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Some models for immiscible displacements in
Hele-Shaw cells

Gelu Paşa

Abstract

We study the linear stability of the immiscible displacement of some
fluids in 2D and 3D Hele-Shaw cell. We give a method for avoiding
the singularities phenomenons which appears in previous papers. In the
case of a non - Newtonian fluid displaced by air in a 3D Hele-Shaw
cell, we give a growth constant σ of perturbations, which contains two
new terms compared with the Saffman-Taylor formula. Our σ has a
very high growth as a parameter appearing in the constitutive relations
approaches a critical value.
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Secondary: 35B20, 35B35.

1 Introduction

The Hele-Shaw approximation was first introduced in [6] and is concerning
the flow of a fluid in the thin gap between two parallel plates. The main
point is the following: the averaged (across the Hele-Shaw plates) velocities
of a Stokes fluid are verifying an equation quite similar with the Darcy law
for flow through a porous medium whose permeability is given in terms of the
small distance between the plates.

The immiscible displacement in Hele-Shaw cells is important due to the
possible applications in modeling the secondary oil recovery - see [1] and [8].
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This method is used when the pressure of the oil in a porous medium reservoir
is too low and the oil must be ”pushed” by a second immiscible fluid - usually
water, salt water or a polymer-water mixture. The polymer-water mixture is
not a Newtonian fluid, thus the displacement of such fluids, with nonlinear
constitutive relations, is an important research filed.

There exists a large literature concerning the miscible and immiscible dis-
placement in Hele- Shaw cells - see [7] and the references therein.

In [9], [13] the authors studied the linear stability of immisicble dis-
placement of Oldroyd-B and Maxwell type fluids by air in a 3D Hele-cell and
obtained numerical values for the corresponding growth constant (in time) of
the perturbations. Due to the complexity of the corresponding constitutive
relations, the displacement of such fluids can not be studied in 2D Hele-Shaw
cell. Moreover, the flow equations contain the derivatives of the fluid velocity,
thing that does not happen in the 2D case studied in [3] and [10]. Conse-
quently, two types of singularities appear in [9] and [13]:

a) The derivatives of the perturbed velocities become very large (tend to
∞) near the basic interface between the displacing fluids;

b) The basic solution is giving us a basic pressure P not depending on the
variable y, orthogonal on the displacing direction Ox in the plane parallel with
the cell plates. However, due to the perturbations considered in the stability
analysis process, in [5] and [13] the basic pressure P is depending on y near
the interface.

In this paper, we get a method for avoiding the previously mentioned sin-
gularities, by using some weighted amplitudes for the velocity perturbations.
The displacement by air of a non-Newtonian fluid in a 3D Hele-Shaw cell
is studied; we consider the effect of the meniscus curvature across the plates.
The constitutive relations contain a parameter a, similar with the Weissenberg
number in the case of an Oldroyd-B fluid. We give a rigorous proof for a for-
mula of the growth constant σ of the linear perturbations, in the range of small
a. Our main conclusion is that σ has a very high growth when the parameter
a appearing in the constitutive relations approaches a critical value.

We improve the results obtained in [10], where a similar formula of the
growth constant was obtained, but the continuous dependence of σ in terms
of the parameter a was not been rigorously obtained.

We get two results which are in contradiction with Saffman -Taylor crite-
rion for the stability of immiscible displacement in 2D Hele-Shaw cells:

i) the displacement is almost stable when the surface tension γ on the
air-fluid interface is large enough, even if the displacing fluid is less viscous;

ii) if γ = 0, then σ tends to zero for very large wave numbers.

We give some details concerning the Hele-Shaw approximation. In our pa-
per, the cell plates are parallel with the fixed plane x1Oy and the distance
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between them is b. Two immiscible Stokes fluids with viscosities µj are dis-
placing in the gap of thickness b. The velocities and pressures are denoted
by

u = (uj , vj , wj), p
j
, j = 1, 2.

The flow equations and the free-divergence condition are given below

∇p = µ∆u, ujx + vjy = 0,

where the lower indices x , y denotes the partial derivatives.
The Hele-Shaw approximation is based on the following hypothesis:
H1 : ujx, ujy, vjx, vjy, wj ≈ 0, j = 1, 2. Then the flow equations

become
p
jx

= µujzz, p
jy

= µvjzz, p
jz

= 0.

We average the velocities across the plates and get

< uj >:=
1

b

∫ b

0

uj(z)dz = − b2

12µj
∇p

j
= −(k/µj)∇pj .

The above equations are quite similar to Darcy law for flow in a porous medium
with permeability k = b2/12.

H2 : There is a sharp interface between the two immiscible fluids, where
Laplace law is assumed; this means: i)the pressure jump is given by the surface
tension multiplied with the interface curvature; ii) the normal velocity across
the interface is continuous.

2 Two Stokes fluids displacing in a 2D Hele-Shaw

We first recall the result given in [10]. Consider the fluid 1 is displacing fluid
2; for both fluids we have

uj = (uj , vj) = −(k/µj)∇pj = ∇φ
j
; ∆φ

j
= 0; j = 1, 2; k = b2/12. (1)

Here uj , vj are the filtration (averaged) velocities.
The basic flow is given by the velocity (V, 0) of the fluid 1 far upstream, the

basic interface is x = 0 in the moving frame x = x1−V t. We consider the sur-
face tension T on x = 0. We also assume Laplace’s law near the basic interface.
We emphasize that the flow equations do not contain ujx, ujy, vjx, vjy.

Saffman and Taylor [12] assumed the following small perturbation of the
basic interface x = 0:

x = c exp(iny + σt), n = wave numbers , σ = growth rate. (2)
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The perturbations are denoted by p, (u, v), φ. We have ∆φ = 0. As the
normal component of the velocity is continuous and the interface is material,
the following equation ”to the first order of deviation” was considered in [12]
near x = 0:

φ1x = φ2x = V + cσ exp(iny + σt), (3)

and the following solution was obtained{
φ1 = V x+ (cσ/n) exp(iny + nx+ σt), x < 0;
φ2 = V x− (cσ/n) exp(iny − nx+ σt), x > 0.

(4)

We have two remarks concerning the solution (4):

Remark 1. The perturbed interface is material, then it follows (we omit
the indices j = 1, 2):

xt = u, u = cσ exp(iny + σt)⇒ u = u(y, t).

As ux + vy = 0, we get vy = 0, then from (1) it follows px = px(y, t), py =
py(x, t). Moreover, we need pxy = pyx, therefore we obtain (for both fluids)

uy = vx = A = constant, u = Ay+B, v = Ax+C with B,C = constant.

We consider that this dependence of u, v in terms of x, y is not acceptable
from physical point of view.

�

Remark 2. Solution (4) verifies the equation (3) only if for small |x| (near
the basic interface) we have

x > 0, exp(−nx) ≈ 1 and x < 0, exp(nx) ≈ 1.

Even if x is very small, for large values of the wave number n we have

x > 0, exp(−nx) ≈ 0 and x < 0, exp(nx) ≈ 0.

Then for small |x| and large n, the solution (4) is giving φ1 = φ2 = V x and
the equation (3) is not verified.

�

According to Saffman and Taylor [12] , the pressures are obtained from
the potential expressions (1). The Laplace law on the interface is

p2 − p1 = Txyy
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then we get

σ

n
{µ2

k
exp(−nx) +

µ1

k
exp(nx)} = V {µ2

k
− µ1

k
}+ T (−n2). (5)

We can now emphasize that Saffman- Taylor formula (6) holds only if exp(+−nx) ≈
1 (see Remark 2)

σST =
V n(µ2 − µ1)− (b2/12)Tn3

µ2 + µ1
. (6)

The well known Saffman-Taylor instability criterion was obtained from this
last relation:

µ1 < µ2 ⇒ maxn[σST ] > 0.

For the case when the displacing fluid is air, we have µ1 ≈ 0, therefore the
above growth constant (6) becomes

σST−AIR = V n− (b2/12)(T/µ2)n3. (7)

We now recall the result of Gorell and Homsy [5]. The basic velocity and
pressure are denoted by (V, 0), P and we have

Pjx = −(µj/kj)V, Pjy = 0, (8)

therefore P is depending only on x - this is an important property. Moreover,
as the basic interface is the straight line x = 0, the basic pressure P is con-
tinuous at x = 0. As before, the perturbations are denoted by u, v, p. The
following Fourier decomposition is used for the perturbed velocity u:

u = f(x) exp(σt) cos(ny). (9)

The free divergence condition gives us the solution for v:

v = (−1/n)fx exp(σt) sin(ny). (10)

Since the perturbed Darcy law gives us pjy = −(µj/kj)v we easily get the
expression of the perturbed pressure in both fluids:

pj = −(µj/kjn
2)fx exp(σt) cos(ny), j = 1, 2. (11)

Cross derivation of the pressure gives us the equation for the amplitude f(x):

fxx − n2f = 0.
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As u is continuous at x = 0 and the perturbations must decay to zero far away
from x = 0, Gorell and Homsy [5] considered the following solutions for the
amplitude:

f(x) = f(0) ·
{

exp(nx), x ≤ 0
exp(−nx), x ≥ 0

;

{
f−x (0) = nf(0)
f+x (0) = −nf(0).

(12)

Here the dimension of f(0) is unit of length over unit of time.
The perturbed interface is denoted by η; we have ηt = u and thus

η(x, y, t) = (1/σ)f(x) exp(σt) cos(ny).

The limit values of the pressure near the basic interface were obtained in [5]
by considering a first order Taylor expansion of the basic pressure and the
perturbed pressure (11):

p+(0) = P (0) + P+
x (0)η(0) + p2(0) = (13)

P (0)− µ2

k2
V

1

σ
f(0) exp(σt) cos(ny)− µ2

k2n2
f+x (0) exp(σt) cos(ny),

p−(0) = P (0) + P−x (0)η(0) + p1(0) = (14)

P (0)− µ1

k1
V

1

σ
f(0) exp(σt) cos(ny)− µ1

k1n2
f−x (0) exp(σt) cos(ny).

From (12), (13), (14) we recover the formula (6).
Gorell and Homsy’s model [5] uses the perturbations of the velocities

and not a perturbation of the basic interfaces. Moreover, the free-divergence
condition and then the partial derivatives ux, vy were used in their paper.

Remark 3. The modulus of ux, vy becomes very large for x ≈ 0 and n→∞.
Indeed, ux, vy contain the factor [−n exp(−nx)]. Consider n as a real (and not
integer) number, x as a parameter, and the function

F (n) = −n exp(−nx).

We use the derivative Fn of F in terms of n and get

Fn(n = 1/x) = 0, Fmin = Fmin(x) = F (1/x) = −1/(ex), Fmin(x→ 0)→ −∞.

�

To overcome the phenomenon described in the above remark, we consider
the new expansion

u = exp(−n[α+ x] + σt) cos(ny), α > 0. (15)
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Therefore, in the point x = 0, the derivatives of the velocity contain the factor

FA(n) = −n exp(−nα).

This time we have

minn[−n exp(−nα)]→ 0 for α→∞.

We consider two particular cases:

maxn|FA(n)| ≈ 370 for α = 0.001; maxn|FA(n)| ≈ 0.0075 for α = 50.

Remark 4. The basic pressure at the ”point” η is depending on y which
contradicts the relation (8). Indeed, if we use a first Taylor expansion of P
near x = 0, as in (13), the Fourier expansion (9) gives us

P+
y (η) ≈ P+

x (0)(−n)
f(0)

σ
exp(σt) sin(ny) 6= 0.

We use (15) instead of (9) and get

P+
y (η) ≈ P+

x (0)[(−n) exp(−nα)]
f(0)

σ
exp(σt) sin(ny).

As we pointed out in Remark 3, maxn{|n exp(−nα)| is very small for large α.
Therefore Py(η) is very close to zero for large α. Then we can consider that
the dependence of P in terms of y is arbitrary small for large enough α.

�

3 A non-Newtonian fluid displaced by air

Consider the non-Newtonian fluid governed by the following constitutive rela-
tions:

τ = µD + µa(LD +DLT ), a > 0, (16)

where the dimension of a is (time). Here we use the following notations:
τ ,D are the the extra-stress and strain-rate tensors; µ is the fluid viscosity;

L is the matrix of the velocity gradients. We have the relations

Lij = ∂ui/∂xj , (Lij)
T = Lji, D = (L+ LT ). (17)

Our constitutive relations are steady; it can be proved that (16) are frame-
independent with respect to the coordinate changes x+ = Qx, where Q is
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an ortonormal matrix not depending on time. We consider an incompressible
fluid, then we have

ux + vy + wz = 0 (18)

The no-slip conditions on the plates are imposed for the velocity:

(u, v, w) = 0 at z = 0, z = b. (19)

The flow equations of our fluid are given below:

p
x

= τ11,x+τ12,y+τ13,z; p
y

= τ21,x+τ22,y+τ23,z; p
z

= τ31,x+τ32,y+τ33,z.

(20)
We consider the following basic flow (in the positive direction of x-axis)

denoted by the super-index 0:

∇p0 = (p0x(x), 0, 0), u0 = (u0(z), 0, 0), (21)

L0
ij = 0 ∀ (i, j) 6= (1, 3), L0

13 = u0z, (22)

D0
ij = 0 ∀ (i, j) 6= (1, 3) and (3, 1), D0

13 = D0
31 = u0z,

τ0 = µD0 + aµ{L0D0 +D0L0T }. (23)

Then we get

τ0 = µ

 0 0 u0z
0 0 0
u0z 0 0

+ aµ

 2(u0z)2 0 0
0 0 0
0 0 0

 , (24)

τ022 = τ023 = τ033 = τ012 = 0, τ011 = 2aµ(u0z)2, τ013 = µu0z. (25)

We have the following basic flow equations:

p0x = τ011,x + τ012,y + τ013,z, (26)

p0y = τ021,x + τ022,y + τ023,z, (27)

p0z = τ031,x + τ032,y + τ033,z, (28)

and thus p0y = p0z = 0. Moreover, since τ011 = τ011(z), from the equation (26) it
follows

p0x(x) = τ013,z(z) = µu0zz = G = constant < 0, (29)

because the pressure is decreasing in terms of x. The fluid displacement is
produced by the pressure gradient G, which is giving the basic flow with the
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velocity (u0(z), 0, 0). From (29) we get the component u0 of the basic velocity
in terms of G

u0 =
G

2µ
(z2 − bz). (30)

The characteristic velocity U of our basic flow is given by

U =< u0 >:=
1

b

∫ b

0

u0(z)dz = −(
b2

12µ
)G. (31)

We use U and introduce the dimensionless Weissenberg number W :

W = aU/l, (32)

where l is the characteristic length of our Hele-Shaw cell.
In the following we perform the modal linear stability of the above basic

flow (21)- (22) in the range of small W of order ε = b/l.
The relation (31) is quite similar with Darcy law for the flow through a

porous media with filtration velocity < u0 > and “permeability” b2/12.
In [13], it is (numerically) studied the displacement of an Oldroyd-B fluid

by air in a 3D Hele-Shaw cell. It was supposed that the pressure can depend
on time - that means in the pressure expression we can add a constant not
depending on x. As in [13], we consider the following dependence of the
pressure in terms of the time t (which first appears here):

p0 = G(x− < u0 > t), for x > < u0 > t. (33)

The basic moving interface between air and our fluid is

x =< u0 > t. (34)

The perturbations of the basic flow are denoted by (u, v, w), p, τ .
We recall the free-divergence condition (18). We suppose u = v = w = 0

on the Hele-Shaw plates, then the velocity perturbations verify the relation∫ b

0

(ux + vy) = 0. (35)

A solution for the above equation is ux + vy = 0, then we get wz = 0 and the
boundary conditions are giving us w = 0. In the following we shall consider

ux + vy = 0, w = 0. (36)

Equation (26) may have other solutions, but in this paper we only consider
the solution (37).
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As w = 0, the perturbations L,D of L0, D0 are given by

L =

 ux uy uz
vx vy vz
0 0 0

 , D =

 2ux uy + vx uz
uy + vx 2vy vz
uz vz 0

 . (37)

Inserting them in (16) and using (24), in the frame of the linear stability
analysis, we get

τ = µ{D + a[L0D + (L0D)T + LD0 + (LD0)T ]}. (38)

The components of the extra-stress tensor in terms of the velocity pertur-
bations are given by the relations

τ11 = 2µux + 4aµu0zuz, τ12 = µ(uy + vx) + 2aµu0zvz, (39)

τ13 = µuz + aµu0zux, τ22 = 2µvy, τ23 = µvz + aµu0zvx, τ33 = 0. (40)

It is interesting to see that the relations (39) - (40) can be also obtained directly
from the relations (25). The corresponding pressure perturbations are

px = τ11,x +τ12,y +τ13,z, py = τ21,x +τ22,y +τ23,z, pz = τ31,x +τ32,y +τ33,z.
(41)

We use (30) and consider the following Fourier decomposition for (u, v):

u = f(z) exp(−n[α+ x] + σt) cos(ny),

v = f(z) exp(−n[α+ x] + σt) sin(ny), (42)

f(z) =
1

nl
· W

504
· G

2µ
z(z − b) =

1

nl
· W

504
u0, x ≥ 0, n ≥ 1.

where σ is the growth constant and α is a large positive number. The above
expansion (42) verifies the relations ux+vy = 0 and u = v = 0 for z = 0, z = b.
Moreover, it follows

ux = −nu, uy = −nv, vx = −nv, uxy = (n2)v, vxy = (−n2)u, (43)

uxx + uyy = 0, uzx + vzy = 0, uxx + vxy = 0. (44)

Equations (39) - (44) give us the pressure perturbations in terms of the velocity
perturbations:

px = aµ · (3u0zuzx + u0zzux) + µuzz, py = aµ · (3u0zvzx + u0zzvx) + µvzz. (45)

and we obtain pxy = pyx. We get also

pz = µ(uz + auxu
0
z)x + µ(vz + avxu

0
z)y = 0⇒ (46)
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(px)z = aµ · (4u0zzuz + 3u0zuzz)x + µuzzz = 0. (47)

The following dimensionless quantities will be used in this section:

x′ =
x

l
, y′ =

y

l
, z′ =

z

b
, (u′, v′) =

(u, v)

U
, ε =

b

l
<< 1. (48)

p′ = p
1

Gl
, t′ = t

U

l
, σ′ = σ

l

U
; f ′ = f/U ; γ′ = γ

1

µU
; n′ = nl. (49)

Recall (30) and (31). We have

u0 = −12µU

2b2µ
b2z′(z′ − 1) = −6Uz′(z′ − 1)⇒

u0
′

= −6z′(z′ − 1), f ′ = −6(1/n′)(W/504)z′(z′ − 1). (50)

We use the above last expression to obtain the dimensionless form of the
relation (47). As f ′z′z′z′ = 0, we have

LHS :=
W

504
a[4 · 12U · 6U(2z′ − 1) + 3 · 6U(2z′ − 1)12U ]

1

l
= 0. (51)

In this section we consider W = O(ε), ε = O(10−3).
Recall W = aU/l. As LHS = (W/504)W · 504(2z′ − 1) ≤W 2, we can see

that (51) is not verified exactly, but with the precision order O(ε2). Then the
amplitude f given by (42) verifies the equation (51) with the precision order
O(ε2).

We follow Wilson [13] and consider the kinetic and dynamic boundary
conditions on the steady air-liquid interface x =< u0 > t. The perturbed
interface is given by

ψ = x− < u0 > t. (52)

As the interface is material, we also have

ψt = u⇒ ψ = u/σ. (53)

The stress jump on the interface is given by the surface tension multiplied
with the interface curvature (Laplace’s law). We consider

< Gψ + p− τ11 >= γ· < {ψyy + ψzz} >, (54)

where γ is the surface tension and {ψyy +ψzz} is denoting the total curvature
of the interface. A quite similar formula is used in [13], but without the term
containing ψzz.
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In many papers, the term τ11 did not appears in Laplace’s law (54). On
the contrary, the importance of this term is rigorously proved in [2] and [11]
- see also the references therein.

The partial derivative with respect to x is equivalent with the multiplica-
tion with (−n). The relations (45) and (39) - (40) are used to obtain (p−τ11):

px − τ11,x = µ(−2n2u) + aµn(u0zuz − u0zzu) + µuzz ⇒

p− τ11 = (−1/n){µ(−2n2u) + aµn(u0zuz − u0zzu) + µuzz}. (55)

From the equations (53) and (42) it follows the expressions of ψx, ψyy, ψyy.
We insert them and the expression (55) in the relation (54) to get

<
G(−n)f

σ
−2n2µf +aµn · (u0zfz−u0zzf) +µfzz >=

γ

σ
< −n2f +fzz > (−n).

(56)
We perform the average across the plates and it follows the dispersion

relation

σ =
Un− (γ/η)(b2/12)n3 − (γ/η)n

1− 2aUn+ b2n2/6
. (57)

Recall the growth rate obtained in [12] for a Newtonian liquid with vis-
cosity µ displaced by air in a 2D Hele-Shaw cell:

σST = Un− (γ/µ)(b2/12)n3. (58)

Remark 5. The same method as in section 3 was used in the talks [3]
and [4], obtained in collaboration with professor Prabir Daripa from Texas
A-M University, College Station, USA. In these talks was studied the linear
instability of the displacement by air of an Oldroyd-B fluid (with more complex
constitutive relations) in a Hele-Shaw cell, for small Weissenberg numbers. A
different Fourier expansions and amplitudes of the velocity perturbations were
used, giving unbounded partial derivatives of (u, v) with respect to x, y near
the basic interface x = 0 - as we pointed out in Remark 3. Despite this fact, a
quite similar formula for the growth constant and a strong destabilizing effect
(compared with the case studied in [10]) were obtained. Unfortunately, both
these talks have not been published.

4 Conclusions

1) For the case a = 0, the formula (57) of σ is quite similar with the Saffman-
Taylor growth constant (58), but two new terms appear:

a) (−γ/µ)n in the numerator, given by the meniscus curvature;
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b) b2n2/6 in the denominator, given by the partial derivative with respect
to x of the velocity.

We use the dimensionless quantities (48) - (49), then from (57) we get the
following dimensionless approximate formula of the growth constant for small
W , denoted by σ′SW :

σ′SW =
n′ − γ′n′ − γ′(ε2/12)n′3

1− 2Wn′ + ε2n′2/6
(59)

The dimensionless quantities and the formula (58) give us the dimension-
less Saffman-Taylor growth constant

σ′ST = n′ − γ′(ε2/12)n
′3. (60)

2) Consider W = cε with c > 0.40824. Then the denominator of (59) has
two real roots. Indeed, we have

∆ = c2ε2 − ε2/6 > 0⇔ c2 > 1/6, c > 0.40824. (61)

3) In the range W = cε with c2 < 1/6, the flow is almost stable when
γ′ > 1, even if the displacing fluid is less viscous (air). Indeed, in this case the
denominator of (59) is positive ∀ n′ and we have

σ′SW <
n′(1− γ′)

1− 2Wn′ + ε2n′2/6
. (62)

Moreover, we can see that in the case γ′ = 0, we have

limn→∞σ
′
SW = 0. (63)

The last two relations are in contradiction with the Saffman-Taylor stability
critertion.

In Figure 1 we plot the positive growth constant (60) (on the vertical axis)
in terms of the wave number n′ (on the horizontal axis), when ε = 0.006, γ′ =
0.1, W = cε and

c = 0.1 (lower curve), 0.2, 0.3, 0.35. 0, 38, 0.39, 0.395, 0.4, 0.405 (upper curve).

We can see that σ′SW is increasing from 8000 to over 18000 when c is increasing
from 0.4 to 0.405. We must avoid the value c = 0.40824 where a blow-up of
the growth constant σ′SW appears. On the other hand, we use (60) and get

maxn′{σ′ST } ≈ 1.000.
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Figure 1: The growth constant (59) for ε = 0.006, γ′ = 0.1,W = cε and

c = 0.1, 0.2, 0.3, 0.35. 0, 38, 0.39, 0.395, 0.4, 0.405.
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