d + ∆d)|
|q̂(d)|

≤
∣∣∣ ∂q̂
∂ρin

1

q̂(d)
∆ρin︸︷︷︸

0

∣∣∣+
∣∣∣ ∂q̂
∂vin

1

q̂(d)
∆vin

∣∣∣+O
(
(∆d)2

)
=

∣∣∣∣( ∂q̂

∂vin

vin
q̂(d)

)
︸ ︷︷ ︸

ρinvin
ρinvin

=1

∆vin
vin︸ ︷︷ ︸
ε2

∣∣∣∣+O
(
(∆d)2

)

= |ε2|+ h.o.t. ≤ |ερin |+ |εvin |+ |ε1|+ h.o.t.,

where h.o.t. stands for higher order terms in the εj . Assuming that the round-
o� error ε1 is so small that it can be neglected in comparison with errors ερin
and εvin , then we have the constraint

|ερin |+ |εvin | ≤̇ elim,

where elim is a limit for the relative error in q̂.
For the computation of the pressure

p(d) =

√
p2in −

λc2

2r
ρv|ρv|(x− x0) (60)

we use Algorithm 1. Using the Taylor series expansion 1
1−ε = 1+ε+O(ε2), this

leads to a backward error due to roundo� errors in �nite precision arithmetic
with unit roundo� u, given by

p̃(d) =

√
(pin(1 + ε13))2 − λ(1 + ε14)c2

2r
ρv|ρv|(x− x0), (61)

where
2|ε13| = |ε1 + ε11 + 2ε12 +O(ε2)| ≤ 4u +O(u2),
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so that |ε13| ≤ 2u +O(u2) and |ε14| ≤ 13u +O(u2). Introducing relative data
errors and denoting the relative measurement error for the parameter α by εα,
continuing with (61), gives

p̃(d)2 =
(
pin(1 + ε15)

)2 − λ(1 + ε16)c2

2r
ρv|ρv|

(
x(1 + εx)− x0(1 + εx0

)
)
,

with

|ε15| = |εpin + ε13 +O(ε2)| ≤ |εpin |+ 2u + h.o.t., (62a)

|ε16| ≤ |ελ|+ 2|εc|+ |εr|+ 2|ερ|+ 2|εv|+ 13u + h.o.t. (62b)

Thus, for the backward error of p(d), considered as a function of pin, λ, x, x0,
we have the expression

p̃(pin, λ, x, x0) = p
(
pin(1 + ε15), λ(1 + ε16), x(1 + εx), x0(1 + εx0

)
)
. (63)

The e�ect of the rounding errors in the arithmetic computation of the pressure,
given by 2u and 13u in (62), is in general much smaller than the measurement
errors for the input parameters, which, in the worst case scenario, can be in the
order of a few percent. Hence, the magnitudes of the relative backward errors
ε15, ε16, εx, εx0 mainly depend on the in�icted measurement errors. Using
Taylor series expansion and the triangle inequality, it follows from (63) that
an upper bound for the relative error in p(d) due to the relative perturbations

Algorithm 1 : Computing the pressure p in (60)

Input: pin, λ, c, r, ρ, v, x, x0
1: z1 ← pin · pin
2: z2 ← c · c
3: z3 ← λ · z2
4: z4 ← 2 · r
5: z5 ← z3/z4
6: z6 ← ρ · v
7: z7 ← x− x0
8: z8 ← z5 · z6
9: z9 ← z8 · |z6|
10: z10 ← z9 · z7
11: z11 ← z1 − z10
12: z12 ←

√
z11

13: p(d)← z12
Output: p
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in the data d = [pin, λ, x, x0]T caused by rounding and data uncertainty is
given by

|p(d)− p(d + ∆d)|
p(d)

≤
4∑
i=1

∣∣∣∣∂p(d)

∂di

di
p(d)

∣∣∣∣∣∣∣∣∆didi
∣∣∣∣+O

(
(∆d)2

)
=

(
pin
p(d)

)2

︸ ︷︷ ︸
κrel(p;pin)

|ε15|+
λc2ρ2v2(x− x0)

4rp(d)2︸ ︷︷ ︸
κrel(p;λ)

|ε16|+
λc2ρ2v2|x|

4rp(d)2︸ ︷︷ ︸
κrel(p;x)

|εx|

+
λc2ρ2v2|x0|

4rp(d)2︸ ︷︷ ︸
κrel(p;x0)

|εx0
|+ h.o.t., (64)

where κrel(p; pin),κrel(p;λ),κrel(p;x),κrel(p;x0) are the individual relative con-
dition numbers, see (11), which amplify the relative backward errors. Note
that the relative condition number κrel(p;d) of p with respect to d is given by
the sum of these four individual condition numbers, see (12). Suppose that we
require κrel(p; pin) ≤ tol, where tolerance tol > 1 should depend on εpin , then
the inequality

p2in
p2in − λc2ρv|ρv|(x− x0)/(2r)

≤ tol

is obtained. By rewriting this relation it follows that if ρv > 0, then the
algebraic model can be used safely for a maximum pipeline length

L = x− x0 ≤
2rp2in(1− 1/tol)

λc2ρ2v2
. (65)

If ρv ≤ 0, then there is no such restriction on the pipeline length. Choosing
e.g. the concrete nominal values dnom given by

pinnom = 2 · 105 Pa, λnom = 0.03, cnom = 343 m s−1, (66a)

rnom = 0.5m, ρnom = 1 kg m−3, vnom = 10 m s−1, x0nom = 0 m, (66b)

then κrel(p;x) = κrel(p;λ) and κrel(p;x0) = 0. The relative condition numbers
κrel(p; pin),κrel(p;λ),κrel(p;x) grow quickly with the pipeline length L=x−x0,
see Figure 5. The graphs have a vertical asymptote at L=113 km. Given that
we require that ‖[κrel(p; pin), κrel(p;λ)]T ‖∞ ≤ 2, it can be concluded for these
concrete data that the algebraic model can only be used safely for pipelines
up to 60 km length.

For the computation of the temperature

T (d) = (Tin − Tw)e−
kw

Dcvρv
(x−x0) + Tw, (67)
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Figure 5: The individual relative condition numbers κrel(p; pin),κrel(p;λ),
κrel(p;x) in (64) considered as a function of the pipeline length L = x − x0,
with the nominal values in (66). The curve κrel(p;x) is behind the curve
κrel(p;λ).

we apply Algorithm 2. Due to rounding errors in �nite precision arithmetic,
a relative error ε is committed in every step of the algorithm. Using Taylor
series expansion, we obtain

T̃ (d) =
(
Tin
(
1 + ε11 − Tw(ε11 − ε10)/Tin

)
− Tw(1 + ε10)

)
e−

kw(1+ε12)
Dcvρv

(x−x0)

+ Tw(1 + ε10),

Algorithm 2 Computing the temperature T in (67)

Input: Tin, Tw, kw, D, cv, ρ, v, x, x0
1: z1 ← Tin − Tw
2: z2 ← D · cv
3: z3 ← z2 · ρ
4: z4 ← z3 · v
5: z5 ← kw/z4
6: z6 ← x− x0
7: z7 ← z5 · z6
8: z8 ← e−z7

9: z9 ← z1 · z8
10: z10 ← z9 + Tw
11: T (d)← z10
Output: T
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where

|ε10| ≤ u, (68a)

|ε11| = |ε1 + ε8 + ε9 + ε10 +O(ε2)| ≤ 4u +O(u2), (68b)

|ε12| = |ε2 + ε3 + ε4 + ε5 + ε6 + ε7 +O(ε2)| ≤ 6u +O(u2). (68c)

Including data errors for the input parameters gives

T̃ (d) =
(
Tin(1 + ε13)− Tw(1 + ε14)

)
e−

kw(1+ε15)
Dcvρv

(x(1+εx)−x0(1+εx0 ))

+ Tw(1 + ε14),

with

1 + ε13 = 1 + εTin + ε11 − Tw(ε11 − ε10)/Tin +O(ε2),

1 + ε14 = (1 + εTw)(1 + ε10) = 1 + εTw + ε10 +O(ε2),

1 + ε15 = 1 + εkw + ε12 + εD + εcv + ερ + εv +O(ε2).

This results in the backward error

T̃ (Tin, Tw, kw, x, x0)

= T
(
Tin(1 + ε13), Tw(1 + ε14), kw(1 + ε15), x(1 + εx), x0(1 + εx0

)
)
. (69)

The e�ect of rounding errors in the computation of the temperature, given
by u, 4u, 6u in (68), can in general be neglected again as compared to the
measurement errors. Thus, for the backward errors it holds that ε13 ≈ εTin ,
ε14 ≈ εTw , ε15 ≈ εkw + εD + εcv + ερ + εv. From (69) it follows that an upper
bound for the relative error in the temperature T (d) due to �nite precision
arithmetic and data errors is given by

|∆T |
T (d)

≤ Tin∣∣∣Tin +
(
e
kw(x−x0)
Dcvρv − 1

)
Tw

∣∣∣︸ ︷︷ ︸
κrel(T ;Tin)

|ε13|+

∣∣∣∣∣ Tw − Twe−
kw(x−x0)
Dcvρv

(Tin − Tw)e−
kw(x−x0)
Dcvρv + Tw

∣∣∣∣∣︸ ︷︷ ︸
κrel(T ;Tw)

|ε14|

+

∣∣∣∣∣ (Tin − Tw)(x− x0)kw

Dcvρv
(
Tin + (e

kw(x−x0)
Dcvρv − 1)Tw

)
∣∣∣∣∣︸ ︷︷ ︸

κrel(T ;kw)

|ε15|

+

∣∣∣∣ (Tin − Tw)kwx

DcvρvT (d)

∣∣∣∣e− kw(x−x0)
Dcvρv︸ ︷︷ ︸

κrel(T ;x)

|εx|
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+

∣∣∣∣ (Tin − Tw)kwx0
DcvρvT (d)

∣∣∣∣e− kw(x−x0)
Dcvρv︸ ︷︷ ︸

κrel(T ;x0)

|εx0
|+O

(
(∆d)2

)
, (70)

with ∆T = T (d) − T (d + ∆d). To see whether the relative backward errors
|ε13|, |ε14|, |ε15|, |εx|, |εx0

| are ampli�ed in the relative error for the tempera-
ture, we consider e.g. the concrete nominal values

Dnom = 1 m, ρnom = 1 kg m−3, vnom = 10 m s−1, Tinnom = 293 K, (71a)

Twnom
= 283 K, kwnom

= 0.0341 W m−1 K−1, (71b)

cvnom = 1700 J kg−1 K−1, x0nom = 0 m, (71c)

in the individual relative condition numbers in (70). With x0nom = 0, then
κrel(T ;x0) = 0. The four remaining relative condition numbers are depicted in
Figure 6 as a function of the pipeline length L = x−x0. The �gure shows that
all condition numbers remain below one, which means that the relative errors
in the input parameters are not ampli�ed. The relative condition numbers
κrel(T ; kw),κrel(T ;x) are so small as compared to κrel(T ;Tin),κrel(T ;Tw) that
they can be neglected. Again, we note that the relative condition number
κrel(T ;d) of T with respect to d = [Tin, Tw, kw, x, x0]T is given by the sum of
the four individual condition numbers.

Our backward analysis and the computation of the associated condition
numbers show that the values for the pressure are most a�ected by data and
rounding errors and present restrictions to the pipeline length that can be
safely considered. This theoretical analysis presents a �rst order worst case
error analysis. >From a practical point of view the worst case analysis is
important to obtain warnings, but in view of the large uncertainty that the
data will have a statistical analysis, which results in average perturbation
estimates, seems more adequate. Such an analysis is performed in the next
subsection.

5.2 Statistical Perturbation Analysis

In this subsection we compute average perturbation ampli�cation estimates
for the algebraic model (10) using a statistical analysis. It complements the
theoretical worst case analysis carried out in the previous subsection.

The e�cient URQ method, see subsection 3.2, enables us to calculate the
relative standard deviation of the pressure p and the temperature T for many
di�erent pipeline lengths L. The mean of the remaining input parameters is set
to the nominal values in (66), (71). The relative standard deviation σdi/µdi
is set to 0.5 % for every input parameter di of d. Subsequently, the mean
perturbation ampli�cation factors φ(p;d),φ(T ;d), see (32), are computed as
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Figure 6: The individual relative condition numbers κrel(T ;Tin), κrel(T ;Tw),
κrel(T ; kw), κrel(T ;x) in (70) considered as a function of the pipeline length
L = x− x0 for the concrete values in (71).

a function of L. The average perturbation ampli�cation results of the URQ
simulation for p and T are depicted in Figure 7. A similar behavior as in
the worst case analysis in subsection 5.1 is observed; the uncertainty in the
pressure grows quickly for increasing pipeline length and the uncertainty in
the temperature decreases slightly for increasing L. As expected, the average
uncertainty ampli�cation factors φ(p;d),φ(T ;d) in Figure 7 are smaller than
the �rst order upper bounds κrel(p;d),κrel(T ;d), which are obtained by taking
the sum of the individual condition numbers in Figures 5 and 6, see (12). The
mass �ux q̂ is not considered here, because it is constant with respect to L.

Concluding, the backward errors due to rounding and data uncertainty
have been presented in the previous subsection. Multiplying these backward
errors with the condition numbers from subsection 5.1 results in �rst order
worst case error bounds. On the other hand, multiplying the backward errors
with the average ampli�cation factors given in this subsection, yields mean
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Figure 7: The mean uncertainty ampli�cation factors φ, see (32), for the
pressure p (left) and the temperature T (right) as a function of the pipeline
length L, computed with the URQ method. The relative standard deviation
of the input parameters is set to 0.5% with mean values in (66), (71).

error estimates. The worst case bounds and the mean estimates together
provide a useful description of the error in the pressure and the temperature
due to rounding and data uncertainty.

Having performed the analysis for the algebraic model including temper-
ature and having observed that the temperature dependence is rather insen-
sitive, we can also extend the simpli�cation of the algebraic model to the
isothermal version by assuming the temperature T to be constant. The error
in�icted by this simpli�cation is analyzed in the following subsection.

5.3 Error between Temperature Dependent and Isothermal Alge-

braic Model

In this subsection we analyze the error that is committed when the tempera-
ture dependent algebraic model in (10) is simpli�ed to the isothermal algebraic
model in (10a), (10b), see the lower level of the model hierarchy in Figure 2.

Suppose that the temperature in the algebraic model is set constant and
that the value T (d), for certain parameter values d, is taken for this constant
temperature, whereas the actual parameter values are given by d̃. Then, using
Taylor series expansion and the triangle inequality, a �rst order upper bound
for the relative error in T is given by

|T (d)− T (d̃)|
|T (d)|

≤̇
n∑
i=1

∣∣∣∣∂T (d)

∂di

di
T (d)

∣∣∣∣ |di − d̃i||di|
.
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Inserting the nominal values dnom in (71) together with xnom = 70 km, the
individual relative condition numbers for T with respect to the parameter
vector d are given by∣∣∣∣∂T (d)

∂ρ

ρ

T (d)

∣∣∣∣ =

∣∣∣∣∂T (d)

∂v

v

T (d)

∣∣∣∣ =

∣∣∣∣∂T (d)

∂D

D

T (d)

∣∣∣∣ =

∣∣∣∣∂T (d)

∂x

x

T (d)

∣∣∣∣
=

∣∣∣∣∂T (d)

∂kw

kw
T (d)

∣∣∣∣ =

∣∣∣∣∂T (d)

∂cv

cv
T (d)

∣∣∣∣ = 4.18 · 10−3,∣∣∣∣∂T (d)

∂x0

x0
T (d)

∣∣∣∣ = 0,

∣∣∣∣∂T (d)

∂Tin

Tin
T (d)

∣∣∣∣ = 8.73 · 10−1,∣∣∣∣∂T (d)

∂Tw

Tw
T (d)

∣∣∣∣ = 1.27 · 10−1.

It follows that only perturbations in the parameter Tin create an equivalent
relative perturbation in the temperature T . Perturbations in the other input
parameters only cause a small relative error in T . This means that if the input
temperature Tin is not subject to change, then the temperature can safely
be set constant. If, however, the input temperature changes, for example
for di�erent pipelines, then the temperature cannot be set constant and the
temperature dependent algebraic model should be chosen.

6 Conclusions and Outlook

This paper presents an error and perturbation analysis for the Euler equations
in semilinear and algebraic form. The main focus is on the e�ect of rounding
and data uncertainty errors on the solution of these two models. However,
also the modeling error that is committed in the di�erent simpli�cations, the
discretization error for the semilinear model, and the iteration error due to a
preliminary stopping of the Newton method are analyzed.

The partial di�erential equations of the semilinear model are discretized
by applying two simple schemes which are used in natural gas network opti-
mization problems. It is shown that the normwise relative condition number
of the resulting nonlinear systems leads to a considerable overestimation of
the sensitivity of the problems. The novel componentwise relative condition
number constitutes a more accurate measure for the sensitivity. Furthermore,
it is shown that the mass �ow rate has higher condition numbers with respect
to the uncertain parameters than the pressure and we can determine stepsizes
for which well-conditioned problems are obtained. Moreover, it is shown that
the rounding and iteration errors can be neglected compared to the data un-
certainty error and we �nd that the modeling error between the semilinear
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and the algebraic model is approximately 1 % for certain concrete parameter
values.

The error analysis for the pressure in the algebraic model results in a round-
ing and data uncertainty error that grows quickly with increasing pipeline
length, such that the algebraic model can only be used safely for short pipelines
(for certain parameter values up to 60 km length). The error in the temper-
ature decreases slightly with increasing pipeline length. These results are
obtained both via a deterministic �rst order worst case and via a statistical
mean perturbation analysis. Finally, it is shown that only if the pipeline input
temperature is not subject to change, then the temperature can safely be set
constant and the isothermal algebraic model can be used.

Future work will implement the derived error estimators into a robust er-
ror controller, which allows to adaptively switch between di�erent simulation
models within the gas pipeline network in order to achieve a prescribed accu-
racy while minimizing the computational cost.
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